
 
 

 

  

Abstract — Planetary surface exploration rovers must 
accurately and efficiently predict their mobility on natural, 
rough terrain. Most approaches to mobility prediction assume 
precise a priori knowledge of terrain physical parameters, 
however in practical scenarios knowledge of terrain parameters 
contains significant uncertainty. In this paper, a statistical 
method for mobility prediction that incorporates terrain 
uncertainty is presented. The proposed method consists of two 
techniques: a wheeled vehicle model for calculating vehicle 
dynamic motion and wheel-terrain interaction forces, and a 
stochastic response surface method (SRSM) for modeling of 
uncertainty. The proposed method generates a predicted motion 
path of the rover with confidence ellipses indicating the 
probable rover position due to uncertainty in terrain physical 
parameters. Rover orientations and wheel slippage are also 
predicted. The computational efficiency of SRSM as compared 
to conventional Monte Carlo methods is shown via numerical 
simulations. Experimental results of rover travel over sloped 
terrain in two different uncertain terrains are presented that 
confirms the utility of the proposed mobility prediction method. 

I. INTRODUCTION 
obile robotics has been performing a significant role in 
scientific lunar/planetary surface exploration missions 

[1]. In such missions, mobile robots are required to predict 
their mobility to avoid hazards such as immobilizing wheel 
slip on loose sand, or collision with obstacles. This “mobility 
prediction problem” is thus important to the successful 
exploration on challenging terrain. Of particular interest is 
mobility prediction on sloped terrain, since travel on slopes 
can cause extreme longitudinal and lateral slips. 

There have been significant works dealing with mobility 
predictions and analyses in the military community [2][3]. 
These works have primarily focused on empirical analysis of 
large (i.e. several ton gross vehicle weight) vehicles. Other 
works have been performed to predict the mobility of small 
mobile robots while considering interaction mechanics of a 
slipping wheel on deformable terrain. Jain et al. has 
developed the ROAMS simulator, which can be used for 
deterministic mobility prediction and includes models of 
terrain/vehicle interactions [4]. A multibody system for 
deterministic simulation of rover tire-soil interaction has also 
been demonstrated [5]. A terramechanics-based dynamic 
model for exploration rovers that considers wheel slip and 
traction forces has been developed [6].  

These works have employed well-known dynamic and 
terramechanics models to calculate vehicle motion and wheel 
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forces. However, these models assume prior knowledge of 
wheel-terrain interaction physical parameters (i.e. soil 
cohesion, internal friction angle, and others). In practical 
situations, mobile robots often traverse environments 
composed of terrain with unknown properties. These 
parameters can be estimated by on-board robotic sensor 
systems [7]-[9], however these estimated parameters remain 
subject to uncertainty. Some recent work has attempted to 
predict rover mobility on slopes via a learning-based 
approach [10], however this work does not explicitly consider 
uncertainty in terrain physical parameters. 

Based on these observations, it can be asserted that 
practical approaches to mobility prediction should explicitly 
consider uncertainty in terrain physical parameters. A 
conventional technique for estimating a probability density 
function of a system’s output response from uncertain input 
distributions is the Monte Carlo method [11][12]. This 
approach generally requires a large number of analytical or 
numerical simulation trials to obtain a probability distribution 
of an output metric(s) associated with ranges of uncertain 
input parameters. Monte Carlo methods are typically 
computationally expensive with computational cost 
increasing as the simulation model complexity increases. 
Structured sampling techniques such as Latin hypercube 
sampling [13][14] can be used to improve computational 
efficiency, however these gains may be modest for complex 
problems. 

This paper proposes a statistical method for efficient 
mobility prediction consisting of two techniques: a wheeled 
vehicle model for calculating vehicle dynamic motion and 
wheel-terrain interaction forces, and a stochastic response 
surface method (SRSM) for modeling of uncertainty. In the 
wheeled vehicle model [6], a terramechanics-based approach 
is used to calculate interaction forces of slipping wheels on 
deformable soil, and a dynamic model is employed to 
simulate vehicle motion. SRSM [15][16] is used as a 
functional approximation technique to obtain an equivalent 
system model with reduced complexity. Generally, the use of 
SRSM can reduce the number and complexity of model 
simulation trials to generate output metric statistics, as 
compared to Monte Carlo methods. In this paper, the 
computational efficiency of SRSM is confirmed through the 
comparison with those of Standard Monte Carlo method and 
Latin Hypercube Sampling Monte Carlo method.  
Experimental studies of the proposed statistical mobility 

