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Abstract— Multi robot systems are envisioned to play an
important role in many robotic applications. A main prereq-
uisite for a team deployed in a wide unknown area is the
capability of autonomously navigate, exploiting the information
acquired through the on-line estimation of both robot poses
and surrounding environment model, according to Simultane-
ous Localization And Mapping (SLAM) framework. As team
coordination is improved, distributed techniques for filtering
are required in order to enhance autonomous exploration and
large scale SLAM increasing both efficiency and robustness of
operation. Although Rao-Blackwellized Particle Filters (RBPF)
have been demonstrated to be an effective solution to the
problem of single robot SLAM, few extensions to teams of
robots exist, and these approaches are characterized by strict
assumptions on both communication bandwidth and prior
knowledge on relative poses of the teammates. In the present
paper we address the problem of multi robot SLAM in the
case of limited communication and unknown relative initial
poses. Starting from the well established single robot RBPF-
SLAM, we propose a simple technique which jointly estimates
SLAM posterior of the robots by fusing the prioceptive and the
eteroceptive information acquired by each teammate. The ap-
proach intrinsically reduces the amount of data to be exchanged
among the robots, while taking into account the uncertainty
in relative pose measurements. Moreover it can be naturally
extended to different communication technologies (bluetooth,
RFId, wifi, etc.) regardless their sensing range. The proposed
approach is validated through experimental test.

I. INTRODUCTION

Mobile robots systems have been involved in many appli-

cations including museum guide robots, surveillance, plane-

tary exploration, search and rescue [1]. In order to success-

fully accomplish such tasks, the robots are required to jointly

estimate their position and a map model while traveling in

an unknown environment. For this reason, the development

and application of Simultaneous Localization And Mapping

(SLAM) have attracted large attention over the last decade.

While the maturity of SLAM in single robot scenarios is

recognized in many recent works [2], [3], [4], a big research

challenge is to extend these approaches to multi robot

scenarios in order to enhance autonomous exploration and

large scale SLAM. Although improving efficiency, accuracy

and robustness of operation, multi robot systems introduce

several sources of complexity requiring a bigger effort in

designing probabilistic filters for the estimation of the SLAM
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posterior of different robots by fusing the prioceptive and

the eteroceptive information acquired by each teammate.

Compared to a single robot scenario, several challenges

arise, including: 1) distributed posterior estimation from the

available data, gathered by different robots; 2) the influence

of limited bandwidth and sensing range, connected to the

use of unreliable wireless communication channels; 3) team

coordination and need of shared world representation; 4)

complexity and memory requirements in dependence of the

number of robots and map size; 5) intrinsically dynamic

environment. Several techniques for the estimation of SLAM

posterior of a team of robots have been proposed in order

to fuse local maps and information from individual robots

into integrated and shared world representations (further

details can be found in Section II). One crucial point lies

in the assumption about the knowledge of the robots initial

relative locations. If the initial correspondence of robots

locations is assumed to be known, the problem easily extends

from single robot SLAM techniques [5], [6]. However, if

the relative initial locations are not known, a consistent

integration is challenging. In addition, centralized solutions,

in which all the information are transferred to a central node,

that performs computation over the whole team posterior,

are often unlikely since wireless channels are sensitive

to failures and communication among teammates can be

quickly saturated by the large amount of information gath-

ered. As a consequence distributed approaches are required,

relaxing the strong assumption that the whole team has to

remain inside the communication range of the central node.

Distributed estimation allows the robots to build their own

world representation using only local information and the

data gathered by the teammates. Although the computation

remains local, the outcome of the estimation over the map

model should be as shared as possible in order to enhance

team coordination. As an example, task allocation can be

performed to improve cooperative exploration, and it can be

accomplished by a central unit which assigns the tasks to

individuals or managed in a decentralized fashion, but in

both cases it requires a shared representation. Finally the

technique used to solve SLAM is required to be scalable

(in terms of memory and complexity) and robust to dynamic

environments, since the team travels in the same scenario and

each robot should build a consistent map although facing the

teammates that represent moving obstacles.

As witness of the attention paid by the robotic community

to the mentioned challenges, there is a large literature in

the field of multi robot SLAM, which ranges from the

application of Extended Kalman Filter (EKF) [7] to Sparse
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Extended Information Filters [8], manifold representations

[9] and Rao-Blackwellized Particle Filters (RBPF) [10].

