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Abstract— The priorities of a climbing legged robot are to
maintain a grasp on its climbing surface and to climb effi-
ciently against the force of gravity. These priorities profoundly
constrain the choice of gait regulation methods. We propose a
gait regulation and analysis method that varies foot detachment
timing, effectively modifying stride length and frequency in or-
der to maintain gait phasing, subject to kinematic and stability
constraints. The method results in linear equations, leading to
straightforward tests for local and global convergence when, for
example, disturbances such as foot slippage cause departures
from the nominal phasing. We illustrate the procedure with
an example involving a bounding gait and compare it with
empirical results obtained on the RiSE climbing robot.

I. INTRODUCTION

In comparison to walking or running robots, vertically

climbing robots face severe requirements on stability and

power consumption. They must maintain contact forces at

all times to prevent falling and they must ensure that motors

do not overheat when they are climbing rapidly or applying

large forces. Therefore, we seek a gait regulation method for

climbing robots that will produce convergence to a standard

free gait [1], [2], where rhythmic phasing between legs is

formulated as an objective, subject to constraints.

Stability typically requires that certain combinations of

legs remain attached at various times during a stride. In

addition, the legs are subject to kinematic constraints (e.g., on

maximum and minimum joint angles). When kinematic and

stability constraints conflict, it may be necessary for the robot

to pause while other legs are brought into contact. In parallel

with the stability and kinematic constraints, a climbing robot

is subject to constraints on the maximum sustained torques

that its motors can produce without overheating. In an earlier

study [3], we found that the following approach would

minimize motor heating:

• Stance: External forces should be distributed evenly be-

tween as many legs as possible, to reduce the maximum

heat produced in the motors of any leg.

• Swing: The legs should recycle as fast as possible.

This approach reduces the total heat produced, when

averaged over a full stride period.

Taken together, stability and force distribution require-

ments govern our choice of gaits and gait regulation methods.

Stance calls for a force-controlled approach in order to

balance the load between legs and apply the forces needed

for grip maintenance. Swing calls for a time-optimal bang-

bang controller such that minimal time is spent in swing.

Using these control methods during stance and swing rules

out several established methods of gait regulation. However,

we still have the freedom to vary attachment and detachment

timing. In order to provide the longest potential stride for

each leg, we maintain leg attachment at the earliest point

possible in the leg’s trajectory. This choice leaves us with the

ability to vary leg detachment, effectively altering the stride

length and period. In this way, lagging legs will experience

faster stride frequencies, with slower frequencies for leading

legs, until gait phasing is fully distributed.

Under nominal conditions, we want a gait with evenly

spaced footfalls and no pausing. Under difficult conditions,

disturbances will alter the phasing between legs and may

cause the robot to stop forward movement in order to safely

cycle its legs. By implementing a standard gait, the robot

maximizes the phase differences between legs for which

kinematic and stability constraints may conflict, granting the

robot leeway for disturbance rejection. In this article, we will

analytically show that our algorithm, for certain parameter

choices, has global convergence and has no undesirable local

minima. This analysis can both indicate if a set of gait

parameters is globally convergent and give estimates to the

rate of convergence. We have implemented our algorithm on

a quadruped variant of the RiSE robot V2 [4] and use it to

illustrate our approach.

A. Previous Work

The literature for gait regulation in the context of legged

robots is extensive [5], [6], [7], [8]. It is undesirable to

simply encode position trajectories into the robot, as that

method would produce internal forces and reduce the ability

of the robot to handle perturbations [9]. One solution is

to introduce adjustable clocks [10]. This technique works

well but requires the gait regulator to have control authority

during recirculation. Another strategy is to use central pattern

generators where the gait behavior emerges from a set of

coupled oscillators [11]. These systems can be difficult to

construct when a particular behavior is desired, but they

have inspired a series of methods that seek to modify the

behavior of legs based on behavior of neighboring legs

[12], [13]. This approach modifies various parameters of

the gait, including the “posterior extreme position,” which is

analogous to modifying detachment timing in the approach

that we present here.

