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Abstract— In this paper we study a dynamic vehicle routing
problem where demands have stochastic deadlines on their
waiting times. Specifically, a network of robotic vehicles must
service demands whose time of arrival, location and on-site
service are stochastic; moreover, once a demand arrives, it
remains active for a stochastic amount of time, and then
expires. An active demand is successfully serviced when one
of the vehicles visits its location before its deadline and provide
the required on-site service. The aim is to find the minimum
number of vehicles needed to ensure that the steady-state
probability that a demand is successfully serviced is larger than
a desired value, and to determine the policy the vehicles should
execute to ensure that such objective is attained. First, we
carefully formulate the problem, and we show its well-posedness
by providing some novel ergodic results. Second, we provide a
lower bound on the optimal number of vehicles; finally, we
analyze two service policies, and we show that one of them
is optimal in light load. Simulation results are presented and
discussed.

I. INTRODUCTION

The last decade has seen an increasing number of appli-
cation domains where networks of robotic vehicles are re-
quired to visit demands that are spatially distributed over an
environment, and that possibly require some type of on-site
service. Surveillance missions by teams of unmanned aerial
vehicles are a first clear example; in this case, demands are
targets whose potential hazard has to be assessed. Automatic
delivery of payloads by mobile robotic networks provides a
second example. Other examples include transportation-on-
demand systems, automated refuse collection trucks, etc. In
many of the above examples, demands arrive dynamically
in time, and their on-site service is stochastic; moreover,
timeliness is paramount: should the vehicles take too long
to reach the location of the demand, the latter (i) may
have escaped and be hard to track (example 1), or (ii)
may no longer be interested in the delivered good (example
2). In other words, the routing of robotic vehicles is often
dynamic and time-constrained, in the sense that demands
have (possibly stochastic) deadlines on their waiting times.

Routing problems with both a dynamic and a stochastic
component, which are collectively called Dynamic Vehicle
Routing Problems (DVRPs), have been extensively studied
in the last 20 years [1], [2], [3]; however, little is known
about time-constrained versions of DVRPs, despite their
practical relevance. The purpose of this paper is to fill
this gap. Specifically, we introduce and study the follow-
ing problem, which we call the Dynamic Vehicle Routing
Problem with Stochastic Time Constraints (DVRPSTC): m
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vehicles operating in a bounded environment and traveling
with bounded velocity must service demands whose time of
arrival, location and on-site service are stochastic; moreover,
once a demand arrives, it remains active for a stochastic
amount of time, and then expires. An active demand is
successfully serviced when one of the vehicles visits its
location before its deadline and provide the required on-
site service. The aim is to find the minimum number of
vehicles needed to ensure that the steady-state probability
that a demand is successfully serviced is larger than a
desired value φd ∈ (0, 1), and to determine the policy
the vehicles should execute to ensure that such objective is
attained. Some of the characteristics of the DVRPSTC have
been studied in isolation in the literature. When there is no
dynamic component, and all problem data are known with
certainty, the DVRPSTC is closely related to the well-known
Vehicle Routing Problem with Time Windows (VRPTW).
The VRPTW has been the subject of intensive research
efforts for both heuristic and exact optimization approaches
(see, e.g., [4] and references therein). When there is no
spatial component, i.e., all demands arrive at a specific
facility, the DVRPSTC becomes a queueing problem with
impatient customers, which again has been the subject of
intensive study (see, for example, [5], [6]). Finally, the
DVRPSTC is also related to coverage problems of mobile
sensor networks [7].

The contribution of this paper is threefold: First, we care-
fully formulate the DVRPSTC. Second, we establish a lower
bound on the optimal number of vehicles; in deriving such
lower bound, we introduce a novel type of facility location
problem, and we provide some analysis and algorithms for
it. Third, we analyze two service policies; in particular, we
show that one of the two policies is optimal in light load
(i.e., when there are few arrivals per unit of time), and we
discuss scaling laws for the minimum number of vehicles.
The significance of our results stems from two facts: First,
the structural insights into the DVRPSTC provide the system
designer with essential information to build business and
strategic planning models regarding, e.g., fleet sizing and
depot locations. Second, our analysis provides directions and
guidelines to route the robotic vehicles once the system is
deployed. We finally point out that when (i) the arrival rate
of demands tends to infinity, (ii) φd tends to one, and (iii)
the deadlines are deterministic, the DVRPSTC reduces to the
problem we studied in [8].

II. PRELIMINARIES

A. Notation
We let R>0 and R≥0 denote the positive and nonnegative

real numbers, respectively. We let N>0 and N denote the
positive and nonnegative integers, respectively. We let ‖ · ‖
denote the Euclidean norm in R2. For a measurable and
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bounded subset E ⊂ R2, we let |E| denote its area, and
we define its diameter as dE

.= sup{||p− q|| | p, q ∈ E}.
B. Asymptotic and Worst-Case Properties of the Traveling
Salesman Problem

Given a set D of n points in R2, let TSP(D) denote
the length of the shortest tour through all the points in D;
by convention, TSP(∅) = 0. Assume that the locations
of the n points are random variables independently and
identically distributed in a compact set E ; in [9] it is shown
that there exists a constant βTSP such that, almost surely,
limn→+∞ TSP(D)/

√
n = βTSP

∫
E

√
f̄(x) dx, where f̄

is the density of the absolutely continuous part of the
point distribution. The constant βTSP has been estimated
numerically as βTSP ' 0.7120± 0.0002 [10]. Furthermore,
for a certain environment E , the following (deterministic)
bound holds on the length of the TSP tour, uniformly on n
[9]:

TSP(D) ≤ βE
√
|E|
√
n, (1)

where βE is a constant that only depends on the shape of E .
We will refer to βE as the characteristic constant of E .