Although the last technique is probably the most used for

estimating metric maps in single robot scenarios, few authors

tried to extend this approach to the multi robot posterior

estimation. In such a case the high dimensionality of the state

in the estimation process and the intrinsically centralized

structure of the filter prevents efficient solutions unless ad-

hoc techniques are applied.

We propose an approach to multi robot SLAM based on

RBPF, for a realistic setting in which the relative initial

positions of the robots are unknown and mild assumptions

on wireless communication are considered. Our approach

even applies to the case in which short range communication

technologies (bluetooth, RFId, etc.) are employed. According

to [7], when a rendezvous occurs, the teammates exchange

information, and each robot applies coordinate transforma-

tion in order to have the external data expressed in its own

reference frame. Then Rao-Blackwellized Particle Filters

perform estimation over received data, taking into account

the uncertainty in relative measurements during rendezvous.

In the following section we provide an overview of the

state-of-the-art approaches to multi robot SLAM. In Section

III our approach to RBPF-SLAM is described in deep and

clarified through practical examples. Then in Section IV we

present results from a real test. Conclusions are drawn in

Section V.

II. RELATED WORK

Multi robot SLAM is an active research field and many

efforts were devoted in finding suitable filtering techniques

able to deal with a team of robots performing cooperative ex-

ploration in unknown environments. As mentioned above, the

problem imposes harder constraints than single robot SLAM,

so many authors proposed ad-hoc extensions of the bayesian

framework to adapt it to distributed multi agent estimation. In

order to face the challenge of integrating the information col-

lected by different robots in a consistent representation, early

research works proposed the use of the Extended Kalman

Filter (EKF) [7], [11], [12], to jointly estimate robots and

landmarks posterior included in an augmented state space.

In [7], multi robot SLAM problem is addressed, relaxing

the hypothesis of known initial correspondence. When two

robots sense each other in the communication range, relative

distance and bearing measurements are evaluated in order to

compute the mutual transformation between reference frames

which allows to align the respective independent maps into

a single representation. Since the EKF involves a complexity

which grows quadratically in the state space dimension,

Thrun [8] formulated the landmark-based multi robot SLAM

using the Sparse Extended Information Filter (SEIF), which

constitutes an efficient solution of the SLAM problem in the

information space. SEIF represents the posterior by a sparse

Gaussian Markov random field (GMRF) parameterizing the

multivariate distribution through the information vector and

the information matrix. Taking advantages from the structure

of the filter, SEIF approach can be performed in a distributed

manner, overcoming the non easily decomposable structure

of the EKF. As metric maps are characterized by higher

resolution and allow finer planning and exploration, many

authors proposed to overcome the less detailed topological

representation, by exploiting the idea of sub-map approach in

order to build a graph-like topological map, in which vertices

represent local metric maps and edges describe relative posi-

tions of adjacent local maps. These algorithms are shown to

be extendable to the multi robot SLAM [13]. Unfortunately,

when the number of features in the environment increases,

the computation cost becomes unsustainable.

Another representation of map merging problems is based

on grid maps and feature matching. In a recent work [14],

Carpin borrowed some concepts from image processing,

applying line detection algorithms and Hough transform

to the original metric map. Fox et al. [2] proposed an

algorithm for estimating relative position of pairs of robots

when they are in communication range. One robot uses an

adaptive particle filters to estimate its position in the other

robot’s partial map and, in order to check whether and how

two robots partial maps are overlapped, they construct a

hidden Markov model that predicts observations of a robot

out of the partial map. For the purpose of avoiding false

map merging, the two robots actively estimate their location

and arrange to meet at one rendezvous point. If they fail

to meet, the map fusion hypothesis is rejected, otherwise,

the maps are integrated into a consistent representation.

Exploiting the crucial importance of loop closing and data

association in SLAM, Howard [9] proposed a manifold map

structure that facilitates data association and loop closure

detection without risking map consistency. The advantage

of this methodology is that it postpones the time of data

association decisions until the robots have high confidence.

In [9], this basic approach is applied to multi robot SLAM

by adopting maximum-likelihood estimation algorithm [15]

for the manifold representation. Because of the centralized

processing, the communication issue should be carefully

considered, and many drawbacks arise reducing the potential

number of teammates in the system.

