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Abstract— We present the design and control of a simple
three-link underactuated synthetic wheel biped composed of a
torso and two legs with arc-shaped feet. The equations of motion
are derived and a controller based on feedback linearization
is used to constrain the controllable degrees of freedom and
develop a simple gait. Experimental results show successful
gait generation and relatively good trajectory tracking. The
data on energy consumption indicates a reasonably low cost of
transport, even without design or trajectory optimization.

I. INTRODUCTION

The study of bipeds began at Waseda University with the

development of the statically stable WL-1 in 1967. Later

developments at Waseda led to the first quasi-dynamic (WL-

9DR) and completely dynamic (WL-10DR) bipeds [1]. The

completely dynamic biped [2] employs high-gain controllers

to track trajectories satisfying the ZMP1 condition, developed

by Vukobratovic and Juricic [3]. The ZMP method and

its different interpretations [3], [4], [5], [6] has led to the

development of the most stable biped platforms to date [7],

[8], [9] including the ASIMO line of robots from Honda and

its clones [10], [11].

Many bipeds, such as the Rabbit [12], do not follow the

ZMP criterion for stability. Rabbit is controlled using the

virtual constraint and hybrid zero dynamics method [13]

which creates a single DOF2 system by applying virtual

constraints. The ankle joint of Rabbit is passive and all

other joints are controlled to follow trajectories strictly based

on the angle of the ankle. Any locomotion gait involves

synchronous movement of relevant DOFs of the system and

in this regard the synthetic wheel biped, presented in this

paper, has similarities with Rabbit.

Impedance control has been implemented in a number

of biped platforms [14], [15]. Many bipeds have also been

developed with compliant linkages with the intention of

exploiting the natural dynamics of the system during some

portion of the gait cycle such as the hopping robots by

Raibert [16], and the biped by Pratt [17]. The desire for

compliance also led to the development of WL-14 [18] and

Lucy [19] that incorporate variable stiffness in their drives

with the intention of reducing energy consumption.

Passive Dynamic Walkers (PDW’s) are the most energy-

efficient walking machines requiring no actuation to find

stable gaits, although they suffer from sensitivity to initial

conditions and lack robustness to disturbances. McGeer [20]
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developed a kneed PDW that can walk down slopes with

a periodic gait without feedback control. The disturbance

response of PDW’s was investigated by McGeer [20] using

limit cycle analysis and by Hobbelen, et al. [21] using the

concept of gait sensitivity norm. These concepts have been

used to develop several energy-efficient bipeds with varying

number of actuated joints and passive DOFs [22], [23], fixed

point generation through kinematic constraints [24], as well

as the effect of an upper body [25].

In this paper we propose the design for a new biped robot.

Based on the concept of a self-propelled wheel [26], our

biped promises to provide impact-free motion during walk-

ing. The conceptual design of the biped is provided in section

II. The mathematical model is developed in section III: the

equations of motion are derived and a gait is developed

by imposing constraints. In section IV we present a simple

control design for imposing the constraints and generating

the gait. Experimental results are presented in section V and

Section VI provides concluding remarks.

II. CONCEPTUAL DESIGN

The biped robot design presented in this paper is based

on the concept of a self-propelled wheel, proposed earlier by

Das and Mukherjee [26]. The self-propelled wheel, shown in

Fig.1(a), has three eccentric masses that are constrained to

move along radial spokes 120 degrees apart. The unbalance

of these masses drive the wheel. The mass unbalance can

also be created by continuously changing the relative angular

position of the spokes while keeping the radial distance of the

masses fixed, as shown in Fig.1(b). Our biped robot design

is derived from the design in Fig.1(b) by replacing the three

spokes with unbalance masses with two legs and a torso. In

our design, shown in Fig.1(c), arc-shaped feet are used to

eliminate the need for a continuous rim.