prediction method are conducted for a slope traversal 
scenario in two different terrains. Here, two key terrain 
parameters, cohesion and internal friction angle, are chosen 
as uncertain parameters. The proposed method provides a 
prediction of rover motion with confidence ellipses indicating 
probability ranges of the predicted position due to terrain 
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parameter uncertainty. Further, the method predicts the 
rover’s probable orientation and wheel slippage. 

This paper is organized as follows: Section II describes the 
outline of the proposed mobility prediction method. Section 
III explains SRSM and confidence ellipse calculation. The 
wheeled vehicle model is briefly introduced in Section IV. 
Section V describes the comparison of computational 
efficiency between Monte Carlo methods and SRSM, and 
also presents an experimental study using the proposed 
method. 

 

 
Fig.1.  Flow chart of statistical mobility prediction method 

II. OUTLINE OF STATISTICAL MOBILITY 
PREDICTION METHOD 

Fig. 1 shows a flow chart of the statistical mobility 
prediction method proposed in this paper. This method is 
divided into three steps: First, uncertainty in terrain 
parameters Gi is represented as functions of standard random 
valuables (i.e. Gaussian variables):  

ξiii σμ +=G                                   (1) 
where μi is the mean, σi is the standard deviation, and ξ is a 
set of standard normal random variables. Following the 
approach of [16], M sample points are calculated, where M is 
approximately twice the number of coefficients in SRSM 
reduced model (see (3) below). 

In the second step, M dynamic simulations using the 
wheeled vehicle model are carried out to obtain several values 
for the variables of interest in a state space X corresponding to 
the uncertain inputs Gi. The state space X consists of state 
variables of the vehicle, for example, vehicle position (x, y, z), 
vehicle orientation (θx, θy, θz), wheels’ slip ratios s, and 
wheels’ slip angles β : 

[ ]βsX xxxzyx θθθ=                  (2) 
In the third step, SRSM is employed to develop an 

equivalent reduced model of the state space, which can be 
expressed by:  
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where Xj(t) is a set of unknown coefficient values that are 
calculated via a regression-based approach and Φj(ξ) is a set 
of multidimensional Hermite polynomials with normal 
random variables. The number of unknown coefficients 
(N+1) is determined by both the degree q of polynomial 
expansion (see (5) below) and the number of the uncertain 
parameters. Once the coefficients are determined, the vehicle 
dynamic motion with terrain uncertainties can be predicted 
using the reduced model.  

III. UNCERTAINTY ANALYSIS APPROACH 

A. Stochastic Response Surface Method 
SRSM provides a computationally efficient method for 

uncertainty propagation through the determination of a 
statistically equivalent reduced model [15][16]. In SRSM, 
inputs to a system model may be given as functions of 
independent identically distributed (iid) normal random 
variables, each having zero mean and unit variance (e.g. as 
defined in (1)). The same set of input random variables is then 
used for deriving the statistics of system model outputs.  

An equivalent reduced model for output metrics is 
expressed as a series expansion in terms of standard random 
valuables as multidimensional Hermite polynomials with 
normal random variables:  
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where y is an output metric, ai1, ai2…are unknown coefficients 
to be determined, and ξi1, ξi2…are iid normal random 
variables. The Hermite polynomial of degree q is given as:  
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The accuracy of the model output increases as the order of the 
expansion q increases. For notational simplicity, the series in 
(4) can be rewritten as shown in (3): 
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where the series is truncated to a finite number of terms and 
there exists a correspondence between Γq(ξi1, ξi2, ..., ξiq) and 
Φj(ξ), and their corresponding coefficients. In this paper, the 
Hermite polynomial is used as the equivalent reduced model 
since input random variables are assumed to be Gaussian 
variables, however, different orthogonal polynomial basis 
functions can also be used for the probability distribution of 
other non-Gaussian variables [16]. 