Finally in [10] Rao-Blackwellized Particle Filters is ap-

plied to a multi robot scenario. This work is interesting for

the description of the fundamental difference between known

and unknown initial pose of the robots. Howard [10], after

detailing his solution to the former case, focuses the attention

on the latter, proposing to augment the state space with

other robots trajectories. When two robots meet at occasional

rendezvous, a new instance of the filter is started and each

robot continues to update its filter using its own information

and the data transferred by the teammate using wireless. Al-

though this work is strictly related to the proposed approach,

some limitations reduce its effectiveness. Howard neglected

the noise on relative measurements and assumed for his

approach a stable wireless connection that allows the robots

to exchange every command and measurement from sensors.

A careful study of this technique reveals that the approach is

substantially centralized and each robot uses a fixed particle

set size to perform estimation over an augmented state space,
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although this has a large impact on the consistency of the

map as we underlined in our previous work [16].

III. MULTI ROBOT RBPF-SLAM

We consider the case in which a team of K robots,

each one equipped with laser scanner, pan-tilt camera and

odometric pose estimation, travels in an unknown indoor

scenario, with the primary aim of building a consistent

metric representation of the environment. This representation

should be as shared as possible in order to enhance team

coordination and allow active rendezvous and loop closing

procedures. Moreover we assume that each robot has local

knowledge of the surrounding environment (given by laser

and camera) and can communicate with the teammates within

a maximum distance r. We use a metric representation

since the team is assumed to work in a highly symmetric

environment in which it is tricky to solve the correspondence

problem of a landmark-based representation if no ad hoc

artificial landmarks are added.

A. Approach Overview

The approach we propose is an efficient extension of

RBPF single robot SLAM. Before and after each rendezvous

the robots of the team perform their estimation using Fast-

SLAM, following the path drawn by [17] and [18]. When

a rendezvous occurs, a simple procedure allows to fuse

the information in an effective and distributed fashion. This

procedure can be summarized in three phases:

– Data exchange: robot i receives, from the met team-

mate, the data acquired from the last meeting (or from the

beginning if it is the first meeting between the two robots) to

the rendezvous instant; in order to minimize the data to be

exchanged the robot j communicates only the preprocessed

information containing the laser stabilized odometry and the

corresponding laser scanner measurements.

– Reference frame transformation: from the information

communicated and from relative pose measurements the data

received is suitably roto-translated in robot reference frame.

– Estimation on virtual data: once the data is roto-

translated, it is included in the sensor buffer, as if it was due

to laser and odometric measurements. RBPF estimate SLAM

posteriors from received data, using suitable process models

with the corresponding uncertainty. Finally, after the filtering

of received data is complete, the particles restart from

their poses before the meeting, and continue the estimation

process, according to grid-based FastSLAM.

The approach is detailed in the following subsections.

B. Team Setup and FastSLAM

The robots start from unknown initial poses (relative

position of each robot is unknown too) and they begin to

acquire information from the surrounding environment and

from the prioceptive sensors. While traveling, each robot

collects trajectories and map hypotheses estimated through

RBPF-SLAM. Since the map probability can be computed

analytically given the robot path, it is possible to factorize

the joint probability through Rao-Blackwellization [19]:

p(x1:ti
,mi | z1:ti

, u0:ti−1) = p(m | x1:ti
, z1:ti

)

·p(x1:ti
| z1:ti

, u0:ti−1) (1)

In (1) the state includes the robot trajectory x1:ti
=

x1, x2, . . . , xti
and the map mi, both estimated from the

measurements z1:ti
= z1, z2, . . . , zti

and the commands

u0:ti−1 = u0, u1, . . . , uti−1. The previous equation provides

the basis for single robot grid-based FastSLAM: the particle

filter is applied to the problem of estimating potential tra-

jectories and a map hypothesis is associated to each sample.

Before the first rendezvous, the robot i estimates p(x1:ti
, mi |

d1:ti
) that is the belief of the robot (from the beginning

to the current time step) given the information acquired

d1:ti
= {z1:ti

, u0:ti−1}. Following the framework of Howard,

we build SLAM posterior using stabilized laser odometry

[10]. Stabilized laser odometry increases the accuracy of

odometric pose estimation and it is useful to reduce the

number of measurements processed, discarding, for example,

scans acquired when the robot does not move.

Fig. 1. Single robot FastSLAM before first rendezvous event. Each robot
estimates both trajectory and map hypotheses in its own reference frame.

C. First Rendezvous and Data Exchange

It is worth noticing that we made no strict assumption on

communication between robots nor on their synchronization.

