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Abstract— This work addresses mission planning for au-
tonomous underwater gliders based on predictions of an un-
certain, time-varying current field. Glider submersibles are
highly sensitive to prevailing currents so mission planners must
account for ocean tides and eddies. Previous work in variable-
current path planning assumes that current predictions are
perfect, but in practice these forecasts may be inaccurate. Here
we evaluate plan fragility using empirical tests on historical
ocean forecasts for which followup data is available. We present
methods for glider path planning and control in a time-varying
current field. A case study scenario in the Southern California
Bight uses current predictions drawn from the Regional Ocean
Monitoring System (ROMS).

I. INTRODUCTION

We consider path planning for autonomous underwater

gliders based on advance forecasts of an uncertain, time-

varying current field. The system we describe will be tested

as part of the Ocean Observatories Initiative (OOI), a

science-driven oceanic sensor network. The OOI will inte-

grate moorings, radar and Autonomous Underwater Vehicles

(AUVs), assimilating real-time data into regional forecasting

models. The initial tests of this system will use underwater

gliders, autonomous submersibles designed for long duration

missions [4]. Gliders travel efficiently by changing buoyancy

and using winged surfaces to produce a sawtooth trajectory

(Figure 1). Gliders can travel for months on a single battery

charge, pausing at intervals on the surface to transmit science

data and receive commands.

Gliders are highly sensitive to prevailing currents. Coastal

current forces are often larger than the propulsion force

of the glider, and can change on time scales of hours.

Effective mission planning must exploit these forces by

placing the glider strategically to exploit beneficial tides and

eddies. Fortunately ocean models such as the Regional Ocean

Monitoring System, or ROMS [1], [2], [11] can now produce

current forecasts at time scales and resolutions sufficient to

inform glider plans. While a growing body of work addresses

path planning in a static current field [9], [5], [7], currents

in the glider scenario vary on time scales much shorter than

the mission duration. Dynamic currents of the Slocum glider

domain demand true spatiotemporal path planning. Advances

in this area include work by Zhang et al. [6] who optimize
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paths represented as continuous trajectories, and Soulignac

et al. whose wavefront method propagates path cost as a

function of departure time [8].

Fig. 1. Slocum Glider submersible, courtesy Rutgers University.

These approaches find optimal paths to a given spatial

location. However, our deployments will also require that

gliders be present at a specific time. Specifying spatiotem-

poral goals is important both for tracking time-varying ocean

phenomena [10], [12] and for time-coordination of multiple

assets within the OOI. Early arrival will not suffice if the

glider cannot hold position against ocean currents. This

requires a new approach to path planning in time-varying

current fields. Recently we presented a wavefront algorithm

for path planning in time varying currents based on an

earliest valid arrival criterion. Our approach minimizes the

time of travel to the goal position under the constraint that

the glider is then capable of holding position against currents

until the desired time is reached [13]. This permits goals

specified as arbitrary spatiotemporal volumes.

Previous tests of variable-current path planning have as-

sumed that planning occurs with perfect knowledge of future

currents. In practice it is difficult to forecast currents accu-

rately and actual conditions can quickly diverge. This work

evaluates performance by simulating realistic discrepancies

between planning and runtime currents. We use historical

ocean current predictions for which followup data is avail-

able, providing an advance current prediction and the actual

conditions. Our study considers a case scenario using ROMS

predictions in the Southern California Bight. We present

our path planning methodology and some simple control

methods for tracking the path. Simulations compare current-

agnostic and current-sensitive mission planning using both

perfect and realistic forecasts. Finally, we conclude with

some quantitative guidelines for ocean modeling accuracy

and some qualitative recommendations for mission planning

in the future OOI.
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Fig. 2. The 3D spatiotemporal grid. The glider begins in the lower center
and travels a path that visits 4 nodes before arriving at the goal location
(yellow node at top). The red rectangles show Axyt, the earliest valid arrival
time for each node’s spatial location. Arrival times are computed for all
nodes, but for clarity we hide arrival times for nodes not participating in
the optimal path.

Fig. 3. Dive profile for our simplified glider motion model using current
predictions at different depths. GPS updates are extended pauses at the
surface that occur at regular time intervals.

II. PATH PLANNING APPROACH

We use ROMS forecast models provide to provide a depth-

averaged current estimate Cxyτ for an ocean volume with

discrete grid squares indexed by time intervals τ , latitude x,

longitude y. A glider path is comprised of segments traveling

between adjacent nodes in the 3D grid. Segment endpoints

take specific continuous time values in their nodes’ intervals.