The series expansion contains unknown coefficient values 
that can be determined from a limited number of system 
model simulations to generate an approximate reduced model. 
A set of sample points is selected and model outputs at these 
points are used for calculating the unknown coefficients. 
Once the statistically equivalent reduced model is formulated, 
it can be used to determine statistical properties related to 
mobility prediction, such as position and orientation of the 
vehicle subject to uncertainty.  

B. Application of SRSM to Rover Mobility Prediction 
In this paper, two key terrain parameters, cohesion c and 

internal friction angle φ, are chosen as uncertain variables. 
These parameters were chosen due to their influence on 
maximum terrain shear strength. These uncertain parameters 
are defined by the following normal distributions:  

φφφ ξσφξσ +=+= μμc ccc ,                    (7) 

where μc and μφ are the means, σc and σφ are standard 
deviations, and ξc and ξφ are iid normal random valuables. 
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The output metrics considered in this paper include vehicle 
position, orientation, and wheel slippage, expressed as second 
order multidimensional Hermite polynomials: 
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where X0(t), …, X5(t) are the unknown coefficient matrices. 
Spectral stochastic analysis [17][18] is then performed 

using the expansion defined in (8) in order to obtain time 
series predictions of the motion path of the rover, and the 
vehicle orientations and wheel slippages.  

 
Fig.2. Confidence ellipse on the predicted motion path of the vehicle 

C. Confidence Ellipse Calculation 
Statistical techniques, such as Monte Carlo methods and 

SRSM, can provide predicted rover path coordinates (x, y) 
under uncertainty. Relevant output statistics such as the mean, 
variances, and covariance can also be calculated. Based on 
these statistics, the motion path (here taken as the mean path) 
can be augmented with ellipses defined by the variances and 
covariance (see Fig.2). The ellipses indicate confidence levels 
for the predicted position on the path. The confidence ellipse 
is drawn from the method presented in [19]. 

Given a sufficient sample size n from Monte Carlo 
methods or SRSM of motion path coordinates xi = [xi, yi]T, a 
sample mean vector  is given as:  

[ ]Tyx,=x                                     (9) 
where x and y are the means. The sample covariance matrix 
S is then determined as: 
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where sx and sy are the sample standard deviations, sxy is the 
sample covariance, and r is the sample correlation index. 

The equation for a confidence ellipse is then formulated as: 
21 )()( CT =−− − xxSxx                        (11) 

where 
)1ln(2 PC −−=                         (12) 

P is the probability, which determines the confidence level of 
the predicted position. 

Then, (11) can be rewritten by substituting (9) and (10):  
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As illustrated in Fig. 2, the principal semi-axes of the 
confidence ellipse for a given probability P are obtained from 
the following relationships:  

yyxx CsasCa ',' ==                    (14) 
where ax and ay denote the major and minor semi-axes of the 
confidence ellipse. s’x and s’y are expressed by:  
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 The orientation of the confidence ellipse with regard to the 
x-y coordinate is defined by the inclination angle α:  
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Fig.3. Vehicle dynamic model as an articulated multibody system 

IV. WHEELED VEHICLE MODEL 
Dynamic simulation of a wheeled rover requires two 

sub-models: a vehicle dynamic model of the rover to obtain 
several values for each state space variable, and a 
wheel-terrain contact model to calculate the interaction forces 
of a wheel on deformable soil at each dynamic simulation step. 
The wheeled vehicle model described in this section has been 
developed and validated in the authors’ previous work [6]. 

A. Vehicle Dynamic Model 
Here, a rover is modeled as an articulated multibody 

system. The vehicle addressed in this paper is assumed to be a 
4-wheeled vehicle, as shown in Fig. 3.  

The dynamic motion of a vehicle for given traveling and 
steering conditions are numerically obtained by successively 
solving the following motion equation: 
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where H represents the inertia matrix of each body, C is the 
velocity depending term, G is the gravity term, v0 is the 
translational velocity of the vehicle, ω0 is the angular velocity 
of the vehicle, q is the angle of each joint (such as wheel 
rotation and steering angle), F0 =[0,0,0]T is the forces at the 
centroid of the vehicle body, N0 =[0,0,0]T  is the moments at 
the centroid of the vehicle body, τ is the torques acting at each 
joint (wheel/steering torques), J is the Jacobian matrix, and 
Fe is the external forces acting at the centroid of each wheel. 
The wheel-terrain contact model, as described in (20)-(22) 
below, calculates each external force. Ne is the external 
moments acting at the centroid of each wheel.  

