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Abstract— In this paper we analyze the problem of discrim-
ination of gases with mobile robots. Previously, it has been
shown that the conditions in which data is collected heavily
influence the characteristics of the signal to be identified. As
a result, the already difficult task of selecting features which
characterize a gas is made more challenging by the absence of
a steady state response. This is often due to the movement of
the robot, and/or the physical properties of the environment,
e.g., turbulent airflow creating patches and eddies in the plume.
In this work we compare two approaches for feature selection
which are able to consider explicitly the information on the
experimental setup and optimize the subset of features used
in the recognition process. The approaches are tested on a
large data set collected with a mobile robot moving in different
environments (outdoors and indoors). The results show that
the classification performance is improved resulting in a higher
average accuracy and lower variance in the accuracy across the
different experimental setups.

I. INTRODUCTION

The ability to discriminate and identify gases is important
for mobile robot applications rely on gas detection and
include search and rescue and environmental robotics. This
is especially the case when sensor technologies such as tin
dioxide semiconductors are used as they are intrinsically
partially selective and display cross sensitivities to other
substances within the same gas family [1]. With these types
of sensor technologies are employed, discrimination becomes
particularly relevant for adjacent mobile olfactory tasks, such
as source declaration [2], odour based navigation [3], [4] and
gas distribution mapping [5] particularly when deployment
in real world settings must contend with the presence of
multiple gaseous agents.

Discrimination of gases using an array of partially se-
lective semiconductor gas sensors presents a number of
challenges that specifically relate to mobile robotics. One
challenge deals with the extraction of features which cor-
respond to the dynamic properties of the signal response,
as steady responses are seldom reached due to the move-
ment of the robot as well as the physical properties of
the environment (e.g. patches and eddies due to turbulent
airflow) [6]. This particular fact makes the classification of
gases with a mobile robot, in which the array of sensors is
directly exposed to the environment, a different problem than
classification of odours when the array is in a chamber with
controlled humidity, temperature and sampling procedure.
While the related works concerning the classification of
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gases with a static electronic nose is dense [7] only few
works have addressed the classification of odours based
uniquely on the transient [6], [8], [9]. Previous work has
shown that it is possible to use a set of standard feature
extraction tools to obtain information on the dynamic part
of the signal [6]. When the sensors are used on a mobile
platform, however, it has also been shown that not only is
the information about the gases present in the feature set, but
also present is the intrinsic information about how the robot
is interacting with the environment [10]. Indeed it is visible
in Figures 2 and 3 how a change in the orientation in which
the robot sweeps the environment impacts the shape of the
collected signal significantly. Ultimately, for discrimination
on a mobile robot to be generic, it is necessary to select a
set of features which are independent of the experimental
setup. In this way, we can enable the possibility to train
a mobile robot on a specific gas in one environment and
deploy the robot in another environment having different
properties and/or having different interaction with the plume.
Indeed this ability to select features which are independent
of the experimental setup is not only important for mobile
olfactory discriminating robot but also for other fields within
mobile robotics characterized by multivariate sensor data,
and differing environmental conditions between training and
deployment.

The general approach we consider in this paper for dealing
with the above problem is to extract features from the sensor
signals and select features that show regularity across the
experimental setups while providing enough discrimination
between different analytes. This approach differs from other
dimensionality reduction methods that are based on project-
ing the original feature space to a lower dimensional one in
that in the proposed approach we do not only rely on the
structure of the data (PCA, KPCA) or the label information
(LDA, KDA), rather we inject into the system some auxiliary
information that comes from the knowledge on how the data
set has been constructed. We apply two different approaches
for feature selection. One approach is a filter approach in
which we rank all the features according to a score and we
select the first features in the ranking. The other approach is
a wrapper approach, in which the different features subsets
are evaluated using the same classifier that then is used to
perform the final identification. We validate our approach
on a dataset composed of experiments carried out in five
different setups. A five fold cross validation is performed
where in every fold data from one experimental setup is left
out for validation and only data from the four other setups
are used for selecting features and training the classifier. In
this way we evaluate the ability of our system to perform
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well in a different configuration than the one on which it
has been trained.

The remainder of the paper is organized as follows:
Section II presents briefly the pattern recognition algorithm,
Section III gives a description of the general feature selection
problem as well as explains the proposed algorithms and
the main contribution of this work, Section IV describes
the different experimental setups, Section V presents the
results and finally Section VI summarizes the paper with
a discussion and future works.

II. THE PATTERN RECOGNITION ALGORITHM

The pattern recognition algorithm consists of baseline
subtraction, signal segmentation, feature extraction, feature
selection and classification. The baseline is the value that a
gas sensor gives as output when it is exposed to clean air.
This value depends on temperature, humidity and long/short
term drift [1]. The baseline is subtracted from the output
value of the sensors using a differential baseline subtraction.
The baseline value is measured for 60 s at the beginning
of every experiment, when the gas source is closed and
the robot is still. After performing baseline subtraction the
signal is smoothed using an average filter of dimension 5
(samples, corresponding to 4 s at a sampling frequency of
1.25 Hz) in order to suppress the noise due to sampling
and quantization. The smoothed signal is then segmented
into three different phases, namely baseline, rise and decay
according to the value of the first derivative. Note that the
steady state response is never reached in our experimental
sessions. The segmentation procedure can be easily explained
using a finite state machine as shown in Figure 1.