Unlike these previous approaches, we employ a centralized

controller that monitors the phases of all legs and triggers

detachments. To this end, we introduce a new controller,
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Fig. 1. Left: Two simplified leg trajectories for one leg of a climbing
robot (grayed surface indicates the wall). The blue solid trajectory has an
intentionally longer stride and period than the red dotted trajectory. Upper-
right: Stroke position vs. time. Lower-right: Leg travel, s, vs. time. (A)
Foot attachment event for both trajectories. (B) Foot detachment event for
the short trajectory. (C) Foot detachment for the long trajectory. Note the
constant slope of s(t) and discontinuities at detachment events.

a new gait representation and a novel analog for phase

called travel, which seeks to resolve mathematical difficulties

when describing the instantaneous phase of cycles with time-

varying periods.

II. ALGORITHM IMPLEMENTATION

A. Travel

We begin our discussion by presenting our definition of

travel. Due to the cyclic nature of legged locomotion, phase

can be used a generalized variable for leg position along

a prescribed trajectory and is subsequently treated with the

same notation as rotation [14]. Since our method has a

continually changing period, it becomes difficult to describe

the state in terms of angles or ratios. Instead, we describe

travel, s, in units of time as a measure of leg position, ~θ, in

joint space. This approach is similar to the phase coordinates

of intermittent systems [15], with the primary difference

being that we do not normalize the travel metric to 2π as

is common with phase. Using desired leg trajectories, f ,

parameterized in terms of time, we calculate travel from the

inverse of these trajectory functions:

~θdesired = f(t) ⇒ s(t) = f†(~θactual) + c (1)

where c is a constant used to align the travel to a fixed

origin independent of time. To simplify the mathematics,

we leave travel in units of time and do not divide by the

stride period. The purpose of this operation is to find the

estimated time of arrival for every point along a single leg’s

joint-space trajectory curve. During normal operation, the

time-derivative of travel is constant, ds
dt
≈ 1, but when

a disturbance is encountered, the position of the leg and

not the elapsed time determines the perturbation to travel.

Since the legs are operating using methods such as force

control or bang-bang control and not position control, such

perturbations arise frequently.

Fig. 1 shows a schematic representation of a leg trajectory

(abstracted here to a rectangular loop for ease of depiction)

and the corresponding plots of Y position (stroke along wall)

and travel as functions of time. We fix the origin, s = 0,

at the attachment point, which can be achieved by choosing

the appropriate c. This choice provides a convenient notation

where positive travel represents a leg in stance while negative

travel represents a leg in swing. In theory, the travel function

experiences no discontinuity during the attachment event.

The detachment point, as shown in Fig. 1, occurs at variable

points in state-space and produces a large discontinuity as the

travel jumps from the positive stance travel to the negative

swing travel.

We model the change in travel at detachment as a linear

equation solely in terms of travel. We assume the durations

of detachment and acceleration to swing, as well as the

deceleration from swing and attachment, are constant and

thus we represent their combined time as δ. Nominal stance

and swing velocities (vst and vsw) are fixed as a property of

the gait. If a leg that attached at time 0 detaches at time td, it

has traveled a distance of vsttd and thus the time it will take

to return to the attachment point is td

∣

∣

∣

vst

vsw

∣

∣

∣
+ δ. For ease

of notation we define the ratio between stance and swing

velocities as γ = vst

vsw

. We can therefore express detachment

as a discontinuous jump in travel:

s(td+) = −γs(td−)− δ (2)

Building upon the description of travel for a single leg,

we represent leg configurations for the entire robot using a

vector of travels in which the travel of the ith leg is si.

B. Gait Regulation (GR) Rule

The Gait Regulation rule (hereafter, the GR rule) governs

leg detachment. When the weighted average of all the leg

travels exceeds a prescribed trigger point, the leg with highest

travel should detach. For gaits such as the alternating tripod

of a hexapod, a detachment event triggers simultaneous

detachment of a set of legs. In order to maintain symmetry

with each step, the weighted average is applied to a sorted list

of leg travels. We find a permutation of travels that reorders

them in descending order: s∗i = sj st. s∗1 ≥ s∗2 ≥ . . . ≥ s∗n.