C. Voronoi Diagrams
Assume that x = (x1, . . . , xm) is an ordered set of m

distinct points in E ⊂ R2. The Voronoi diagram V(x) =
(V1(x), . . . , Vm(x)) of E generated by x is defined by
Vk(x) = {x ∈ E| ‖x − xk‖ ≤ ‖x − xj‖, ∀j 6= k, j ∈
{1, . . . ,m}}, k ∈ {1, . . . ,m}. We refer to x as the set of
generators of V(x), and to Vk(x) as the Voronoi cell of
the kth generator. If E is convex, then each Voronoi cell is
a convex set. Lastly, we define Xcoinc

.= {(x1, . . . , xm) ∈
Em |xk = xj for some k 6= j}.
D. Regenerative Processes

A stochastic process {X(t); t ∈ T}, where T = N or
T = R≥0, is said to be regenerative if it can be split
into independent and identically distributed (i.i.d.) cycles,
or, in other words, if an imbedded renewal process can
be found (we refer the reader to see [11, page 169] for
a more formal definition). The power of the concept of
regenerative processes lies in the existence of a limiting
distribution under conditions that are very mild and easy to
verify. We next provide some results about discrete-time (i.e.
T = N) regenerative processes. Before proceeding, we need
the following definition. A discrete probability distribution
fk, k ∈ N, is said to be periodic if there exists an integer
p > 1 such that all fk’s, except, perhaps, fp, f2p, f3p, . . . ,
vanish. Often, it is easy to check if a distribution is non-
periodic.

Lemma 2.1 (Lemma 2 in [12]): A discrete probability
distribution fk, k ∈ N, is non-periodic if f1 > 0.

Consider a regenerative process {Xj ; j ∈ N}, with associ-
ated renewal sequence {Yj ; j ∈ N>0}, and let Y = Y1 be the
first regeneration cycle; moreover, let fk = P[Y = k], k ∈ N.
The stationary version {X∗j ; j ∈ N} of the regenerative
process {Xj ; j ∈ N} is defined by (see [12])

P[X∗j ∈ A] =
1

E [Y ]

+∞∑
k=0

P[Xj+k ∈ A|Y > k] · P[Y > k],

(2)

for every j ∈ N and every Borel set A.
Theorem 2.2 (Adapted form theorem 2 in [12]): Let

{Xj ; j ∈ N} be a nonnegative regenerative process with
first regeneration cycle Y , with E [Y ] < +∞. Then, the
stationary process given by (2) is well defined and has a
proper distribution function, which is independent of j.
Moreover,

(i) E [X∗0 ] = E
[∑Y−1

j=0 Xj

]
/E [Y ];

(ii) if fk, k ∈ N, is non-periodic, then for every Borel set
A, limj→+∞ P[Xj ∈ A] = P[X∗0 ∈ A].

III. PROBLEM SETUP

In this section, we set up the problem we wish to study.

A. The Model
Let the workspace E ⊂ R2 be a compact, convex set. A

total of m holonomic vehicles operate in E ; the vehicles are
free to move, traveling at a maximum velocity v, within E .
The vehicles are identical, have unlimited range and demand
servicing capacity; moreover, each vehicle is associated with
a depot whose location is at xk ∈ E , k ∈ {1, . . . ,m}.
Demands are generated according to a homogeneous (i.e.,
time-invariant) spatio-temporal Poisson process, with time
intensity λ ∈ R>0, and uniform spatial density over E . In
other words, demands arrive to E according to a Poisson
process with intensity λ, and their locations {Xj ; j ∈ N}
are i.i.d. and distributed according to a uniform density
whose support is E ; moreover, the locations are independent
of demands’ arrival times and of vehicles’ positions. Let
{Tj ; j ∈ N} denote the sequence of arrival times of de-
mands; we assume that T0 = 0, and that the first arrival finds
the system empty. Let N(t), t ∈ R≥0, denote the number
of arrivals in [0, t], i.e., N(t) = max{j ∈ N|Tj ≤ t}. Each
demand j requires a stochastic amount of on-site service
time Sj . A vehicle provides on-site service by staying at the
demand’s location for the entire on-site service time. On-site
service is not-interruptible: once a vehicle starts the service,
neither the vehicle can interrupt the service nor the demand
can leave the system before service completion. We assume
that the nonnegative on-site service times {Sj ; j ∈ N} are
i.i.d. and generally distributed according to a distribution
function FS(s) with first moment S̄ and maximum value
smax ≥ 0.

Each demand j waits for the beginning of its service
no longer than a stochastic patience time Pj . We assume
that the nonnegative patience times {Pj ; j ∈ N} are i.i.d
and generally distributed according to a distribution function
FP (p) with first moment P̄ and maximum value pmax > 0;
moreover, we assume that P[Pj = 0] = 0, and that the
patience times are independent of demands’ arrival times,
demands’ locations, and vehicles’ positions. A vehicle can
start the on-site service for the jth demand only within
the stochastic time window [Tj , Tj + Pj). If the on-site
service for the jth demand is not started before the time
instant Tj + Pj , then the jth demand is considered lost;
in other words, such demand leaves the system and never
returns. If, instead, the on-site service for the jth demand is
started before the time instant Tj + Pj , then the demand is
considered successfully serviced (recall our assumption that
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on-site service is not interruptible); we call such demand a
successful demand. The waiting time of demand j, denoted
by Wj , is the elapsed time between the arrival of demand
j and the time either one of the vehicles starts its service
or such demand departs from the system due to impatience,
whichever happens first. Hence, the jth demand is considered
serviced if and only if Wj < Pj . Finally, let {T sj ; j ∈ N}
denote the sequence of arrival times of successful demands;
note that the sequence {T sj ; j ∈ N} is a thinning of
{Tj ; j ∈ N}. Let Ns(t), t ∈ R≥0, denote the number
of arrivals in [0, t] that will eventually be serviced, i.e.,
Ns(t) = max{j ∈ N|T sj ≤ t}.