To understand the principle of operation of the biped in

Fig.1(c), consider the scenario where the legs are constrained

to remain symmetric with respect to the vertical and the torso

maintains some fixed angle with the vertical. With the legs

always symmetric with respect to the vertical, the moment

due to the weight of the torso will cause the biped to roll

over the stance leg. As the point of contact with the ground

reaches the toe of the stance leg, the swing leg will have

positioned itself in front of the stance leg such that the point

of contact with the ground can smoothly transition from the

toe of the stance leg to the heel of the swing leg. After the

transition, the swing leg will become the stance leg and vice

versa, and the biped will have completed one step of walking.

To move in the backward direction, the torso will simply lean
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Fig. 1. (a) A self-propelled wheel using unbalance masses, (b) Design
variant of the self-propelled wheel, (c) Conceptual design of biped with
torso

backwards. This will cause the biped to slow down, if it was

moving forward, and eventually reverse direction.

Through proper control design, the biped will avoid impact

with the ground during support leg switching. This will

eliminate the necessity for modeling collision dynamics

which, together with a low number of degrees of freedom,

simplifies the analysis. Our biped design in Fig.1(c) does

not have a complete rim like the wheels in Figs.1(a) and (b).

The functionality of the wheel is, however, maintained by

proper placement of the swing leg and hence the descriptor

synthetic wheel.

It is assumed that each leg of the biped will have a

prismatic joint - this will enable the legs to contract in length

and avoid contact with the ground during the swing phase

while having a limited effect on the dynamics of the system,

allowing us to further simplify the analysis by ignoring the

dynamics of the prismatic joints. The design should also

require very little energy input; ideally a robot of this design

could have zero energy consumption as discussed in [20],

although this has not been a focus of the current design. A

robot of this type could also walk both forward and backward

with little to no change of the controller due to its symmetric

design. Due to these qualities, we feel that the synthetic

wheel design is a good test bed for our controller and a

starting point for our future work in biped design. In the

next section we present the dynamic model of the biped.

III. MATHEMATICAL MODEL

A schematic of the synthetic wheel biped is shown in

Fig.2. It has three DOFs and can be described by the

generalized coordinates: θ , ψ and φ . These angles denote

the angle of the stance leg with respect to the vertical,

the angle of the swing leg with respect to the stance leg,

and angle of the torso with respect to the stance leg,

respectively. The biped has two actuators corresponding to

the generalized coordinates ψ and φ and represents an under-

actuated system.
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Fig. 2. A schematic of the synthetic wheel biped

Using Lagrange’s equations, the dynamics of the system

can be written in the form

M(q) q̈+N(q, q̇) q̇+G(q) = T (1)

where q is the vector of generalized coordinates and T is the

vector of generalized forces, given by the relations

q =





θ
φ
ψ



 , T =





0

τ1

τ2



 (2)

In (1), M(q) is the symmetric inertia matrix, N(q, q̇) is the

matrix of centrifugal and Coriolis terms and G(q) is the

vector of torques produced by the gravitational force. In

(2), τ1 and τ2 are the generalized forces corresponding to

the generalized coordinates ψ and φ , respectively. In the

present model, θ denotes the passive DOF and hence its

corresponding generalized force is zero. The terms M(q),
N(q, q̇) and G(q) are defined as follows

M = [Mi j]3×3
, N = [Ni j]3×3

, G = [Gi]3×1 (3)

where

M11 = It + Ist + Isw

+mt

[

d2
t + 2R(R+(dt −R)cos(θ +φ)− dt)

]

+mst

[

d2
st + 2R(R+(dst −R)cos(θ )− dst)

]

+msw

[

d2
sw + 2R(R+(dsw−R)cos(θ +ψ)− dsw)

]

M12 = It +mt(dt −R)(dt −R+Rcos(θ +φ))

M13 = Isw +msw(dsw −R)(dsw−R+Rcos(θ +ψ))

M22 = It +mt(dt −R)2

M23 = 0

M33 = Isw +msw(dsw −R)2
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N11 = mtR(R− dt)sin(θ +φ)(θ̇ + φ̇)