The GR rule is written as follows:
∑

ωis
∗
i ≥ T (3)

The GR rule is unique up to a normalization factor; the anal-

ysis in this paper uses
∑

wi = 1, though other algebraically

equivalent normalizations exist. An appropriately chosen GR

rule produces rhythmic behavior upon convergence of the

gait and distributes the footfalls to maintain sufficient space

for accommodating disturbances. However, while it regulates

the interactions among legs, it does not prevent the robot

from falling. Thus, the GR rule should be preempted by

constraints that ensure the stability of the robot.

C. Configuration Constraint (CC) Rules

Under various conditions, the GR rule may fail to trigger

a detachment before a leg is physically unable to continue its
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trajectory, or it may trigger one that would cause the robot

to lose stability. To prevent such situations, we introduce

Configuration Constraint (CC) rules that take priority over

the GR rule. There are two variants: rules that trigger a

detachment and rules that inhibit detachment events.

Obedience to travel limits is an example of the former vari-

ant. Various physical constraints can lead to leg travel limits,

such as joint limits in an articulated leg or leg trajectories

in which only restricted sections produce useful climbing

motions. Triggering detachment earlier than indicated by the

GR rule allows the robot to continue climbing even if a leg

runs out of travel. Such a CC rule can be written as

si ≥ Li (4)

where i is the index of an arbitrary leg and Li is that leg’s

travel limit in travel space. Hereafter, we will assume all

travel limits Li are equal to L. The travel limits define the

boundaries of the n-dimensional workspace of the robot,W:

W ≡ {~s | L ≥ si ≥ −γL− δ} (5)

The second type of CC rule inhibits detachment events

that would remove legs essential for support. While the

conditions for stability typically depend on the details of the

robot and the climbing surface, the gait regulation algorithm

only requires that they can be represented by a set of linear

inequalities in terms of travels:
∑

cisi > c0 (6)

One common measure of stability for legged robots is the

support polygon [14]. While this is more readily applicable

to walking than climbing, it can be used to form CC

rules under this framework. Regions in travel space for

which detachment is prohibited under a support polygon

measure of stability are not necessarily linear and therefore

cannot directly be expressed in the form of (6). However,

conservative piecewise linear approximations can be formed

which meet the linear CC rule requirement and allow the

analysis in the following section to be performed.

The region of the robot workspace, W , in which no

inhibitory CC rule is active is referred to asWs and includes

all configurations in which detachment is allowed.

The inhibitory CC rules clearly override the GR rule, as

stability is essential. However, more complex cases can also

arise, as when a leg hits a joint limit, but its support is needed

for stability. If two CC rules produce a conflict, the robot

cannot continue to produce forward motion; all legs in stance

should halt and wait for the legs in swing to reattach such

that the offending leg(s) are not required for support.

III. TWO-LEGGED EXAMPLE

We illustrate the approach for gait regulation in the

context of a climbing robot with two virtual legs [16],

for which the travel space is conveniently represented with

two-dimensional diagrams. For the quadrupedal RiSE robot

variant used in the subsequent empirical examples, this

simplification corresponds to a bound gait in which the front

and rear legs move together. The algebraic method extends
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Fig. 2. Annotated travel space for a two-legged robot. The thick solid
lines trigger detachment, which instantly shifts the travel to their respective
reflections, produced by application of (2).

straightforwardly to larger numbers of legs, but the travel

diagrams become difficult to visualize.