As a consequence each teammate has its own timer and a

rendezvous episode should be denoted using the time stamp

of each robot involved. Without loss of generality we assume

that the rendezvous is between two robots at a time. When

the first meeting between robot i and robot j occurs each

one carries on its own information, respectively included

in p(x1:tij,1
,mi | d1:tij,1

) and p(x1:tji,1
,mj | d1:tji,1

), and

referred to different reference frames placed in the initial

pose of each robot, respectively denoted as Gi and Gj . In

the notation used tij,1 is the discrete time stamp of robot i
(the former of the two indexes), at which it meets robot j
for the first time (identified by the number after the comma).

At the first rendezvous each robot transfers its own piece

of information, respectively contained in d1:tij,1
and d1:tji,1

to the other teammate, using, for example, wireless commu-

nication or other short range technologies (bluetooth, RFId
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etc.). This data can be figured out as a list of odometric

poses with the corresponding laser scan. For the symmetry

of the process and without loss of generality, in the following

subsections we will limit our description to robot i.

D. Reference Frame Transformation

When robot i receives d1:tji,1
, in order to successfully

include this piece of information in its posterior, it has

to represent in Gi the poses contained in d1:tji,1
. In this

context we assume that when the robots meet, they are

able to measure their relative pose and the corresponding

uncertainty using a pan-tilt camera associated to the laser

(line of sight between the teammates is required). For each

robot, the relative pose of the teammate can be obtained from

the relative distance ρij (given by the laser), the angle θij at

which robot i sees the robot j, and the angle θji, at which

robot j observes robot i (angular measurements can be easily

performed by the cameras). From these measurements we

can obtain the relative pose described by the vector pRiRj
=

[ρij cos θij , ρij sin θij , π + θij − θji], and compute the

first-order approximation of the corresponding uncertainty,

expressed by the covariance matrix PpRiRj
= [Pmn], with

m, n = 1, 2, 3, where:

P11 = σ2

ρij
cos2 θij + ρ2

ijσ
2

θij
sin2 θij (2a)

P12 = P21 =
σ2

ρij
− ρ2

ijσ
2

θij

2
sin(2θij) (2b)

P13 = P31 = −ρijσ
2

θij
sin θij (2c)

P22 = σ2

ρij
sin2 θij + ρ2

ijσ
2

θij
cos2 θij (2d)

P23 = P32 = ρijσ
2

θij
cos θij (2e)

P33 = σ2

θij
+ σ2

θji
(2f)

From the knowledge of the relative pose and the final

robots’ poses, respectively [xi, yi, θi] and [xj , yj , θj ], it is

possible to compute the vector describing the relative pose

between Gi and Gj , according to [7] and [11]:

TGiGj
= [T1, T2, T3]

T (3)

where,

T1 = xi + ρij cos(θi + θij)

−(yj sin(θij − θji) − xj cos(θij − θji))

T2 = yi + ρij sin(θi + θij)

+(xj sin(θij − θji) + yj cos(θij − θji))

T3 = π + θi + θij − θji − θj

The first two components of the vector correspond to the

translation to be applied in order to express the poses of robot

j in Gi, whereas the last component provides the rotation

angle. The above described transformation is clarified in Fig.

2, which enlightens the reference frames involved in the

transformation. It is worth noticing that the angle θji and the

final odometric pose of robot j in Gj should be previously

communicated by robot j itself. If ρji is also communicated,

although not strictly necessary, it can be averaged with

ρij allowing, under the hypothesis of independent Gaussian

noise, to reduce the variance of distance measurement to

σ2

ρij
σ2

ρji
/(σ2

ρij
+ σ2

ρji
).

Fig. 2. When a rendezvous event occurs each robot knows its final pose
(respectively [xi, yi, θi] and [xj , yj , θj ]) expressed in Gi and Gj and is
able to measure the relative pose of the teammate. It is possible to attach
a reference frame to the final position of each robot in order to understand
how the overall transformation is the composition of the roto-translation
between the represented reference frames.

Once the stabilized odometry of robot j is roto-translated

into the reference frame of robot i, the latter has all the

necessary information to evaluate SLAM posterior including

received data.

Remark 1: The data received was preprocessed by robot j,

which refined odometry through laser stabilization [10]. Such

a preliminary computation reduces the number of recorded

poses, since outliers or successive poses in which the robot

was stationary are discarded. This fact further shrinks the

communication overhead.