B. Wheel-Terrain Contact Model 
Wheel-terrain interaction mechanics has been well 

investigated in the field of terramechanics [20][21]. A model 
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for a rigid wheel traveling on deformable soil is shown in Fig. 
4. A wheel coordinate system is defined as a right-hand 
frame; in this system, the longitudinal direction is denoted by 
xw, the lateral direction by yw, and the vertical direction by zw.  

 

 
Fig.4. Wheel-terrain contact model for calculation of wheel forces 

 
The slip ratio (i.e. slip in the longitudinal direction of wheel 

travel) is defined as a function of the longitudinal traveling 
velocity of the wheel vx and the circumferential velocity of the 
wheel rω, where r is the wheel radius and ω represents the 
angular velocity of the wheel: 
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The slip ratio assumes a value in the range from –1 to 1. 
The slip angle expresses the slip in the lateral direction of 

wheel and it is defined as a function of vx and the lateral 
traveling velocity vy, as follows:  

)/(tan 1
xy vvβ −=                          (19) 

Wheel-terrain contact forces, including the drawbar pull Fx, 
side force Fy, and vertical force Fz, can be calculated by the 
following equations [6][21]: 
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where b is the wheel width, σ(θ) is the normal stress beneath 
the wheel, τx(θ) and τy(θ) is the shear stresses in the 
longitudinal and lateral direction of the wheel. The contact 
patch of the wheel is determined by the entry angle θf and the 
exit angle θr. Rb is modeled as a reaction resistance generated 
by bulldozing phenomenon on a side wall of the wheel [6]. Rb 
is a function of the wheel sinkage h. Also, σ(θ), τx(θ), and 
τy(θ) are defined by the following equations [21]: 
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where kc and kφ represent the pressure sinkage moduli, ρ is the 
soil density, n is the sinkage exponent, θm is the maximum 
stress angle, c is the soil cohesion, φ is the soil internal 
friction, jx and jy are the soil shear deformations, and  kx and ky 
are the soil deformation moduli.  

From inspection of the above equations it is obvious that 
the terrain uncertainties addressed in this paper (cohesion c 
and internal friction angle φ) directly affect calculation of the 
normal and shear stresses, and result in uncertainty in 
wheel-terrain contact force calculation. 

 

 
Fig.5. Mobility Prediction Scenario: Slope traversal with zero deg steering 
angles 

TABLE I 
STATISTICS OF UNCERTAIN TERRAIN PARAMETERS 

Parameter Case A: Lunar simulant Case B: Toyoura sand 
(units) Mean Std. Dev. Mean Std. Dev. 
c (kPa) 8.0 1.0 0.08 0.01 
φ (deg) 37.2 4.65 38.0 2.38 

 

TABLE II 
TERRAIN PARAMETERS AND VALUES 

Parameter Value Unit 
 Case A: Lunar simulant Case B: Toyoura sand  

kc 1.71 0.0 - 
kφ 4754.7 1203.5 - 
ρ 1700.0 1490.5 kg/m3

n 1.0 1.7 - 
kx 0.104 0.077 m 
ky 0.031 0.031 m 

V. SIMULATION AND EXPERIMENTAL STUDIES OF 
MOBILITY PREDICTION PERFORMANCE 

In the section, the computational efficiency of Standard 
Monte Carlo (SMC), Latin Hypercube Sampling Monte Carlo 
(LHSMC), and SRSM approaches are compared via 
simulation study. Then, an experimental study of the mobility 
prediction algorithm performance in two different terrains is 
described. The validity of the proposed technique is 
confirmed through the comparison between predicted and 
experimental motion paths of the rover.  

A. Scenario Description 
As shown in Fig.5, the mobility prediction scenario is one 

of a 4-wheeled rover traversing flat, sloped terrain with a 
side-slope angle of 10 deg, while maintaining 0 deg of 
steering angle at every wheel. The rover (see Fig.3) has 
dimensions of 0.44 m (length) x 0.30 m (width) x 0.30 m 
(height) and weighs 13.4 kg in total. Each wheel has a 
diameter of 0.11 m and a width of 0.06 m. The angular 
velocity of each wheel is controlled to maintain 0.3 rad/s.  