Because the RiSE robot has a tail, either the front or rear

pair of legs can hold it against the wall, pulling inward and

upward against gravity. Therefore the stability requirement

is that at least one virtual leg be in stance. In travel space,

the stable region formed is equivalent to the Stance Complex

presented in [17]:

Ws ≡ {~s ∈ W | s1 ≥ 0 , s2 ≥ 0} (7)

The workspace, W , for the two-legged robot is shown in

Fig. 2, along with the bounding GR and CC rules. These

rules manifest as line segments in W (in higher dimensions,

they would appear as n− 1 polygonal facets.) The rules are

given as linear inequalities, thus they can be used to describe

polygonal regions where the rule will trigger detachment

[18]. The interior regions are unreachable except by an initial

configuration, thus we will only concentrate on their leading

edges.

The workspace is split into two regions: W1 ≡ {~s ∈
W | s1 > s2} and W2 ≡ {~s ∈ W | s2 > s1} which are

the only orderings of two legs. Since the GR rule operates

on the ordered travels, it manifests as symmetric around the

boundary between W1 and W2. The slope of the GR rule

is defined by the weights ωi. The CC rule appears on the

joint-limit boundary of W .

In this example, we mark segments of the rules that trigger

detachment with a solid line. The dashed lines represent

boundaries where the joint limit CC rule and the stability

CC rule conflict, forcing the robot to pause instead of

detaching a leg. For rules that do trigger detachment, we can
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Fig. 3. A sample sequence of events in a converging gait: (1) The initial
configuration of the robot. (2) Leg 1 strikes a joint limit, but cannot detach
because leg 2 is in swing. (3) Leg 2 attaches, triggering detachment in Leg
1. (4) Leg 1 attaches. (5) GR rule triggers detachment in Leg 2. (6) Leg
2 attaches. (7) GR rule triggers detachment in Leg 1. (8) Leg 1 attaches.
(9) GR rule triggers detachment in Leg 2. Events 5 and 9 are very close
together indicating that they are near the equilibrium path of the gait.

geometrically show the result by applying the detachment

transformation (2) to the line segments.

Fig. 3 shows several steps of the robot whose gait con-

verges quickly. The robot’s path in travel space is almost

always in the same direction since dsi

dt
= 1, except when CC

rules conflict or a detachment creates a discontinuous jump.

IV. CONVERGENCE ANALYSIS

We present two analysis techniques. The algebraic method,

which extends easily to multiple legs, will determine whether

the gait will converge locally to an equilibrium path. The

geometric method can be used to test for global convergence

from any starting configuration. It also extends to larger

numbers of legs, although the diagrams become increasingly

complex.

A. Algebraic Method

For algebraic analysis we use the sorted travels, s∗i and

express them in homogeneous coordinates [19]:

~s∗(t) =
[

s∗1(t) s∗2(t) . . . s∗n(t) 1
]T

(8)

We construct matrix operators for ~s∗ that compute subse-

quent states given an initial state. The sorted vector allows

us to examine the effect of a single footstep, but requires

operators that maintain the sorting.

In a gait that detaches m legs at a time, the one with the

highest travel, s∗1, detaches first, along with an additional

m− 1 legs that are determined by the gait. We assume that

upon convergence these m legs are synchronized and thus

have the highest travels s∗i . . . s∗m. The travel is modified by

application of (2), and ~s∗ is reordered to maintain its sorting.

These two operations are performed simultaneously by the

m-leg Detachment Matrix

Dm =





0 In−m 0

−γIm 0m×n−m −δ ~1m

0 01×n−m 1



 (9)

We represent the locomotion of the legs as a constant

translation in homogeneous travel coordinates along the

vector
[

1 1 . . . 1 0
]

. This translation continues until

the next GR rule transition, given by (3). The difference

between T and the current weighted sum of the leg travels

tells us how far each leg will advance, yielding

s∗i (k + 1) = s∗i (k) +
(

T −
∑

ωis
∗
i (k)

)

. (10)

This operation can be performed on all the legs by the

Translation Matrix

L =

[

In −~1n ~wT T~1n

~0T
n 1

]

(11)

An example of the construction of matrices (9) and (11)

is shown later in (15). Given these two matrices, we con-

struct the Recurrence Matrix, Rm = LDm, which maps an

augmented leg-travel vector from one detachment to the next.