Remark 2: If a wireless communication is active in the

considered scenario, the robots can exchange information

also in the time interval between two meetings. In particular

the robots can share their current poses, which are funda-

mental to plan active rendezvous, once the robots know the

transformation between their reference frame. Notice that

rendezvous remains crucial, since the odometric information

transferred between the robots gradually derives, whereas

when meeting occurs, pose constraints are added as clarified

in the next subsection.
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E. SLAM Posterior Estimation

The aim of the Rao-Blackwellized particle filters is the

efficient estimation of SLAM posterior from noisy measure-

ments. When dealing with multi robot scenarios, the filter

should be applied in a proper way, in order to fuse in a

coherent manner the information carried on by each robot

involved in the rendezvous. Our approach stems from the

observation that a rendezvous imposes an instantaneous con-

straint on relative poses of the two robots. This condition is

similar to the constraint imposed by odometry at successive

steps, that is described through a suitable process model in

the filter.

In our approach, when robot i receives d1: tji,1
from robot

j, it includes these data in the filter from dtji,1
(rendezvous

pose) to d1 (initial pose) as if they were acquired by its own

sensors. In Fig. 3, the initial positions of robot i and j are

S1 and S2, whereas points F1 and F2 are their rendezvous

poses respectively. Therefore, the procedure corresponds to

attach the inverted odometric data (from F2 to S2) to the

initial odometric data carried on by robot i (from S1 to F1).

This piece of information can be used as input to RBPF,

that extract the SLAM posterior from the rough data. When

applying the prediction step from the last pose of i (F1) to

the final pose of j (F2), a proper prediction model must be

considered. While in traditional FastSLAM this probabilistic

model stems from the odometry motion model, in such a

step, it derives from the relative measurement pRiRj
and its

uncertainty (PpRiRj
). The update model remains unaltered

since measurements are still given by the laser. After this

step the filtering process continues using the motion model

since the poses from F2 back to S2 are linked by odometric

constraints. When RBPF end the estimation over the path

of robot j, each particle restarts from its previous pose at

time tij,1 and all particle poses are predicted one step later

to S3. Hence the robot continues the estimation through

RBPF-SLAM, applied to its own measurements, until the

exploration process ends at a generic point F3. During the

Fig. 3. Multi robot RBPF-SLAM. After rendezvous the overall map
and trajectory hypotheses include the information acquired by both robots
involved in the meeting.

estimation over the external data, the robot i processes

the information of the other robot as if it was traveling

backward following the trajectory of the robot j. The surplus

of information d1:tji,1
represents a kind of virtual movement,

since the robot i acquires measurements on the environment

and on the odometric poses of robot j that were not obtained

physically from its own sensors but were observed and

communicated by another robot. After the rendezvous, robot

i posterior p(x1:tij,1
, mi | d1:tij,1

, d1:tji,1
) includes the data

of robot j and both the map and the trajectories are updated

accordingly. Finally we must observe that the approach is

effective since the estimation process is remarkably faster

than the acquisition of new measurements. As a consequence

the information carried on by the other robot are quickly

included in the posterior, preserving the on-line nature of

the estimation process. Details on latencies are reported in

Section IV.

F. Following Rendezvous Events

The procedure described in the previous subsection can

be easily generalized to an arbitrary number of meetings.

After the first rendezvous, each new encounter with the

previously met robot corresponds to a loop closing event,

adding constraints that are introduced in the filter through

a resampling phase that selects the trajectories that best

describe all the information acquired. Moreover, including

virtual measurements from other robots, loop closure can

occur also if the robot revisits places traveled by the met

teammates. In the k-th rendezvous, the robots do not transfer

the data d1: tji,k
but only the piece of information from the

last meeting to the current time stamp, i.e., dtji,k−1: tji,k
.

This is not only a necessity dictated by the limited band-

width, but derives from structural properties of the filtering

process. If the same data is included twice in the RBPF, the

filter interprets this information as the robot traveled twice in

a place that was really visited only once. As a consequence

resampling phases occur although no useful information for

resampling is added. Based on this consideration our method

allows to preserve filter consistency and at the same time

it takes advantage of the small amount of data exchanged

during rendezvous.

We conclude this section observing that when more than

two robots intervene in the estimation process the procedure

described above remains unchanged. The only aspect to be

carefully considered is the imposition of the constraints given

by the odometry, measurements and rendezvous events. In

our implementation we preferred each robot to provide only

the information acquired through its own sensors, regardless

past meetings with other teammates. In this fashion we pre-

serve the simplicity of implementation making the proposed

technique an effective extension of grid-based FastSLAM.