An instance of the problem is represented by the data vec-
tor I = {E , v, λ, FS(s), FP (p)}; the number m of vehicles
and their routing policy are, instead, decision variables.

B. Information Structure and Control Policies

We first describe the information on which a control policy
can rely. We identify four types of information: 1) Arrival
time and location: we assume that the information on arrivals
and locations of demands is immediately available to control
policies; 2) On-site service: the on-site service requirement
of demands may either (i) be available, or (ii) be available
only through prior statistics, or (iii) not be available to control
policies; 3) Patience time: the patience time of demands may
either (i) be available, or (ii) be available only through prior
statistics; 4) Departure notification: the information that a
demand leaves the system due to impatience may or may
not be available to control policies (if the patience time is
available, such information is clearly available).

Hence, we identify a total of nine possible information
structures. The least informative case is when on-site service
requirements and departure notifications are not available,
and patience times are available only through prior statistics;
the most informative case is when on-site service require-
ments and patience times are available.

We next define the notion of outstanding demand for
different information structures. If departure notifications
are available, a demand is considered outstanding if (i) no
vehicle has yet reached its location, (ii) the demand is still in
the system. When departure notifications are not available,
a demand is considered outstanding if (i) no vehicle has yet
reached its location, (ii) the elapsed time from its arrival
is less than pmax (note that pmax is always known by the
vehicles). Note that, in absence of departure notifications, a
vehicle will sometimes reach locations of demands that are
no longer in the system.

Given an instance I and a particular information structure
(one of the nine possible), let P be the set of all causal,
stationary, and work-conserving policies. In this paper, a
policy is said to be work-conserving if (i) when a vehicle
has no outstanding (in the above sense) demands to service,
it moves rectilinearly to (or remains at) its depot location,
(ii) when there are outstanding demands, there is at least
one vehicle providing service to them (either on-site or by
traveling). Property (i) is a technical condition needed to
ensure that the underlying stochastic processes are regener-
ative, while property (ii) is a standard assumption needed to
avoid pathological situations. The system is said to be idling

if all vehicles are at their depot locations and there are no
outstanding demands. We assume that initially all vehicles
are at their depots.

We view each policy π ∈ P as a function of the number m
of available vehicles; when needed, we make this dependency
explicit by writing π = π(m). Let Pπ(m) [Wj < Pj ] be the
probability, under a policy π(m), that the jth demand is
serviced. We will show in section IV that under any policy
belonging to P the sequence of acceptance probabilities
{Pπ(m) [Wj < Pj ]; j ∈ N} is convergent. We, then, define
the success factor of a policy π(m) ∈ P as φπ(m)

.=
limj→+∞ Pπ(m) [Wj < Pj ].

C. Problem Definition

Given an instance I, a particular information structure,
and a desired success factor φd ∈ (0, 1), the problem is
to determine a vehicle routing policy π∗ that guarantees a
success factor at least as large as φd with the minimum
possible number of vehicles. Formally, for a policy π ∈ P ,
define m∗π as the solution to the minimization problem

min
m∈N>0

m,

subject to φπ(m) ≥ φd.
(3)

If the set of feasible solutions is empty, we set, by conven-
tion, m∗π = ∞. Then, in this paper, we wish to solve the
following minimization problem

OPT : min
π∈P

m∗π. (4)

In principle, one should study the problem OPT for
each of the nine possible information structures. In this
paper, instead, we consider the following strategy: first,
we derive a lower bound that is valid under the most
informative information structure (this implies validity under
any information structure), then we present and analyze two
service policies that are valid under the least informative
information structure (this implies implementability under
any information structure). Such approach will give general
insights into the problem OPT .

We start by showing the well-posedness of the problem.

IV. WELL-POSEDNESS

Here, by well-posedness, we mean the existence of a limit
for the sequence {Pπ(m) [Wj < Pj ]; j ∈ N}. A demand
that finds the system idling faces a situation probabilistically
identical to that of the first demand. Hence, in our model,
all of the relevant stochastic processes are regenerative, and
the regeneration points are the time instants in which an
arrival finds the system idling. With the above discussion in
mind, consider the following quantities. Let {Ci; i ∈ N>0}
be the sequence of successive busy cycles: a busy cycle
is the duration between two successive arrival epochs of
demands finding the system idling. The Ci’s are i.i.d. random
variables on R≥0. Let {Bi; i ∈ N>0} be the sequence of
successive busy periods: the busy period is the part of the
busy cycle during which at least one vehicle is providing
service (either by traveling or on-site) to a demand, or it is
moving to its depot. The Bi’s are i.i.d. random variables on
R≥0. Let {Li; i ∈ N>0} (or {Lsi ; i ∈ N>0}) be the number
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of demands arrived in the system (or successfully serviced)
during the ith busy period, including the one initializing it.
The Li’s (or Lsi ’s) are i.i.d. random variables on N. In what
follows, we use the imbedded renewal process:{

Λ0 = 0,
Λi = Λi−1 + Li, i ≥ 1. (on N)

In order to apply the results on regenerative processes, we
first have to prove the finiteness of busy cycles.

Lemma 4.1 (Finiteness of busy cycles): Given an
instance I, an information structure, and a policy belonging
to P , we have E [C1] < +∞.