+mstR(R− dst)sin(θ )θ̇

+mswR(R− dsw)sin(θ +ψ)+ (θ̇ + ψ̇)

N12 = mtR(R− dt)sin(θ +φ)(θ̇ + φ̇)

N13 = mswR(R− dsw)sin(θ +ψ)(θ̇ + ψ̇)

N21 = N22 = N23 = 0

N31 = N32 = N33 = 0

G1 = [mt(R− dt)sin(θ +φ)+mst(R− dst)sin(θ )

+msw(R− dsw)sin(θ +ψ)]g

G2 = mt(R− dt)sin(θ +φ)g

G3 = msw(R− dsw)sin(θ +ψ)g (4)

and mt , mst and msw are the masses of the torso, stance leg

and swing leg; It , Ist and Isw are the mass moments of inertia

of the torso, stance leg and swing leg about their respective

center of gravity; R is the radius of curvature of the feet; dt ,

dst and dsw are the distance of the center of gravity of the

torso, stance leg and swing leg as shown in Fig.2; and g is

the acceleration due to gravity.

The biped described above has three DOFs with two

control inputs τ1 and τ2. In line with our discussion in section

II, we impose the following two constraints on the motion

of the system:
C1 : ψ =−2θ
C2 : α = αd

(5)

where α is the angle of the torso with respect to the vertical

and is defined by the relation

α = φ +θ −π (6)

and αd is a constant. The constraint C1 ensures that the

swing leg is always symmetric with respect to the stance

leg about the vertical3. The constraint C2 ensures that the

torso maintains angle αd with respect to the vertical. The

torques (τ1 and τ2) required to impose these constraints can

be easily computed from (1). The constrained system has one

passive DOF with the following dynamics4, which is derived

from (1)

Mc(θ ) θ̈ +Nc(θ , θ̇ )+Gc(θ ) = 0 (7)

where

Mc = Ist − Isw +mstd
2
st −mswd2

sw

+(mt + 2mst)R
2
− 2R(mstdst −mswdsw)

+mtR(R− dt)cosαd − 2mstR(R− dst)cosθ

Nc = R [R(mst −msw)−mstdst +mswdsw]sinθ θ̇ 2

Gc = [R(mst −msw)−mstdst +mswdsw]g

−mt(R− dt)sinαd g (8)

For any set of reasonable parameter values, it can be verified

that the biped described by (7) will have positive acceleration

3An additional DOF is required to ensure that the swing leg does not
collide with the ground. A prismatic joint is used to provide this clearance
in our experimental hardware. The dynamics of the prismatic joint is not
significant and is therefore neglected in the present analysis.

4These dynamics are referred to as the zero dynamics [27] of the system.

θ̈ for positive angle αd , and vice versa. In reality, however,

the magnitude of θ̇ will not grow unbounded but reach a

maximum due to friction and damping effects that have not

been modeled.

IV. CONTROL DESIGN

The synthetic wheel biped rolls on its stance leg if the

constraints in (5) are satisfied. When the point of contact

with the ground reaches the toe of the stance leg during

forward motion, or heel of the stance leg during backward

motion, the stance and swing legs can be interchanged such

that the biped can walk by rolling alternately on its two feet.

In this section we present our control design for imposing

the two constraints in (5). To this end, we first define the

new set of generalized coordinates

q̄ =





θ
v1

v2



 ,
v1 = α −αd

v2 = 2θ +ψ
(9)

where αd is the desired value of the angle of the torso with

the vertical. The original generalized coordinates ψ and φ
are related to the new coordinates v1 and v2 according to the

following relations, which can be derived from (9)

ψ = v1 −θ +π +αd

φ = v2 − 2θ
(10)