We treat the temporal and spatial dimensions differently:

segment endpoints must lie exactly on the physical locations

represented by grid points, but they can lie anywhere within

the continuous time interval covered by the grid square.

Figure 2 illustrates a simple four-segment path through the

spatiotemporal grid. The glider begins in the lower center and

travels a path to the goal location represented by the yellow

grid square at the top. The final segment of this trip consists

of a station keeping action; the glider waits at the same

location until it enters the time interval of the destination

node.

A. Travel time estimates

Path planning requires that we calculate the travel time

between adjacent grid squares. In practice forward velocity

is affected by dynamics of the dive trajectory and periodic

pauses for GPS acquisition. Moreover, the glider may deviate

from the straight-line path between grid squares since it can

only correct its heading at each GPS waypoint. Over long

distances these effects average out, so this high-level path

planner assumes fixed flight parameters yielding a constant

still-water velocity.

The path planner assumes that the glider will choose a

control propulsion that combines with the prevailing current

to yield a velocity in the desired direction of travel. We define

2-vectors corresponding to control propulsion vcontrol, a

constant local current with velocity Cxyτ , and a resulting net

velocity vactual. The control velocity must have a magnitude

no greater than the nominal velocity of the vehicle in still

water, so that |vcontrol| ≤ m. The net velocity has magnitude

λ and follows the desired direction of travel d:

vactual = vcontrol + Cxyτ = λd (1)

We choose the propulsion velocity vcontrol to maximize

travel speed, producing the largest possible motion in the

desired direction of travel:

λ = max
vcontrol

|vcontrol + Cxyτ | (2)

A path between adjacent nodes is considered impossible if

the glider would require longer than a single time interval

to travel between them. Otherwise, the transit time between

adjacent nodes is determined by the net velocity λd.

Note that ROMS models actually supply depth-variable

current predictions Cxyτh with depth indices h. We must

take these into account as well since the glider visits many

depths during travel. The current predictions vary in vertical

resolution from 5m near the ocean surface down to 500m
resolutions at depth. The glider follows a sinusoidal path

with maximum dive depth determined by the user-defined

maximum, the vehicle limit, or the sea floor (Figure 3).

The dive period is determined by flight parameters such

as pump displacement and the dive and climb angles. In

this study the vertical flight profile is taken as fixed; our

planner controls the glider’s heading but not its depth. The

fraction of time spent at each depth level approaches a known

quantity over long distances, so we integrate currents over

the depth dimension to estimate straight-line travel times

between latitude/longitude positions. The result is that the

glider can construct plans in the 3D volume comprised by

spatial dimensions x and y, and the temporal dimension τ .

The total current force experienced by the glider is taken to

be constant within each grid square; it is given by Cxyτ :

Cxyτ =
1∑

h f(h)

∑

h

f(h)Cxyτh (3)

where f(h) is the time in each glide cycle spent in the depth

interval h. Our planner uses a constant dive angle and a

maximum depth of 200m or the sea floor depth, whichever

is less.
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B. Wavefront path planning

Our path planning uses the spatiotemporal wavefront algo-

rithm of Thompson et al. [13]. The planner uses a wavefront

expansion to compute the time required to reach any location

and time in a 3D spatiotemporal volume. It optimizes an

earliest valid arrival criterion that seeks a path to reach a

given spatial location as early as possible, provided that the

glider can then hold position against currents until the desired

time is reached. This objective favors fast travel to the goal

location to provide a margin of error for recovering from

execution uncertainty. At the same time it permits goals to

be specified with a destination time.