Proof: From the definitions we have E [C1] =
E [B1] + (1/λ), where B1 is the part of the first regener-
ation cycle during which the vehicles continuously work,
i.e., there is at least one outstanding demand, or there
is at least one vehicle moving to its depot. Note that,
if there are no arrivals during a time interval of length
pmax + smax + dE/v, all vehicles will surely be at their
depots after that time interval. Hence, we obtain the in-
equality, for b ∈ R≥0: P[B1 ≥ b+ pmax + smax + dE

v ] ≤
P[at least 1 arrival in [b, b+pmax+smax+ dE

v )] P[B1 ≥ b] =
(1− exp(−λ (pmax + smax + dE

v )) P[B1 ≥ b]. Then, it is easy
to show that E [B1] =

∫ +∞
0

P[B1 ≥ b] db < +∞. Thus, we
have E [C1] < +∞.

A simple relation between C1 and L1 is provided by the
following lemma.

Lemma 4.2: Given an instance I, a particular information
structure, and a policy belonging to P , we have E [L1] =
λE [C1].

Proof: The proof is a consequence of Wald’s lemma,
and it is omitted in the interest of brevity (see section 3.3 in
[5] for a similar result).
Since the busy cycles are finite, we can use the theory of
regenerative processes to prove the well-posedness of the
problem.

Theorem 4.3 (Well-posedness): Given an instance I, a
particular information structure, and a policy π belonging to
P , the sequence {Pπ(m) [Wj < Pj ]; j ∈ N} is convergent,
and its limit is equal to E [Ls1]/E [L1].

Proof: In this proof, to keep the notation simple, we
avoid the usage of the subscript π(m). Let Isj be the indicator
random variable

Isj =
{

1 if Wj < Pj ,
0 if Wj = Pj ,

i.e., Isj equals one if the jth demand is successfully ser-
viced. From the previous discussion, the stochastic process
{Isj ; j ∈ N} is regenerative relative to the discrete-time
renewal process {Λi; i ∈ N}, and it is nonnegative. By
lemma 4.1 and lemma 4.2, the expectation of L1, which
is the first regeneration cycle, is finite. Moreover, it clearly
holds P[L1 = 1] > 0, hence by lemma 2.1 the distribution
of L1 is non-periodic. Let {Is,∗j ; j ∈ N} be the station-
ary version of {Isj ; j ∈ N}. Then, by applying theorem
2.2 part (ii), by noting that Ĩs,∗0 is an indicator random
variable and thus P[Is,∗0 = 1] = E

[
Is,∗0

]
, and by finally

applying theorem 2.2 part (i), we obtain the series of equal-
ities limj→+∞ P[Isj = 1] = P[Is,∗0 = 1] = E

[
Is,∗0

]
=

E
[∑L1−1

j=0 Isj

]
/E [L1]; since E

[∑L1−1
j=0 Isj

]
= E [Ls1], and

limj→+∞ P[Isj = 1] = limj→+∞ P[Wj < Pj ], we get the
claim.
It is natural to wonder if the optimization problem OPT can
be restated in terms of time averages, in other words, if the
equality

lim
j→∞

Pπ(m) [Wj < Pj ]
?= lim
t→+∞

Ns(t)
N(t)

holds almost surely. The answer is affirmative, and its proof
relies on some arguments in the theory of continuous-time
regenerative processes (we omit the details for brevity). The
usefulness of such ergodic result stems from two facts: (i)
on a theoretical level, formulating the problem in terms
of time averages or limiting probabilities is equivalent, (ii)
on a practical level, in some cases it might be easier to
characterize limt→+∞

Ns(t)
N(t) , while in other cases it might

be easier to study limj→∞ Pπ(m) [Wj < Pj ].

V. LOWER BOUND

In this section, we present a lower bound for the opti-
mization problem OPT that holds under any information
structure. This lower bound is intimately related to a novel
type of facility location problem, for which we will provide
some analysis and algorithms later in this section.

A. Lower Bound
Let x = (x1, . . . , xm) and define

Hm(x) .=
1
|E|

∫
E

(
1− FP

(
min

k∈{1,...,m}

‖x− xk‖
v

))
dx.

Theorem 5.1: Given an instance I, an information struc-
ture, and a desired success factor φd ∈ (0, 1), the solution
to the minimization problem OPT is lower bounded by the
solution to the minimization problem

min
m∈N>0

m

subject to sup
x∈Em

Hm(x) ≥ φd.
(5)

Proof: Consider a policy π(m) ∈ P , and assume that
m vehicles execute such policy. In the remainder of the
proof, to keep the notation simple, we avoid the usage of
the subscript π(m). Consider the jth demand, and let X̄k be
the position of the kth vehicle when such demand arrives. Let
X̄ = (X̄1, . . . , X̄m). Obviously, the waiting time of demand
j is at least as large as the minimum travel time between
its position and the closest vehicle’s position, i.e., Wj ≥
mink∈{1,...,m} ‖Xj− X̄k‖/v. The vehicles are located in the
workspace according to some generally unknown cumulative
distribution function that depends on the policy; we denote
such distribution function as F : Em → [0, 1]. Then,
the acceptance probability for demand j can be bounded
according to (recall that Xj and Pj are, by assumption,
independent of X̄)

P[Wj < Pj ] ≤ P[mink∈{1,...,m}
‖Xj−X̄k‖

v < Pj ]

=
∫
Em

P[mink∈{1,...,m}
‖Xj−X̄k‖

v < Pj | X̄ = x̄]dF (x̄)

≤
∫
Em

sup
x̄∈Em

P[mink∈{1,...,m}
‖Xj−x̄k‖

v < Pj ]dF (x̄)
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= sup
x̄∈Em

P[mink∈{1,...,m}
‖Xj−x̄k‖

v < Pj ]

= sup
x̄∈Em

1
|E|

∫
E
P[mink∈{1,...,m}

‖Xj−x̄k‖
v < Pj |Xj=xj ]dxj

= sup
x̄∈Em

1
|E|

∫
E

(
1− FP

(
min

k∈{1,...,m}

‖xj − x̄k‖
v

))
dxj .