This matrix performs an operation analogous to the Poincaré

map. This analogy should not be taken too far however, as

some of the assumptions for Poincaré analysis are violated in

this case; notably that the travel direction is not necessarily

perpendicular to the surface defined by the GR rule and the

underlying system is not continuous.

Once we have Rm we can analyze its eigenvalues to

determine convergence of the GR rule. Because we are

using homogeneous coordinates, the construction of Rm

guarantees there will always be at least one eigenvalue λ = 1,

and the corresponding eigenvector, ~ξ(λ = 1), will be the only

eigenvector with a nonzero final entry. When ~ξ is scaled so

that its final element is 1, it gives the equilibrium detachment

state of the leg travels.

This analysis provides two necessary conditions for the

gait to converge to ~ξ. First, all other modes must decay [20]:

|λi| < 1. Second, ~ξ must be achievable: ~ξ ∈ Ws. If ~ξ /∈
Ws, then the GR Rule will cause the travel to decay such

that it will try to leave Ws. A CC Rule will then cause a

transition, thereby preventing the travel from converging to

the equilibrium, ~ξ.

B. Geometric Method

If the gait satisfies the necessary conditions generated by

the algebraic analysis, a more involved geometric and graph

theory analysis will allow us to establish global convergence.

W is segmented into distinct regions, so that each region

transitions due to a single rule, progressing to a single new

region. The regions can be viewed as nodes in a directed

graph, where every node has an out-degree of 1.
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TABLE I

GAIT PARAMETERS USED FOR THE TWO-LEGGED EXAMPLE.

γ δ ω1 ω2 T L

Example 0.3 0.15 sec 0.3 0.7 0.16 sec 0.5 sec

The first step in the geometric analysis is to create the

boundary of W . Because GR rules operate on the ordered

travel vector, ~s∗, but points in W are unordered travels, W
is divided into n! regions corresponding to each possible leg

ordering. Next any inhibitory CC rules are outlined, as well

as any unstable regions, to yield Ws

At this point we begin construction of the transition

boundary B, composed of facets associated with GR or CC

rules that trigger detachment. First, facets for the GR rules

are added in each of the n! regions. Any GR rule facets

that lie outside Ws are removed, since an inhibitory CC rule

would prevent detachment. Then facets for any detachment

CC rules are added to complete B. A complete transition

boundary transects Ws; i.e. the projections of B and Ws

onto the plane perpendicular to
[

1 1 . . . 1
]

are equal.

Given B, W can be segmented to satisfy the conditions

outlined above. The full details of this segmentation process

are not presented here due to space limitations. During

segmentation, the directed graph, G, is constructed and

each node is categorized according to which rules govern

transition from it: GR nodes transition due to the GR rule

only; CC nodes transition due to CC rules.

For the gait to be globally convergent, the robot must be

able to start in any configuration and eventually enter a cycle

in which it always transitions due to a GR rule. Equivalently,

requirements for G are for all cycles in G to include only

GR nodes, and for every other node in G to be able to reach

one of these cycles. These properties can be checked by

inspection or through methods outlined in [21], [20].

If these requirements are satisfied, the robot will reach a

GR region within a finite number of steps from any starting

region. After reaching the GR region, the detachment state

will asymptotically converge to the equilibrium path, as

shown by the algebraic analysis. If the requirements are not

satisfied, the robot can enter a cyclic gait in which at least

one transition is due to a CC rule, and the detachment state

will not converge to ~ξ(λ = 1).

C. Two-Legged Example Analysis

The parameters for a GR rule are listed in Table I along

with the joint limit L. We empirically determine γ and δ
by first selecting a desired forward velocity and measuring

the various velocities and time durations exhibited by the

robot. The weights ω and trigger point T are also determined

empirically. The synthesis of gaits is beyond the scope of this

article, but experience indicates that the the heaviest weights

for an n legged robot that lifts m legs at a time should be ωn

and ωm+1 (which for the two legged case are the same leg)

with a light weight for ω1. This approach couples the actions

of each leg to the next and previous neighbors in travel.