Fig. 1. Finite State Machine that illustrates the segmentation algorithm.

In this figure the first derivative is denoted as ds/dt and the
threshold for the rise and decay are THR R and THR D
respectively. Two different thresholds are needed since the
rise and decay phase are described using a first-order model
and the time constant for the rising phase is smaller [11].
A complete response to an patch is considered to be the
ensemble of a consecutive rise and decay phase. This isolated
response is passed to the feature extraction module that fits
a second degree polynomial to the points in the response.
The choice of the polynomial degree is due to the similarity
of the shape of an isolated sensor response with the one of
a parabola (second order polynomial). The feature vector is
built by concatenating the 3 coefficients obtained by fitting
each of the five sensors, obtaining a 15 dimensions vector.
The dimensionality of the feature vector is then reduced

selecting one subset of the feature using one of the two
proposed approaches described in Section III. Finally, the
reduced feature vector is classified using a multi-class (3
classes were considered, one for each gas) Support Vector
Machine (SVM) with Gaussian kernel, constructed using the
one-vs-one approach [12].

III. THE FEATURE SELECTION PROBLEM

In general with data from gas sensors arrays, the sensor
responses are highly correlated and therefore the features
contain redundant information, which needs to be removed
with further processing. If redundant or noisy information
is not removed before trying to learn a model, the problem
of the Curse of Dimensionality [13] may arise. This refers
to the fact that for high-dimensional spaces it is difficult
to collect enough samples to attain a high enough density
in order to obtain a valid estimate for a function or a
discriminant. The most common way of dealing with this
problem is to reduce the dimensionality of the feature space
by either projecting the original N dimensional space into a
M dimensional one where M < N (feature extraction), or
selecting M out of the N original features (feature selection).
In this work we consider a feature selection approach able
to select the features that provide discriminative power while
independent on the experimental session. Feature selection
methods proposed in literature fall into two main categories,
the filter approaches and the wrapper approaches [14]. The
filter based methods produce a ranking of the features based
on an optimality criterion and then select the first M features
in the ranking, where M can be arbitrarily chosen. Various
optimality criteria for filter methods have been proposed
in literature where the most common are linear correlation
criterion and information theoretic ranking criterion [14].
The latter rely on an estimation of the mutual information
between each feature and the labels vector. The mutual
information, I(X,Y ), in between two random variables X
and Y can be calculated according to the following formula:

I(X,Y ) =
∫
Y

∫
X

P (X,Y ) log
P (X,Y )
P (X)P (Y )

dXdY (1)

The mutual information is a quantity that measures the
mutual dependence of the two variables. It is lower bounded
by the value zero, obtained in case the two variables are
independent and upper bounded by the entropy of one of the
two random variables in case they are coincident.

Wrapper methods consist in using the prediction perfor-
mance of a given classifier to assess the relative usefulness
of subsets of variables. Since the number of possible fea-
ture subsets of N features is 2N , an exhaustive search is
unfeasible even for small N . Therefore wrapper algorithms
use a search heuristic to perform a partial exploration of the
feature subsets space. The two simplest search strategies are
Forward Selection and Backward Elimination. In Forward
Selection the algorithm starts from the empty set of features
and at every iteration adds the feature that gives the greatest
improvement in classification performance. In Backward
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Elimination, the search starts from the full feature set and at
every iteration the feature that causes the smaller degradation
in performance is removed. Notice that, especially in the first
iterations of the backward elimination, when the number of
features included in the subset is large, removing a feature
is likely to either increase (or not degrade) the performance.
The stopping criteria for both algorithms is either when the
desired number of features is achieved or when a drop in the
classification performance is obtained.

In this work we propose two different feature selection
methods, one that belongs to the filter family and one that
belongs to the wrapper family. Both approaches are aimed
at selecting features that are at the same time discriminative
and not heavily dependent on the experimental setup. For
the filter approach, we calculate a score for each feature f
according to the following formula:

γ(f) =
I(f, S)α

I(f, C)
(2)

where S is the experimental setups vector, C is the analyte
labels vector, I is the mutual information between two
random variables and α is a parameter that modulates the
relative importance of the two factors. The best features in
the set have the smallest values for γ. It is important to
notice that for α = 0, the expression degenerates to γ(f) =
I(f, C)−1 and therefore we would select the features with
the highest mutual information with respect to the class vec-
tor, that is equivalent to the traditional information theoretic
ranking criterion. For increasing values of α we tend to prefer
features that do not carry any information about the experi-
mental setup and therefore are more robust to changes in the
environment or in the moving strategy of the robot. The joint
and marginal distributions (P (f, C),P (f, S),P (f),P (C) and
P (S)) used in the calculation of the mutual information are
estimated using histogram techniques.