Hence, we have φ = limj→+∞ P[Wj < Pj ] ≤
supx̄∈Em Hm(x), and a necessary condition for φ to be at
least as large as φd is that supx̄∈Em Hm(x) ≥ φd.
In section VI, we will present a policy that requires the least
amount of information and is optimal in light load, i.e., in
the limit λ→ 0+.

As a matter of fact, in equation (5) we have implicitly
introduced a novel type of facility location problem, which
is worth a definition.

Definition 5.2 (The m-LPIC): Given a compact, convex
set E ⊂ R2, a cumulative distribution function FP : R →
[0, 1], a constant v > 0, and an integer m ∈ N>0, the m-
Location Problem with Impatient Customers (m-LPIC) is the
optimization problem: H∗(m) .= supx∈Em Hm(x).

B. Analysis and Algorithms for the m-LPIC
In this section we study in some detail the m-LPIC. In

particular, we study (i) conditions under which a maximizer
exists, and (ii) a gradient-ascent law for the optimization of
Hm. We begin with the following theorem, which shows
that a maximizer for the m-LPIC exists in most practical
scenarios.

Theorem 5.3 (Existence of a maximizer): Assume that
FP is piecewise differentiable on R≥0 with a finite number
of (jump) discontinuities; then, Hm(x) has a global
maximum.

Proof: As a consequence of theorem 2.2 in [13], Hm(x)
is globally Lipschitz on Em. Therefore, Hm(x) is continuous
on a compact set (since E is compact), and, by the extreme
value theorem, it has a global maximum.

It is also possible to state a differentiability result, which
will be the basis of a gradient-ascent algorithm for the
optimization of Hm.

Theorem 5.4 (Differentiability of Hm(x)): Assume that
FP is differentiable on R≥0 with derivative equal to fP ;
then Hm(x) is continuously differentiable on Em \ Xcoinc,
where for each j ∈ {1, . . . ,m}
∂ Hm

∂xj
(x) =

1
v |E|

∫
Vj(x)

fP (‖x− xj‖/v)
x− xj
‖x− xj‖

dx,

where V(x) = (V1(x), · · · , Vm(x)) is the Voronoi diagram
generated by x = (x1, . . . , xm).

Proof: One can easily show that part (ii) of theorem
2.2 in [13] is applicable, and the claim is an immediate
consequence.

Remark 5.5: By using the results in part (ii) of theorem
2.2 in [13] , theorem 5.6 can be extended to the case where
FP is piecewise differentiable on R≥0 with a finite number
of (jump) discontinuities; however, the expression for the
gradient is quite cumbersome and is omitted.

By using theorem 5.4 we can readily set up a gradient-
ascent law to maximize the locational optimization function

Hm. Specifically, assume that FP is differentiable on R≥0;
then, consider the following continuous gradient-ascent law
defined over the set Em (a discrete version can be similarly
stated):

ẋj(t)=


∂Hm
∂xj

(x(t)) if x∈Em\Xcoinc andxj ∈ int(E),

prE
(
∂Hm
∂xj

(x(t))
)

if x∈Em\Xcoinc andxj ∈∂E ,
0 otherwise;

(6)
where t ∈ R≥0, j ∈ {1, . . . ,m}, the dot represents
differentiation with respect to t, int(E) is the interior of
E , prE(∂Hm/∂xj) is the orthogonal projection onto E of
∂Hm/∂xj , and we assume that the Voronoi diagram is
continuously updated. The vector field is discontinuous, so
we understand the solutions in the Krasovskii sense; see
[14]. The convergence properties of the gradient-ascent law
in equation (6) are summarized by the following theorem.

Theorem 5.6 (Convergence of gradient ascent (6)):
Assume that FP is differentiable on R≥0; then, for each
initial condition x(0) ∈ Em \Xcoinc, the Krasovskii solution
that exactly satisfies (6) monotonically optimizes Hm(x)
and asymptotically converges to the union of Xcoinc and the
set of critical points of Hm(x).

Proof: The proof of this theorem is very similar to the
proof of theorem 4.1 in [15], and it is omitted in the interest
of brevity.

A possible variant of the gradient ascent (6) consists in
setting ẋj = 0, when x ∈ Xcoinc, only for the points that are
co-located; if the points are co-located, the Voronoi diagram
is computed by considering the co-located points as a single
point. Such variant is still guaranteed to asymptotically
converge to the union of Xcoinc and the set of critical points
of Hm(x); moreover, it is amenable to distributed imple-
mentation, since the gradient ascent law is then distributed
over the dual of the Voronoi diagram, i.e., over the Delaunay
graph. This last feature is especially useful when a large
network of robotic vehicles is employed.

VI. AN OPTIMAL LIGHT LOAD POLICY

In this section we propose and analyze a policy that
requires the least amount of information and is optimal in
light load; this result holds for any instance I in which FP
satisfies the (mild) assumptions of theorem 5.3.

A. The Policy

The Nearest-Depot Assignment (NDA) policy is described
next (note that this policy only requires the knowledge of FP ;
moreover, it is required that Hm(x) has a global maximum).

Nearest-Depot Assignment (NDA) Policy: Let x̄ .=
arg maxx∈Em Hm(x) (if there are multiple maxima, pick
one arbitrarily), and let x̄k be the location of the depot for
the kth vehicle, k ∈ {1, . . . ,m}. Assign a newly arrived
demand to the vehicle whose depot is the nearest to that
demand’s location, and let Sk be the set of outstanding (in
the sense of section III-B) demands assigned to vehicle k. If
the set Sk is empty, move to x̄k; otherwise, visit demands
in Sk in first-come, first-served order, by taking the shortest
path to each demand location. Repeat.
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Next theorem shows on a theoretical level the optimality
of the NDA policy in light load, and on a practical level how
to compute m∗NDA for low values of λ.