Substituting (10) into (1), we obtain the dynamics of the

system in terms of the new generalized coordinates as follows

M̄(q̄) ¨̄q+ N̄(q̄, ˙̄q) ˙̄q+ Ḡ(q̄) = T (11)

where M̄, N̄ and Ḡ have the same dimensions of M, N and

G, respectively, and

M̄11 = Ist − Isw+ d2
stmst − d2

swmsw − 2dstmstR

+ 2dswmswR+(mt + 2mst)R
2 + 2mst(dst −R)Rcos(θ )

+mtR(−dt +R)cos(αd + v1)

M̄12 = It +mt(dt −R)2 +mtR(−dt +R)cos(αd + v1)

M̄13 = Isw +msw(dsw −R)2 +msw(dsw −R)Rcos(θ − v2)

M̄21 = mtR(−dt +R)cos(αd + v1)

M̄22 = It +mt(dt −R)2

M̄23 = M̄32 = 0

M̄31 =−Isw −msw(dsw −R)2 +msw(dsw −R)Rcos(θ − v2)

M̄33 = Isw +msw(dsw −R)2

N̄11 =−2msw(dsw −R)Rv̇2 sin(θ − v2)

+ θ̇(mstR(−dst +R)sin(θ )+msw(dsw −R)Rsin(θ − v2))

N̄12 = mt(dt −R)Rv̇1 sin(αd + v1)

N̄13 = msw(dsw −R)Rv̇2 sin(θ − v2)

N̄21 = N22 = N23 = 0

N̄31 = N32 = N33 = 0
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Ḡ1 =−dstmst sin(θ )+mstRsin(θ )

+ dtmt sin(αd + v1)−mtRsin(αd + v1)

+ dswmsw sin(θ − v2)−mswRsin(θ − v2)

Ḡ2 = dtmt sin(αd + v1)−mtRsin(αd + v1)

Ḡ3 = dswmsw sin(θ − v2)−mswRsin(θ − v2) (12)

The generalized force corresponding to θ in Eq. (11) is

zero and this allows the elimination of θ̈ from the two

equations corresponding to the generalized coordinates v1

and v2. The reduced-order equations have the form

M̂(q̄) ¨̂q+ N̂(q̄, ˙̄q) ˙̂q+ Ĝ(q̄) = T̂ (13)

where M̂ ∈ R2×2, N̂ ∈ R2×2 and Ĝ ∈ R2×1 are functions of

all three generalized coordinates θ , v1 and v2, and

q̂ =

[

v1

v2

]

, T̂ =

[

τ1

τ2

]

(14)

Eq. (13) represents a completely actuated system and we use

feedback linearization to design our controller as follows

T̂ = N̂(q̄, ˙̄q) ˙̂q+ Ĝ(q̄)− M̂(q̄)(Kd
˙̂q+Kp q̂) (15)

where Kd and Kp are diagonal positive-definite matrices of

dimension two. Indeed, substitution of (15) into (13) results

in
¨̂q+Kd

˙̂q+Kp q̂ = 0 (16)

which implies q̂ → 0 as t → ∞. From the relations in (14)

and (9) it simply follows that

α → αd , ψ →−2θ (17)

as t → ∞, i.e., the constraints in (5) are satisfied.

Eq. (17) describes the behavior of two of the three DOF of

the biped as it rolls on its stance leg. The behavior of the third

DOF, namely θ , depends on the choice of αd - it will have a

positive acceleration for positive αd and negative acceleration

for negative αd . This follows from our discussion in section

III where friction and damping terms were not modeled. In

reality, θ will accelerate and reach a maximum velocity due

to friction and damping effects. The value of θ will however

remain bounded at all times since it will be reset each time

the stance and swing legs are interchanged.

The stability of the biped can be studied from the evolution

of the states v1 and v2. These states are continuous during

the interchange of the feet and therefore it can be shown

that the synthetic wheel biped is a hybrid system with an

asymptotically stable subsystem of dimension two, the proof

of which is omitted for brevity.

In section III we derived the equations of motion of our

biped using generalized coordinates that were convenient.