The terrain surface of the slope is assumed to be evenly 
covered with two different types of soil: in Case A, the 
surface consists of the lunar regolith simulant [22], whereas 
in Case B, it is covered with cohesionless, Toyoura sand [23]. 
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Uncertainties are represented in two critical terrain 
physical parameters, cohesion and internal friction angle. The 
mean and deviation of these parameters for the two soils of 
interest were determined by manual characterization, and are 
summarized in Table I. (Note that the mean and deviation can 
generally be estimated by engineering approximation, or 
predicted similarity to well-characterized soils.) Other 
parameters for calculation of the wheel-terrain interaction 
forces are summarized in Table II. 

B. Algorithm Flow of Mobility Prediction Method 
Rover mobility is predicted following the flow chart in 

Fig. 1. In this study, the probability distributions due to 
terrain uncertainty include the motion path during rover slope 
traversal, vehicle orientation, and wheel slippage. 

The algorithm flow of the proposed mobility prediction 
method is summarized as follows: 

1. Choose a sample value for the standard normal 
random variables ξc and ξφ , then calculate terrain 
parameters with uncertainty by (7).  

2. Conduct slope traversal simulations over the set of 
uncertain terrain parameters Gi:  
(a) Determine τ such that the steering angle and 

wheel angular velocity are controlled to maintain 
their desired values; 

(b) Derive the external forces Fe acting at each wheel 
from the wheel-terrain contact model of (20)-(22); 

(c) Solve (17) to obtain the rover position, orientation, 
and velocity, then calculate the slip ratio and slip 
angle by (18) and (19). 

3. Return to Step 1 until sufficient data sets of the state 
space X for calculation of the unknown coefficients 
are obtained. Taking the number of model simulation 
trials M to be approximately twice the number of 
unknown coefficients (N+1) has been shown to yield 
robust coefficient calculations [16][17]. 

4. Calculate the unknown coefficient matrices for the 
multidimensional Hermite polynomials using singular 
value decomposition and a regression-based approach.  

5. Formulate a statistically equivalent reduced model as 
in (8) for the output uncertainty, then predict the rover 
position, orientations, and wheel slippages. 

6. Calculate confidence ellipses based on (13) and draw a 
motion path with ellipses for visualization purposes. 

C. Simulation Results and Computational Efficiency 
Simulation results of the mobility prediction using SMC, 

LHSMC, and SRSM are briefly summarized as follows: The 
motion path obtained from SRSM is nearly identical to those 
obtained from SMC and LHSMC. The difference between the 
rover’s final positions, as computed by SRSM and SMC, was 
0.001 m in Case A, and that was 0.002 m in Case B. This 
result confirms that SRSM can provide a statistically 
equivalent representation of the complex system model 
considered in this analysis (i.e. the wheeled vehicle model). 

Table III summarizes the computational time for mobility 
prediction between three approaches. These computations 
were performed on a 1.66 GHz laptop PC. The number of 
simulation runs of SMC was set as n=500, while that of 
LHSMC was n=100 since LHSMC secures more efficient 

sampling than SMC. The computational time of SRSM was 
approximately 71 times faster than that of SMC, and 14 times 
faster than LHSMC. This is due to the fact that SRSM avoids 
multiple runs of the nonlinear model, which results in reduced 
simulation time. Therefore, SRSM significantly improves the 
computational efficiency compared to the other methods.  

For on-board usage of the proposed method, the wheeled 
vehicle model can be simplified as long as it provides 
equivalent performance to the accurate model so that the 
computational time will be reduced further. For example, the 
linear approximation of wheel stress model reported in [7] 
can reduce the complexity of wheel terrain contact model. 