Input: Nodes N , Current predictions C, Start location
Nstart

Output: Path P = {Pi}
n
i=1

Initialize Astart ← 0, all other A ← inf1

Initialize wavefront queue Q = {Nstart}2

while Q not empty do3

find “parent node” Np ∈ Q at xp, yp, τp minimizing4

Ap

Q← Q \ Np5

define “hold position destination” Nh at6

(xp, yp, τp + 1)
if Nh reachable from Np then7

Ah ← Ap8

Mh ← Np9

Q← Q ∪Nh10

foreach (xc, yc) neighboring Np do11

if (xc, yc) reachable from Np then12

if Ap /∈ τp then13

tdepart ← min t : t ∈ τp14

else15

tdepart ← Ap16

tarrival ← tdepart+ travel time (from C)17

τc = τ : tarrival ∈ τ18

“child” node Nc at (xc, yc, τc)19

if tarrival < Ac then20

Ac ← tarrival21

Mc ← Np22

Q← Q ∪Nc23

P ← {Nend} for Nend minimizing Aend24

Nprev ←Mend (parent of Nend)25

while Nstart /∈ P do26

Nprev ←Mprev (parent of Nprev)27

P ← P ∪Nprev28

return P29

Algorithm 1: Computation of arrival times and parent nodes
satisfying the “earliest valid arrival” criterion. Q is a priority queue
of unexpanded nodes maintained in order of increasing arrival
times. Subscripts p, c, h indicate data associated with the current
parent, child, and station-keeping destination nodes. After finding
the set of “best parents” M we compute the optimal path P by
tracing parents from the goal back to the origin.

The path planning algorithm computes A ∈ IR for each

node; this is defined as the earliest possible time of arrival

to location (x, y) for the “hold position” action ending in

time interval τ . Often a node directly following another at

the same physical location will take its predecessor’s value

of A due to position-holding. For example, in Figure 2 the

final segment consists of a hold position action. Physical

locations have not changed between the final two nodes so

their earliest arrival times are identical. We record the earliest

possible arrival time yet discovered for each node in the grid.

A wavefront algorithm recursively expands nodes until the

goal location is reached.

Our path planning strategy begins by initializing a queue Q
of unexpanded reachable nodes. Initially this queue contains

the starting location. Each expansion operation takes the top

node Np of the queue and simulates travel in each of the 8

compass directions, as well as holding position at the current

node into the next time step.

If the hold position action is successful it results in the

parent’s time of arrival Ap being preserved in the same

physical location at the next time interval. For travel between

different physical locations we compute a travel time t based

on the earliest possible time of departure from the parent

node. If the parent node was itself reached by a hold position

action, then it is occupied from the start of its interval. In this

case the earliest possible departure t happens at the start of

the time interval. We can identify this case whenever a parent

is occupied prior to its own time interval, i.e. Ap /∈ τp. This

is a subtle point: a node’s associated arrival time need not

be within the time interval represented by the node. Instead

it refers to the earliest valid arrival, i.e. the earliest possible

arrival which then permits position holding until entering the

node.

We compute travel times t from equation 2 assuming

a constant local current velocity. Depending on the time

required, the destination child node could turn out to be in

either the parent’s time interval or the following one. The

resulting arrival time is the best arrival yet realized in the

child node Nc. We retain paths corresponding to the earliest

possible arrival time for each child, which requires storing a

single best parent Mc for each reachable node in the grid.

The algorithm continues recursively expanding child nodes

until it has accounted for all grid locations (Algorithm 1). We

expand new nodes in order of increasing arrival times which

requires maintaining a sorted queue tantamount to a wave-

front expansion [7] or Dijkstra method. This guarantees that

discounting discretization effects, the earliest possible arrival

is known for every reachable node; the wavefront solution

is optimal up to discretization accuracy. After completely

expanding all the nodes in the grid one can trace a valid path

from any goal node back to the start using the recorded parent

nodes (lines 24-29). The result of the planning procedure is

a sequence of segments through adjacent 3D grid squares

that is theoretically within the glider’s physical capability

and optimizes the earliest valid arrival criterion.

The arrival times A also define a reachability function:

the locations for a particular time step that are reachable

by a glider beginning at the original start location. The

isocontours of this function constitute a useful data product

for mission planners; they show legal locations for waypoint

placement during glider planning. Figure 4 shows a glider

path together with reachability isocontours.

We discounted any trial for which the currents at the
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Fig. 4. Typical solution for earliest arrival showing the final simulation
time step. The red path represents the optimal glider path. Isocontours of
the reachability function are shown in yellow and green, with blue arrows
showing the final timeslice of the time-varying current field.

endpoint were greater than the glider’s own propulsion.

These scenarios resulted in attempts to pass through the

target node at speed, by first lingering in calmer waters

and then dashing through the target at the appropriate time.