The nonzero generalized forces corresponding to these coor-

dinates, τ1 and τ2, are however different from those in our

experimental hardware. In our biped platform, two actuators

are placed at the hip: one controls the angle between the torso

and the stance leg and the other controls the angle between

the torso and the swing leg. We denote the torques produced

by these actuators as τst and τsw and the corresponding

generalized coordinates as γst and γsw. The angles α , γst

and γsw form a complete set of generalized coordinates and

are related to the coordinates in section III by the following

forward and inverse relations

α = θ +φ −π
γst = π −φ

γsw = π −φ +ψ
⇒

θ = α + γst

φ = π − γst

ψ = γsw − γst

(18)

Since the virtual work [28] is the same in both coordinates,

we can write

τst δγst + τsw δγsw = τ1 δφ + τ2 δψ (19)

On the other hand, we get from (18)

δφ = −δγst

δψ = δγsw − δγst
(20)

Substitution of (20) into (19) gives

τst =−(τ1 + τ2), τsw = τ2 (21)

Equations (15) and (21) together determine the torques to be

applied by the motors in our biped platform for satisfying

the constraints in (5).

V. EXPERIMENTS

A. Hardware Description

We designed and fabricated our synthetic wheel biped

based on the schematic in Fig.2 but used paired legs to

avoid lateral instability (see Fig.3). The inner paired leg has a

fixed length but the outer paired leg has prismatic joints that

increase leg length in the stance phase and and decrease leg

length in the swing phase. The prismatic joints are not used

for propulsion; their sole purpose is to provide foot clearance

to the swing leg. In the vertically upright configuration, with

both legs on the ground, the biped stands 1.09 m tall. The

main structural material of the biped is 6061 Aluminum. The

kinematic and dynamic parameters of the biped are provided

in Table I.

Fig. 3. The synthetic wheel biped developed at Michigan State University
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TABLE I

KINEMATIC AND DYNAMIC PARAMETERS OF SYNTHETIC WHEEL BIPED

Kinematic parameters

Length (m) Foot radius, R (m) Foot arc, β (deg)

Inner leg 0.635 0.635 22.5

Outer leg 0.635 0.635 22.5

Torso 0.457 - -

Dynamic parameters

Mass (kg) Inertia (kgm2) d in Fig.2 (m)

Inner leg 1.64 0.094 0.285

Outer leg 3.64 0.128 0.355

Torso 11.87 0.198 0.307

The robot has four 24 Volt DC servo motors: two of them

(Maxon RE40, 150W) are located at the hip and control the

angle of the stance leg and swing leg with respect to the

torso; the other two (Faulhaber 3243 CR, 26.3W) provide

simultaneous extension and contraction of the outer paired

legs. Each hip drive is connected between the torso and a leg

through a 43:1 planetary gearhead (Maxon 42C) and a final

2:1 helical gear drive. The leg extension motors have a 3.71:1

planetary gearhead (Faulhaber 38/1) and are connected to the

bottom part of the leg through a 4.72 turn/cm ACME screw

drive. The leg extensions ride on linear bearings for a smooth

action.

The motors are driven by 4 digital motor drives

(DZRALTE) donated by Advanced Motion Controls of Ca-

marillo, CA. The hip joint drives are programmed to operate

in current-control mode, requiring a +/-10 Volt DC analog

signal proportional to the desired current or torque. The

leg extension motors are run in a position control mode,

requiring a +/-10 Volt DC analog signal proportional to the

desired position.

Our biped relies on accurate absolute angle measurement

of the torso to operate. To measure this, we have used one

axis of an Intersense Inertiacube2+ 3D inertial sensor. This

can provide torso angle data with an angular resolution of

0.01 degrees at a rate of 180 Hz. All of the motors have

500 count per turn optical incremental encoders (Agilent

HEDS-5500) for position measurement. To simplify hip

angle measurement, we have added encoder counter chips

(Avago HCTL-2017) to the hip encoders. These allow our

robot to easily determine the absolute position of the legs

through the use of digital inputs on our data acquisition

board.