Using the parameters in Table I, we form the R matrix:
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Fig. 4. The 2D gait space using parameters from Table I. Five dotted lines,
each angled at 45◦, divide W into six regions. Each region is indicated by
a number which is either circled or squared. Four small gray-filled circles
and their connecting lines indicate the equilibrium path.

R1 = LD1 =





0.21 0.7 0.265
−0.09 −0.3 0.115

0 0 1



 (12)

The eigenvalues and associated eigenvectors are:

~ξ(λ = 1) =
[

0.390 0.061 1
]T

~ξ(λ = −0.09) =
[

7 −3 0
]T

~ξ(λ = 0) =
[

10 −3 0
]T

(13)

This system is locally convergent because we have a single

eigenvalue equal to 1 while the rest have absolute values less

than one and ~ξ(λ = 1) ∈ Ws. This eigenvector describes the

equilibrium travels of the legs before detachment, while the

others describe transient modes that decay.

The algebraic analysis has demonstrated convergence in

the neighborhood of equilibrium; we now check for global

convergence. Fig. 4 shows the gait space divided into six

regions. The boundaries between regions are lines parallel

to the travel direction
[

1 1
]T

. The boundaries coincide

with the boundaries between the various GR and CC rules

such that each region meets the requirement of detaching

due to a single rule. In addition, each region only maps to a

single distinct region, thus we do not need to further segment

the gait space. Regions 2 and 3 both transition to region 4

and likewise for 4 and 5 to 3. Regions 1 and 6 encounter

the conflicting CC rule boundary, but in these cases, the

travel slides along the boundary until it reaches the corners of

regions 2 and 5, respectively, which instantaneously triggers

detachment. Using these regions, we obtain the directed

graph:

G : 1©→ 2©→ 4 ↔ 3 ← 5©← 6© (14)
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Fig. 5. Four-legged variant of the RiSE robot climbing a wooden substrate.

TABLE II

GAIT PARAMETERS USED FOR THE THE STABLE AND UNSTABLE GAIT.

γ δ ω1 ω2 ω3 ω4 T

Convergent 0.3 0.15 s 0.3 0.3 0.2 0.2 0.27 s

Non-Convergent 0.3 0.15 s 0.5 0.5 0.0 0.0 0.38 s

GR nodes are represented by boxes and CC nodes repre-

sented by circles. By inspection, the only cycle involves

GR regions 3 and 4, and all other nodes lead to that cycle.

Therefore, the gait is globally convergent.

V. RESULTS

While this gait regulation technique is extendable to

various forms of locomotion, it was designed in response

to challenges faced by vertical climbing. These trials were

performed on a vertical wooden substrate as shown in Fig.

5. The robot climbed six feet, but the data only show a small

fraction, in order to highlight the details of the plots.

We implemented two gaits, one convergent and one non-

convergent, on the quadrupedal RiSE robot and compared

the observed behavior with predictions from the analysis.

For these tests, the robot climbed using a bound gait where

the front and rear pair of legs are out of phase with each

other. We considered the four legs separately to see the

effects of disturbances when a single leg slips. The algebraic

analysis extends easily to the four-legged description using

a 5×5 matrix but the geometric analysis requires a 4D

representation of the travel space and is not shown here.

The GR rule, with parameters from Table II, governs the

bounding gait and synchronizes the left and right legs.