Naturally these plans were quite fragile, but requiring at

least one time interval-worth of station-holding remedied this

problem. If the mission planners don’t care about targeting

a particular time of arrival but simply want to reach a

given spatial location as quickly as possible, the algorithm

can easily be modified to accommodate this scenario. One

simply stops the planning when any node in the target spatial

position is surrounded by expanded neighbors, after which

one can be certain that there is no earlier-arriving path.

III. EXPERIMENTAL METHOD

Our test scenario uses historical ROMS forecasts for the

Southern California Bight in August and September 2009.

ROMS is a 4D-VAR based oceanographic simulation that

models ocean convection and current processes to predict

currents, sea height, and salinity. It uses boundary conditions

provided by real-time data streams such as CODAR (radar

measurements of surface current speed), sea surface tem-

perature, and moorings. The numerical model provides two

main current-related data products. Nowcasts are estimates

of current ocean conditions based on the latest available

real-time data. The nowcasts are updated every 6 hours.

Alternatively, current forecasts use a numerical simulation to

predict future ocean conditions up to 48-hours in advance.

Figure 5 shows typical examples of 48-hour forecast and

nowcast estimates for currents at two locations in the simula-

tion area. Note that current velocities often reach magnitudes

of 0.8m/s; this exceeds the glider’s own propulsion which

would carry it at just 0.2 − 0.3m/s in still water. There is

also a strong tidal influence apparent with 6-hour periodicity.
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Fig. 5. Estimates of Eastward current velocity for a location near the Los
Angeles coastline (33.5 N, 241.5 E). Both the hourly forecast and 6-hour
nowcast data products are shown.

Finally, the forecast and nowcast products tend to diverge

in the later hours of the simulation; this is typical of the

simulation domain and reflects the accumulation of errors in

the forecast predictions.

Glider deployment operators conventionally refine glider

plans during most communications periods; this allows them

to refine the entire mission plan at intervals of 6 − 8
hours. However, in principle it is still advantageous to plan

paths based on the full predictive window of ROMS current

forecasts. Not only does this optimize glider travel by placing

the vehicle in more favorable long-term positions but it could

alleviate the onerous operational requirements of manually

monitoring glider progress throughout the day. Thus, our

experiment evaluates path planning for the full 48-hour time

scale of ROMS predictions.

We model a vehicle similar to the Webb Research Slocum

glider [14] that navigates by dead-reckoning between peri-

odic GPS acquisitions. We translate the path planner’s opti-

mal trajectory into a timed sequence of segments, with each

segment active during a specific time duration. The physical

vehicle cannot follow this path perfectly because it receives

only periodic position updates. Instead we use a simple

pursuit method to track the trajectory; we define intermediate

goal waypoints that are revised at the start of each dive cycle.

At each surfacing the simulated glider updates its position

using GPS and adjusts the glider heading based on the

current active waypoint. Our simulation presumes surfacing

activities every 60 minutes. Each planning trial requires that

the glider travel from a predefined start location to some end

location approximately 30km distant. Ground-truth currents

are drawn from ROMS nowcasts. We selected 25 test paths

to cover the area of interest with a variety of headings.

The tests compare three different path planning strategies:

• An omniscient wavefront approach computes a path

based on the wavefront planning and perfect knowledge

of the run-time currents. Naturally this is unrealistic for

real ocean conditions.

• A realistic wavefront method uses wavefront planning

based on the error-prone current forecast data products.

• A simple alternative does not use path planning at all.

Instead it always travels directly towards the final goal.

Each segment of the trajectory is active during a specific time

period; we compute a heading to reach the active segment’s

endpoint at each surfacing. We also consider several methods

of deriving this direction (Figure 6). Current-sensitive control
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Fig. 6. We use several control strategies to track the planned trajectory.
These include current-sensitive control that accounts explicitly for predictive
forces, current-blind control that aims directly toward the current active
waypoint, and a third option that forgoes path planning altogether.

computes the control propulsion that combines with pre-

dicted currents to carry the vehicle toward the intermediate

goal. Current-blind control applies a propulsion force in the

direction of the next waypoint, so that the path itself uses

current predictions but the local waypoint-following does

not. This is more realistic for deployment scenarios where

bandwidth limits preclude uploading current forecasts to the

glider. Finally, a greedy strategy with no path planning does

not have access to any current forecast information so it

always propels the vehicle in the direction of the final goal.