The robot is controlled using a 12 Watt embedded com-

puter (Winsystems EBC-855) running a C program on a

Linux operating system. Data acquisition is provided through

a PC104 format data acquisition board (PCM-MIO), also

made by Winsystems. This system is capable of reading

all of the sensors that we need while providing plenty

of computational overhead, 802.11g wireless and Ethernet

connectivity.

B. Experimental Results

The synthetic wheel biped in Fig.3 has no preferential

direction of motion. With reference to Fig.2, it can walk in

the direction of the positive x axis as well as negative x axis.

To make the biped walk in the direction of the negative x axis,

the desired angle of the torso with respect to the vertical was

set to a negative value, equal to αd =−1.5 degrees. Since the

torso has a large mass (≈ 70% of total mass - see Table I), a

small torso angle is sufficient to cause the biped to walk. The

biped was programmed to walk with the maximum step size.

Since the biped was walking in the direction of the negative

x axis, the stance and swing legs were interchanged when the

point of contact of the stance leg with the ground reached

the heel, i.e., when θ =−β/2 =−11.25 degrees (see Table

I).

0
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Fig. 4. Plots of angles subtended by the torso and the inner and outer legs
with respect to the vertical.

The experimental results are shown in Fig.4 for arbitrary

initial conditions. This figure has three plots. One of the plots

show the variation in α with time. This plot indicates that

α oscillates around the desired value of αd with a small

amplitude of approximately 2 degrees. The other two plots

show the angle of the legs with respect to vertical while the

vertical dotted lines indicate the times when stance and swing

legs are interchanged. In the first time interval, the outer leg

is the stance leg (ost) and the inner leg is the swing leg

(isw). After the first interchange, the outer leg becomes the

swing leg (osw) and the inner leg becomes the stance leg

(ist). The plots of the leg angles show a small error in the

positions of the swing leg at the time of switching as well

as a small error in achieving a symmetric gait. These errors

can come from the non-linear unmodeled dynamics of the

system, limitations in applying high torques on the system,

as well as the ignored dynamics of the prismatic joints.

The total power required to walk at 0.45m/s averages

55.4W , corresponding to a total specific cost of transport

(energy used/[weight ∗distance traveled], Cet ) of 0.73. Total

power was determined by measuring the battery voltage and

amperage using a 0.2 ohm current resistor and external data

acquisition system at 500 Hz. By subtracting the energy

required to run our computers and controllers, we determined

a mechanical energy efficiency (Cmt ). The power required to

run the motors while walking averages 26.6W , corresponding
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to a mechanical energy efficiency of 0.35. This also includes

the energy required to run the prismatic joints, which are both

inefficient mechanisms and driven using high gains without

attention to energy consumption. The power consumption

without the leg extension motors averages 13.4W , corre-

sponding to a cost of transport of 0.18. A comparison of

the robot’s energy consumption to a number of other robots

as well as a human walking is shown in Table II.

A video of our biped robot walking down a corridor will

be shown at the conference.

TABLE II

ENERGY CONSUMPTION OF BIPEDS

Cet Cmt

Robots1 MSU Synthetic Wheel Biped 0.73 0.35/0.18
Asimo 3.2 1.6

TU Delft Denise 5.3 0.08
MIT Spring Flamingo 2.8 0.07

Cornell Collins 3D 0.20 0.055
McGeer Dynamite - 0.04

Humans Walking 0.2 0.05

1 Values found in [23] and [29]

VI. CONCLUSIONS

In this paper, we presented the control and design of a

three-link underactuated synthetic wheel biped. Our design is

based on the concept of a self-propelled wheel which enables

the biped to walk forward and backward while avoiding

impact during step transition. A controller based on feedback

linearization was implemented on the biped. Experimental

results show relatively good trajectory tracking leading to a

stable gait with low mechanical cost of transport. Our future

work will establish stability of the hybrid system described

by the biped robot and focus on mechanical design and

trajectory optimization for an energy efficient gait.
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