 

TABLE III 
COMPUTATION TIME FOR MOBILITY PREDICTION ANALYSIS 

Method Case A:  
Lunar simulant 

Case B:  
Toyoura sand 

SMC (500 runs) 17526.1 sec 79994.1 sec
LHSMC (100 runs) 3507.2 sec 16232.5 sec
SRSM (2nd order) 245.8 sec 1125.9 sec

 
 

 
Fig.6. Mobility prediction of motion path with confidence ellipses, P = 68% 

(≈ 1σ)  and P = 95% (≈ 2σ) , in Case A (Lunar regolith simulant  
 

 
Fig.7. Mobility prediction of motion path with confidence ellipses, P = 68% 

(≈ 1σ)  and P = 95% (≈ 2σ) , in Case B (Toyoura sand) 

D. Experimental Results and Discussions 
Statistical mobility predictions of the motion paths of the 

rover on two different types of soil are shown in Fig. 6 (Case 
A) and Fig. 7 (Case B) with experimental motion paths.  

The solid black line depicts the experimental motion path, 
which was obtained via laboratory experimentation. The path 
was measured using a motion capture camera with positional 
accuracy of 0.01 m. Three experimental runs were performed 
for each soil. Here a typical result among them is presented 

The predicted motion path of the rover obtained from 
SRSM is drawn as a gray line. Confidence ellipses were 
calculated with two different probabilities, P=68%  (≈ 1σ), 
drawn as black ellipses, and P=95% (≈ 2σ), drawn as gray 
ellipses. These ellipses show the probable rover position 
considering uncertainty in terrain physical parameters. As 
expected, the 1σ confidence ellipses are smaller than the 2σ 
ellipses. The magnitude of the confidence level for mobility 
prediction can thus be “tuned” by the choice of probability.  
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In both cases, the experimental motion path falls within the 
predicted confidence ellipses, and in particular, the 1σ 
ellipses still contain the experimental results. This suggests 
that the proposed method can be used to reasonably predict 
rover motion. Viewed from another perspective, the results 
suggest that the actual (i.e. experimental) terrain parameters 
lie within the assumed ranges. 

Mobility prediction results regarding the rover orientations 
(roll and yaw) and wheel slippage (at the front-left wheel of 
the rover) are summarized in Table IV. The predicted values 
include uncertainty bounds on the 2σ deviations. The 
deviations of the vehicle orientations are negligible in both 
cases, indicating that terrain uncertainty does not have 
significant influence on vehicle orientation in these cases. 

The mean value of the wheel slip ratios are approximately 
0.3~0.4, with small deviations in each case. However, the 
deviations of the slip angles are approximately 25% of their 
mean value. Since the deviation of the lateral wheel slip 
(measured by slip angle) is more significant than that of the 
longitudinal wheel slip (measured by slip ratio), deviation of 
the lateral vehicle position (depicted by the major axis of the 
confidence ellipses in Figs. 6-7) is larger than that of the 
longitudinal vehicle position (depicted by the ellipses’ minor 
axes). Thus, as expected, for the case of slope traversal, 
uncertainty in terrain parameters largely contributes to the 
deviation in the lateral direction of the rover rather than in the 
longitudinal direction.  

TABLE IV 
MOBILITY PREDICTION RESULTS 

Parameter Case A: Lunar simulant Case B: Toyoura sand 
(units) Mean 2σ Dev. Mean 2σ Dev. 

Roll (deg) 10.1 0.00 13.3 0.01 
Yaw (deg) -0.17 0.17 9.58 0.09 

Slip ratio (-) 0.43 0.03 0.29 0.08 
Slip angle (deg) -18.8 3.93 -14.5 4.20 

VI. CONCLUSION 
In this paper, a statistical mobility prediction for planetary 

surface exploration rovers has been described. This method 
explicitly considers uncertainty of the terrain physical 
parameters via SRSM, and employs models of both vehicle 
dynamics and wheel-terrain interaction mechanics.  

The simulation results of mobility prediction using three 
different techniques, SMC, LHSMC, and SRSM, confirms 
that SRSM significantly improves the computational 
efficiency compared to those conventional methods. 

The usefulness and validity of the proposed method has 
been confirmed through experimental studies of the slope 
traversal scenario in two different terrains. The results show 
that the predicted motion path with confidence ellipses can be 
used as a probabilistic reachability metric of the rover 
position. Also, for the slope traversal case, terrain parameter 
uncertainty has a larger influence on the lateral motion of the 
rover than on longitudinal motion. 

Future directions of this study will apply the proposed 
technique to the path planning problem. There, confidence 
ellipses will be used to define collision-free areas, which will 
provide useful criteria for generating safe trajectories. 
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