Our experiments use wavefront planning to find inter-

polating waypoints for each path, in both directions, for

two 48-hour periods spanning Sept 1 to 5, 2009. The

goal for each trial is to position the glider at the opposite

waypoint 48-hour planning window. We set gliders’ still-

water horizontal velocity to 0.3m/s. Gliders plan within a

travel zone consisting of the rectangular region enclosing the

start and end waypoints, with an additional latitude/longitude

margin of 0.2 degrees. Any valid glider path must lie entirely

within this spatiotemporal volume. We simulate two different

spatial resolutions for the current predictions. The first, a

full-resolution simulation with 1km grid squares, is the

highest resolution typically used for ROMS forecasts. We

also simulate the common 6km grid square resolution by

subsampling the current forecast data.

After the planning is complete we simulated the glider

using the simple motion model described above. The plan

execution environment uses the nowcast data, which differs

somewhat from the realistic current forecasts. This simulates

a realistic discrepancy between predicted and actual currents.

Another source of execution uncertainty for both realistic

and omniscient planners is the period of the dive cycle. We

update the simulated glider’s position every 60 minutes to

simulate GPS acquisition and course corrections at periodic

surfacing events.
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Fig. 7. Emperical glider positions and control propulsions for our
three control strategies with hourly surfacings. Current-blind control (white
circles) generally strays slightly down stream of the ideal path.

IV. RESULTS

Each test has one of three outcomes. The first possibility,

which can happen for either the realistic or omniscient

planner, occurs whenever there is no valid path to reach the

goal in the 48-hour window. This generally happens in the

case of strong countervailing currents that overwhelm the

glider’s propulsion. In this case no plan is generated and

we do not run the followup simulation. This case comprises

approximately 50% of the planning trials. Alternatively when

a trial does not use a planner, or the path planning system

identifies a valid plan, in which cases the simulated glider

either succeeds to fails to reach the goal.

We compute an error score for each trial based on the

distance between the final glider position and the desired

physical location. Figure 8 shows the distributions of these

errors over all simulation trials. This comparison excludes

runs where the path planner finds no valid path. Note that

our simulation updates heading at 60 minute intervals, so

it is unreasonable for a glider to hold position exactly at

the target. Therefore distances less than 2km are tan-

tamount to perfect successes, and distance errors within

5km are often sufficient for mission planning. Our tests

did not show a significant performance difference between

the different current-sensitive planning methods, or between

control strategies utilizing the same current-sensitive plan.

Anecdotal evidence from trials such as Figure 7 suggest that

current-sensitive control could provide a benefit, but this is

not significant for the majority of the simulated trials we

considered.

On the other hand there is a clear difference between

methods utilizing current predictions and greedy methods

that do not involve a path planner. Simulations without a path

planner can fail spectacularly; the worst quartile of greedy

trials ends with the glider at least 13km off target, but when

planning is involved only a handful of outlier trials misses

the target. The benefit is largely due to the planner’s ability to

reject invalid paths. However, even in trials where valid paths
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Fig. 9. Mean absolute velocities over all trials.

are found there is a significant median difference of errors,

suggesting that planning-based approaches provide improved

accuracy over planner-free methods (significant to 95%).

These results are corroborated by mean absolute velocities

(Figure 9). Current-sensitive path plans make faster progress

toward the goal, offering a higher rate of progress per time

step by exploiting time-varying currents.

V. CONCLUSIONS

Glider mission planning is a challenging problem domain

because the phenomena under observation and vehicle mo-

tion constraints can change dramatically on mission time

scales. This work has sought to quantify the effect of forecast

inaccuracy on the validity of mission plans. In our trials,

glider performance using path planning from 48-hour fore-

casts was statistically indistinguishable from performance

using perfect current predictions.

The main advantage of the path planner in these tests is

to recognize and exclude dangerous destinations. The path

planner is quite effective at rejecting infeasible paths where

the glider would be pushed off course, which provides a valu-

able means of reducing risk in automated mission planning.

At the same time, the reachability estimates computed by the

path planner offer an intuitive way to visualize the envelope

of planning possibilities and can assist gliders to identify safe

mission goals that don’t carry the glider through dangerous

tides or eddies.

The path planner described in this work will shortly be

deployed as part of a broader mission planning system within

the Ocean Observatories Initiative Observing System Simula-

tion Experiment (OSSE). Later it will join a mission planning

system for physical gliders in the Mid-Atlantic Bight. We

hope to improve the system with more sophisticated motion

models and the ability to modify glider flight parameters

mid-mission.
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