Theorem 6.1 (Optimality of NDA policy): Consider an
instance I with FP satisfying the assumptions of theorem
5.3, and any of the nine possible information structures.
Then, for almost all values of φd ∈ (0, 1) (i.e., except for
a set of measure zero) the NDA policy is optimal in light
load, i.e.,

lim sup
λ→0+

m∗NDA(λ)
minπ∈P(λ) m∗π(λ)

= 1.

Proof: Define the countable set H .= {H∗(m) |m ∈
N>0}; by definition of H∗, we have infH ≥ 0, and supH ≤
1. Consider any desired success factor φd ∈ (0, 1) \H; note
that H is a countable set, hence its measure is zero (in other
words, we are leaving out a zero-measure set of possible
success factors).

Assume that m vehicles execute the NDA policy, where
m is the solution to the minimization problem (5). (Note
that m is independent of λ.) Consider any λ ∈ R>0,
and define the event: Aj

.= { all vehicles at their de-
pots at the arrival epoch of the jth demand }; the ac-
ceptance probability for demand j satisfies the inequality:
P[Wj < Pj ] ≥ P[Wj < Pj |Aj ] · P[Aj ]. Assume that Tj −
Tj−1, j ∈ N>0, is larger than pmax + smax + dE/v; then,
the jth demand finds, surely, all vehicles idling at their
depots. Hence, we can lower bound P[Aj ], j ∈ N>0, ac-
cording to: P[Aj ] ≥ P[Tj − Tj−1 > pmax + smax + dE/v] =
exp(−λ(pmax + smax + dE/v)); note that this bound is
independent of j. Conditioning on the event Aj , all vehi-
cles are at their depots, and therefore P[Wj < Pj |Aj ] =
P[mink∈{1,...,m}

‖Xj−x̄k‖
v < Pj ] = Hm(x̄) = H∗(m).

Hence, we obtain, for every λ ∈ R>0, φNDA(m) =
limj→+∞ P[Wj < Pj ] ≥ H∗(m) exp(−λ(pmax + smax +
dE/v)). From the definition of m (see equation (5)), and
from the fact that φd ∈ (0, 1) \ H (hence H∗(m) = φd is
impossible), it follows that H∗(m) > φd. Thus, we conclude
that there exists Λ > 0 such that φNDA(m) ≥ φd for all λ <
Λ. Therefore, there exists Λ > 0 such that m ≥ m∗NDA(λ)
for all λ < Λ; hence, by applying theorem 5.1, we obtain
lim supλ→0+

m∗NDA(λ)
minπ∈P(λ) m∗π(λ) ≤ lim supλ→0+

m
m = 1. This

concludes the proof.

B. Discussion and Simulations

It is natural to wonder if φd → 1− implies minπ∈P m∗π →
+∞; we now have the tools to show that, in general, this is
not the case. Consider any of the nine possible information
structures; moreover, let I be an instance where FP satisfies
the assumptions of theorem 5.3, and the support of FP is
[dE/v, +∞). It is easy to see that H∗(1) = 1; then, by
using the same arguments as those in the proof of theorem
6.1, one can show that there exists Λ > 0 such that for all
λ < Λ it holds minπ∈P m∗π = 1, for any φd ∈ (0 , 1). This
example shows that, in general, φd → 1− does not imply
that minπ∈P m∗π → +∞.

We next provide some simulation results for the NDA
policy. We consider patience times that are uniformly dis-
tributed in the interval [0, 1.6]; moreover, the arrival rate
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Fig. 1. Left Figure: Approximate values for H∗(m) (the bars indicate the
range of values obtained by maximizing Hm). Right Figure: Experimental
values of φNDA. The desired success factor is φd = 0.9.

is λ = 5, the workspace is the unit square, the vehicles’
velocity is v = 1, and smax = 0 (i.e., there is no on-site
service requirement). Finally, we consider a desired success
factor φd = 0.9. To find a lower bound on the required
number of vehicles, we solve the optimization problem (5);
in particular, starting from m = 1, we compute H∗(m)
until H∗(m) ≥ φd. The solution to the m-LPIC, i.e., the
value H∗(m), is approximately computed for each m by
performing the gradient-ascent law (6) starting from 10
random initial conditions. In figure 1, the left figure shows
the range of values that are obtained by maximizing Hm,
for several values of m. It can be noted that for each m the
range of values is rather small, in other words the function
Hm appears to have maxima whose values are close to each
other. From the left figure we estimate (recall that we are
using approximate values for H∗(m)) a lower bound on the
required number of vehicles equal to 7. The right figure
shows experimental values of φNDA as a function of the
number of agents m. It can be noted that the minimum
number of vehicles required by the NDA policy to ensure
a success factor at least as large as φd is 8, in almost
perfect accordance with theorem 6.1 (recall that theorem 6.1
formally holds only in the limit λ→ 0+).

VII. A POLICY FOR MODERATE AND HEAVY LOADS

In this section we propose and analyze a policy that
is well-defined for any information structure and for any
instance I, however it is particularly tailored for the least
informative case and is most effective in moderate and heavy
loads. The Batch (B) policy is described next.

Batch (B) Policy: Partition E into m equal area regions
Ek, k ∈ {1, . . . ,m}, and assign one vehicle to each region.
Assign a newly arrived demand that falls in Ek to the
vehicle responsible for region k, and let Sk be the set
of locations of outstanding (in the sense of section III-B)
demands assigned to vehicle k. For each vehicle-region pair
k: if the set Sk is empty, move to the median (the “depot”)
of Ek; otherwise, compute a TSP tour through all demands
in Sk and vehicle’s current position, and service demands by
following the TSP tour, skipping demands that are no longer
outstanding. Repeat.