The proposed approach is validated and discussed in

the following Section, in which experimental results are

discussed.
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IV. TEST AND DISCUSSION

In this Section we report the results of the implementation

of our approach in a real scenario. We considered the case

in which two robots travel inside an office-like environment

cooperatively building a map. Experiments were performed

in the corridors and labs of Politecnico di Torino, over an area

of approximatively 200 m2. The test scenario is challenging

since it was performed in an environment with many non

reflective surfaces in presence of people traversing corridors.

The used mobile robots (Fig. 4) are ActivMedia Pioneers

P3-DX equipped with a laser range sensor SICK LMS200,

a pan tilt camera and odometry pose estimation. Moreover a

visual marker is attached to each teammate, and this marker

is endowed with a bar code useful to distinguish the robots.

RBPF-SLAM, performed by each robot, was implemented

applying adaptive resampling technique, proposed by Stach-

niss et al. [20], and stabilized laser odometry, further detailed

in [10]. The map estimated by robot 1 and the corresponding

estimated trajectory (including the pieces of data received

from robot 2) are shown in Fig. 5. The reader is referred to

the same figure for the following description.

Fig. 4. Robots P3-DX used for real test. A bar code marker is used to
distinguish the robots.

The team is firstly deployed in different locations, respec-

tively labeled with S1 and S2. The robots cover the first

piece of trajectory till they arrive in positions I1 and I2,

where the first rendezvous occurs. Once the robots meet, they

measure the relative poses and exchange data using a wireless

communication (based on a client/server architecture). Robot

1 includes in its posterior the external information related to

the path S2 - I2 and then continues its route, traveling in

loop (A) and applying FastSLAM. In the meanwhile robot

2 explores the lab (B) and arrives in position F2. Robot 1

visits room (C) and, once arrived in F1, it finally meets robot

2 for the second time. The data received from robot 2 allows

robot 1 to complete its map, reducing the time required for

exploration and enhancing loop closing. The dual procedure

is applied to robot 2, producing a similar map.

Remark 3: the approach is distributed and for the random

nature of the RBPF-SLAM, the maps built by each teammate

are not exactly equal. On the other hand, the maps only

differ by few cells, preserving the structure of the scenario.

As a consequence our approach allows to build a shared

representation which can be used for team coordination.

Fig. 5. Map estimated through RBPF multi robot SLAM during experi-
mental test at Politecnico di Torino.

Fig. 6 shows the length of the sensor data queue that

should be processed at each time step. The x-axis of the

figure corresponds to physical time. Notice that the two

peaks, that coincide with the instants in which external data

are received from the other teammates, are quickly reduced

by the RBPF. This observation allows us to conclude that,

after a short latency, the estimation process comes back to

its on-line nature. The maximum delay observed, using a

common laptop, was 36 s.

V. CONCLUSION

The present paper proposes an efficient extension of

RBPF-SLAM to multi robot scenarios. Although Rao-

Blackwellized Particle Filters (RBPF) have been demon-

strated to be an effective solution to the problem of single

robot SLAM, few extensions to teams of robots exist, and

these approaches are characterized by strict assumptions on

both communication bandwidth and prior knowledge on rel-

ative poses of the teammates. We relaxed the assumptions of

related works, addressing the problem of multi robot SLAM

in the case of limited communication and unknown relative
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Fig. 6. Length of the sensor data queue that should be processed at each
time step of the real test. The peaks correspond to rendezvous events in
which external data is added to the queue.

initial poses. Our approach allows to jointly estimates SLAM

posterior of the robots by fusing the prioceptive and the ete-

roceptive information exchanged among teammates. RBPF

multi robot SLAM involves the communication of a small

amount of data, while taking into account the uncertainty in

relative pose measurements. Moreover it can be naturally ex-

tended to different communication technologies (bluetooth,

RFId, wifi, etc.) regardless their sensing range. Before and

after each rendezvous the robots of the team perform their

estimation using FastSLAM. When a rendezvous occurs, a

simple procedure allows to enhance information fusion in

an effective and distributed fashion. This procedure can be

summarized in the three phases, respectively called data

exchange, reference frame transformation and estimation on

virtual data. When the filtering of received data is complete,

the particles restart from their poses before the meeting,

and continue the estimation process, according to grid-based

FastSLAM. After the first encounter the robots share similar

(i.e., not exactly equal) representations of the map, up to a

known roto-translation. Moreover the knowledge of the trans-

formation between the reference frame of the teammates,

allows to plan active rendezvous improving map consistency.

The solution is shown to be an efficient and robust solution

to multi robot SLAM and it is further validated through real

test.
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