Applying (9), we get the detachment matrix, LD2:












1−ω1 −ω2 −ω3 −ω4 T
−ω1 1−ω2 −ω3 −ω4 T
−ω1 −ω2 1−ω3 −ω4 T
−ω1 −ω2 −ω3 1−ω4 T

0 0 0 0 1

























0 0 1 0 0
0 0 0 1 0
−γ 0 0 0 −δ
0 −γ 0 0 −δ
0 0 0 0 1













(15)

A. Convergent Gait

We substitute the “convergent” values from Table

II and form R2 = LD2 to yield the eigenval-
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Fig. 6. The robot begins climbing using a convergent GR rule. The top
subplot shows each leg’s crank angle which pulls the robot up the wall.
The middle subplot shows the support pattern for the robot. The bottom
subplot shows the travel of each leg. The discontinuities occur when the
controller decides to lift each leg. The robot maintains positive body velocity
throughout the gait.
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Fig. 7. The robot begins climbing using a non-convergent GR rule with
the same subplots as Fig. 6. The grayed sections indicate where the robot’s
body velocity drops due to a CC pause condition: one pair reaches end of
travel while the other pair is in swing.

ues:
[

0.55i −0.55i 0 −0.48 1
]

and the eigenvector

~ξ(λ = 1) =
[

0.41 0.41 0.07 0.07 1
]T

. According

to our criteria in Section IV-A, this gait is locally convergent.

As the equilibrium detachment travel vector shows, the gait

keeps the front and rear out of phase with each other and

keeps the legs within each pair in phase with each other.

Fig. 6 shows the gait at steady-state. There are a few

disturbances in the travel curve during attachment because

the legs do not always reattach at the same spot. Also, as

the robot climbs it experiences different loading conditions

for each step, so every footfall looks different. There may

also be predictable but unmodeled discrepancies between the

internal model and the physical leg trajectories. Despite these

errors, the gait converges readily.
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B. Non-Convergent Gait

The eigenvalues for R2 using the non-convergent pa-

rameters are
[

−1 0.55i −0.55i 0 1
]

. The eigenvec-

tor associated with the -1 eigenvalue is ~ξ(λ = −1) =
[

0 0 1 1 0
]

. Since there are two eigenvalues with

absolute values of one, the system will not converge to a

single equilibrium path. Fig. 7 shows the results of this

gait, which, as predicted, does not produce a symmetric gait.

However, since the algorithm protects the robot from entering

a fatal configuration, the robot can still climb.

These parameters correspond to a gait in which the front

and back legs are uncoupled. Further, because RiSE is

non-ideal, different legs move with slightly different speeds

during swing. Because the GR rule does not couple the front

and back legs, the faster pair is able to catch up to the slower

pair and a stability CC rule forces them to stay in stance until

the slower pair has attached.

VI. CONCLUSIONS AND FUTURE WORK

We presented an algorithm for gait regulation for a climb-

ing legged robot that operates under practical considerations

of vertical climbing imposed by stability and motor thermal

optimization. Subject to these considerations, the algorithm

regulates the gait by varying leg detachment timings. We

present algebraic and geometric tests for local and global

convergence to a standard free gait [1], which yields an even

rhythm and is robust against disturbances. The algorithm is

designed to ensure the robot remains stable at all times, even

when a gait is unable to converge. We presented the method

in the context of a robot with two virtual legs and tested it

on a four-legged variant of the RiSE robot.

It should be noted that the robot can still climb without

reaching convergence, but the robot will generate CC pause

conditions when the legs interfere, as shown in Fig. 7.

For most legged robots, this would be of little concern,

but for climbing robots, pausing is energy intensive as the

robot must station-keep against the force of gravity and lose

forward momentum. A properly convergent GR rule will

synchronize the legs and prevent such conditions even if

the legs temporarily slip out of synchronization. While we

recognize the variety of gait controllers that can effectively

maintain synchronization, most cannot do so without vio-

lating the conditions set forth in Section I. An event-based

variable-period controller, such as the one described here,

does not violate the conditions with the added benefit of

mathematically demonstrable convergence.

We plan to extend this algorithm to different gaits with

larger numbers of legs. The approach should be also suitable

for different types of legged robots, including walking robots

that are not as thermally constrained. We plan to extend the

geometric analysis tools to larger dimensions, for which the

representation of the travel space is no longer easy to visually

inspect. We are also interested in dynamically switching

between different gaits and sets of parameters. Finally, while

the approach presented here provides for gait analysis, the

synthesis of new gaits is an important and more open-ended

problem for future work.
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