A. Analysis of the Policy
The following theorem characterizes the batch policy,

under the assumption smax = 0, and assuming the least
informative information structure.

Theorem 7.1 (Vehicles required by batch policy): Given
an instance I with smax = 0, the least informative
information structure, and a desired success factor
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φd ∈ (0, 1), the solution for the batch policy to the
minimization problem in equation (3) is upper bounded by

m̃
.=min

{
m
∣∣∣ sup
θ∈R>0

(1−FP (θ))(1−2g(m)/θ)≥φd
}
, (7)

where g(m) .= 1
2

(
β̄2

v2 |E|
λ
m2 +

√
β̄4

v4 |E|2
λ2

m4 + 8 β̄2

v2 |E|
1
m

)
,

and where β̄ is a constant that depends on the shape of
the service regions. In other words, the batch policy with a
number of vehicles that satisfies equation (7) guarantees a
success factor at least as large as the desired one, i.e., φd.

Proof: In the batch policy each region has equal area,
and contains a single vehicle. Thus, the m vehicle problem in
a workspace of area |E| has been turned into m independent
single-vehicle problems, each in a region of area |E|/m, and
with Poisson arrivals with rates λ/m. In particular, the well-
posedness theorem 4.3 holds within each region. The strategy
of the proof is then as follows: assuming that m vehicles
execute the batch policy, in part 1) we lower bound the
limiting acceptance probability within each region; in other
words, we lower bound limjk→+∞ P[Wjk < Pjk ], where jk
is the jth demand that falls in region k. Then, in part 2), we
lower bound the limiting acceptance probability within the
entire workspace, and we conclude the proof.

Part 1): Acceptance probability within a region. Consider
a region k, k ∈ {1, . . . ,m}. For simplicity of notation,
we shall omit the label k (e.g., instead of jk, we simply
use j to denote the jth demand that falls in region k). We
refer to the time instant in which the vehicle assigned to the
region computes the rth, r ∈ N≥0, TSP tour as the epoch
r of the policy; for r ∈ N>0, we refer to the time interval
between epoch (r − 1) and the time instant in which the
vehicle visits the last demand along the (r − 1)th TSP tour
(possibly skipping some demands) as the rth busy period,
and we denote its length with Br; similarly, we refer to the
time interval between epoch (r − 1) and epoch r as the rth
busy cycle. Let nr, r ∈ N>0, be the number of demands
arrived during the rth busy period; we let n0 = 0. The
number of demands’ locations visited during the (r + 1)th
busy period, r ∈ N≥0, is almost surely no larger than
max(nr, 1); in particular, it may happen that during the rth
busy period there are no arrivals, and thus the vehicle waits
for a new demand and immediately provides service to it
(recall, also, that the arrival process to each region is Poisson,
and thus the probability of “bulk” arrivals is zero). Define
β̄

.= maxk∈{1,...,m} βE,k, where βE,k is the characteristic
constant of region k; by the deterministic inequality for a
TSP tour through n points (see equation (1)), we have (recall
that the area of the region is |E|/m, and that smax = 0)

Br+1≤
β̄

v

√
|E|
m

√
max(nr, 1) + 1, almost surely; (8)

the +1 is needed to take into consideration the vehicle’s
starting position. By simple inductive arguments, it is
immediate to show that both E [nr] and E

[√
nr
]

are
finite; hence, by taking expectation in equation (8), and
by applying Jensen’s inequality for concave functions
in the form E

[√
X
]
≤
√

E [X], we get E [Br+1] ≤
β̄
v

√
|E|
m

√
E [max(nr, 1)] + 1 ≤ β̄

v

√
|E|
m

√
E [nr] + 2. By

applying the law of iterated expectation, it is easy to
show that the expected number of demands that arrive
in the region during the rth busy period, i.e., E [nr], is
equal to (λ/m) E [Br]. Then, we obtain the following

recurrence relation E [Br+1] ≤ β̄
v

√
|E|
m

√
λ
m E [Br] + 2.

This recurrence relation allows to find an upper bound
on lim supr→+∞ E [Br]; indeed, it is easy to show that
lim supr→+∞ E [Br] ≤ g(m). We are now in a position to
lower bound the limiting acceptance probability in region
k. Consider, in steady state, a random tagged demand;
let Ŵ be its waiting time, and P̂ be its patience time.
Moreover, let R̂ be the epoch that immediately follows
the arrival of the tagged demand. By the law of total
probability, we have, for any θ ∈ R>0, P[Ŵ < P̂ ] ≥
P[Ŵ < P̂ |BR̂ +BR̂+1 < θ] P[BR̂ +BR̂+1 < θ]. Since,
from the definition of the batch policy, Ŵ ≤ BR̂ + BR̂+1

surely, we have P[Ŵ < P̂ |BR̂ +BR̂+1 < θ] ≥
P[θ < P̂ |BR̂ +BR̂+1 < θ] = P[θ < P̂ ] = 1 − FP (θ);
in the previous chain of inequalities, the removal of
the conditioning on the event {BR̂ + BR̂+1 < θ} is
possible since, under the least informative information
structure, the value of BR̂ + BR̂+1 does not provide any
information on the value of P̂ . Then, by collecting the
previous results and applying Markov’s inequality, we
obtain P[Ŵ < P̂ ] ≥ (1 − FP (θ)) P[BR̂ +BR̂+1 < θ] ≥
(1 − FP (θ))(1 − (E

[
BR̂
]

+ E
[
BR̂+1

]
)/θ) ≥

(1 − FP (θ)) (1 − 2g(m)/θ). Since the previous chain of
inequalities holds for all θ ∈ R>0, we obtain P[Ŵ < P̂ ] ≥
supθ∈R>0

(1 − FP (θ)) (1 − 2 g(m)/θ). Hence, we conclude
that within region k it holds limj→+∞ P[Wj < Pj ] ≥
supθ∈R>0

(1− FP (θ)) (1− 2 g(m)/θ).
Part 2): Acceptance probability within the

entire workspace. From part 1), we have
limjk→+∞ P[Wjk < Pjk ] ≥ supθ∈R>0

(1 − FP (θ)) (1 −
2 g(m)/θ), k ∈ {1, . . . ,m}. Note that this lower bound
holds uniformly across the m regions. Hence, it is immediate
to conclude that the same lower bound holds for the overall
system. Since limm→+∞ g(m) = 0, it is clear that it is
always possible to choose m so that φB(m) ≥ φd (recall
that P[Pj = 0] = 0); in particular, a sufficient number
of vehicles is given by the solution to the minimization
problem in equation (7), and the theorem is proven.

The upper bound in equation (7) is valid under the least
informative information structure, and a fortiori it is valid
under any information structure. Hence, theorem 7.1 is valid
under any information structure.

B. On the Constant β̄ and the Use of Asymptotics

To compute m̃ in equation (7), one needs to know, at
least approximately, the value of β̄; it is possible to show
that when each region is approximately square-shaped, the
value of β̄ is approximately equal to

√
2 [9, page 765].

Furthermore, when λ is “large”, one could reasonably use
the asymptotic value βTSP ' 0.712 (see Section II) to
bound Br+1; it is then possible to show (the proof only
requires minor modifications in the proof of theorem 7.1)
that when λ is “large” one can replace g(m) in equation (7)
with g̃(m) .= β2

TSPλ|E|/(v2m2).
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Using theorem 7.1, we next show a scaling law for the
minimum number of vehicles.

C. Scaling Law for the Minimum Number of Vehicles

Consider an information structure and a desired success
factor φd; moreover, let I(λ) be a problem instance where
the arrival rate λ is a variable parameter, and let P(λ) be
the corresponding set of admissible policies, parameterized
by λ. The solution to OPT is said to be O(g(λ)), where
g(λ) : R≥0 → R≥0, if there exist Λ ∈ R>0 and c ∈ R>0

such that minπ∈P(λ) m
∗
π(λ) ≤ c g(λ) for all λ > Λ. We

have the following theorem.
Theorem 7.2 (Scaling law): When smax = 0 the solution

to the optimization problem OPT is O(
√
λ) under any

information structure.
Proof: Define Θ .= {θ ∈ R>0| 1 − FP (θ) > 0};

under the assumptions of the model, the set Θ is not
empty; moreover, we have 0 < sup Θ < +∞. Let θ̄ =
(1/2) sup Θ. Then, we have supθ∈R>0

(1 − FP (θ)) (1 −
2 g(m; λ)/θ) ≥ (1−FP (θ̄)) (1−2 g(m; λ)/θ̄) .= h(m; λ),
where we have made the dependency on λ explicit. Define
(note that 1 − FP (θ̄) > 0) m(λ) .= d

√
λ
√
|E| β̄/(v

√
δ)e,

where δ = (1 − η φd/(1 − FP (θ̄))) θ̄/2, with η > 1. It
is straightforward to show that there exists Λ such that for
all λ > Λ it holds h(m(λ); λ) ≥ φd. Hence we have,
for λ > Λ, m̃(λ) ≤ m(λ), where m̃(λ) is defined in
theorem 7.1. Since m∗B(λ) ≤ m̃(λ), we immediately obtain
lim supλ→+∞

minπ∈P(λ) m
∗
π(λ)√

λ
≤
√
|E| β̄/(v

√
δ). Since the

batch policy is well-defined for any information structure, we
conclude that when smax = 0 the solution to the optimization
problem OPT is O(

√
λ) under any information structure.

D. Simulations

We consider patience times that assume either the value
0.8 with 50% probability, or the value 1.6 with the remaining
50% probability; in other words, there are two types of
demands, and one type is significantly more impatient than
the other one. The arrival rate is λ = 200, the workspace is
the unit square, the vehicles’ velocity is v = 1, and smax = 0.
Finally, we consider a desired success factor φd = 0.9. By
solving the minimization problem in equation (7) (with g̃(m)
instead of g(m) since λ is “large”), we find m̃ = 36. Figure
2 shows experimental values of φB as a function of the
number of agents m. It can be noted that when m = m̃
the experimental success factor φB is larger than φd, in
accordance with theorem 7.1. However, it is also possible to
observe that the batch policy is able to guarantee a success
factor larger than φd with a number of vehicles as low as
27; this is expected, since the techniques used in the proof of
theorem 7.1 (e.g., Markov’s inequality) lead to a conservative
result.

VIII. CONCLUSION

We have studied a dynamic vehicle routing problem where
demands have stochastic deadlines on their waiting times.
This paper leaves numerous important extensions open for
further research. First, in this paper we found a lower bound
for the most informative case and we characterized two
service policies that require the least amount of information;
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Fig. 2. Experimental values of φB. The desired success factor is φd = 0.9.

it would be very interesting to find lower bounds and
study policies that are specific to each particular information
structure. Second, our lower bound does not capture the
dependency on λ and thus it is generally highly inaccurate for
large values of the arrival rate; we are currently working on
this issue. Third, we plan to remove some of the conservatism
in the analysis of the batch policy. Finally, it is of interest
to relax some of the assumptions in our model by consid-
ering, e.g., non-uniform distributions for demand locations
and general renewal arrival processes. All these problems
provide nontrivial challenges and might require techniques
significantly different from those used in this paper.
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