In the wrapper approach we propose a modification to the
Backward Elimination algorithm. Indeed one of the weak
points of the Backward Elimination algorithm is that many
features would be good candidates for elimination since the
performance of the subsets of the remaining features does
not drastically change. Rather than perform an uninformed
choice on which feature to eliminate (since they are equiva-
lent with respect to our criterion), we isolate the features
which obtain a comparable classification accuracy. These
features are then ranked according to the mutual information
with respect to the experimental setup and the highest ranked
feature is permanently eliminated.

The algorithm can be described by the following four
steps:

1) Perform an 8-fold cross validation using the whole
feature set in order to estimate the hyperparameters C
and σ for the SVM classifier with Gaussian kernel (the
classifier used in the pattern recognition algorithm).

2) Given that the current feature subset contains N fea-
tures (in the beginning N is the total number of
features), consider all the possible subsets containing

N−1 features and calculate the classification accuracy
for each of them.

3) Select all the features that obtained the best per-
formance with a certain tolerance ε and order them
according to the mutual information with respect to
the experimental setup.

4) Remove permanently the feature with the highest mu-
tual information with respect to the experimental setup.
If the desired number of features has been reached then
stop, otherwise go back to point 21.

It should be noted that the classifier chosen to select
features with a wrapper approach would bias the choice
of the features. Therefore it is preferable to use the same
classifier that will be used for the final identification. Since
the feature selection procedures requires O(N2) training
sessions (where N is the number of features), the classifier
should be chosen carefully as to not incur a computationally
intractable procedure. The SVM in this case has been chosen
since its training can be expressed as a convex optimization
problem and therefore solved efficiently.

IV. EXPERIMENTAL SETUPS

The robot used in the experiments is an ATRV-JR all
terrain robot equipped with the Player Robot Device Inter-
face [15]. Player provides both the interface to the sensors
and the actuators, and high level algorithms to address
robotic tasks such as localization (amcl driver) and navi-
gation (vfh and wavefront drivers). The robot is equipped
with an electronic nose, an actively ventilated aluminum tube
containing an array of five metal oxide gas sensors, mounted
in front of the robot at a height of 0.1 m on the ground. The
sensors present in the array are listed in Table I together with
their target gases.

Model Gases Detected Quantity
Figaro TGS 2600 Hydrogen, Carbon Monoxide 2

Figaro TGS 2602 Ammonia, Hydrogen Sulfide, VOC
(volatile organic compound)

1

Figaro TGS 2611 Methane 1

Figaro TGS 2620 Organic Solvents 1

TABLE I
GAS SENSORS USED IN THE ELECTRONIC NOSE.

The experiments have been performed in three different
locations using four moving strategies which attempt to vary
the interaction of the robot with a possible plume. In all
experiments the robot was moving with a speed of 0.05 m/s.
The gas source was a cup full of the analyte placed on
the ground. The first location that has been considered is
a large closed room in which the robot followed a sweeping
trajectory with two orthogonal orientations that we name N-S
and E-W. Figures 2 and 3 provide a graphical representation
of the two paths followed by the robot together with the
signal collected during two experimental runs. The second

1The choice of performing the hyperparameters selection only with the
full feature set is an heuristic to reduce the computational burden.
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Experimental Location Moving Number
Setup Strategy of Runs

1 Large Room Sweep N-S 15

2 Large Room Sweep E-W 15

3 Classroom Spiral 18

4 Classroom Spiral with Stops 72

5 Courtyard Spiral with Stops 16

TABLE II
SUMMARY OF THE EXPERIMENTAL CONDITIONS IN WHICH THE DATA

HAVE BEEN COLLECTED.

set of experiments has been carried out in a small classroom
whose door has been left open. In this environment the robot
performed two different types of spiral path: a spiral without
any stops from the beginning to the end of the experiment
and a spiral with stops when an odour is detected, at
which point the robot stands static until enough information
is obtained to perform a classification. The rooms were
ventilated after each experimental run. The last experimental
location was a courtyard with an uneven grass surface. In
this case the robot performed a spiral movement stopping
when a gas is detected similar to the one performed in
the classroom. Figure 4(c) is a snapshot taken during an
experiment in the courtyard. Table II summarizes the five
different experimental configurations. The experiments have
been repeated multiple times (more than 100) with three
different substances, ethanol, acetone and isopropyl, that are
the target substances for our classification problem. During
one experimental run multiple responses were collected, for
a total of 592 responses evenly distributed among the three
analytes.

Fig. 2. Upper: Example of experiment in which the analyte used was
isopropyl. The robot follows a N-S sweeping trajectory frequently entering
and exiting the plume. The arrow shows the average direction and magnitude
of the wind flow. The square indicates the position of the source. The solid
line is the trajectory of the robot. The circles are locations in which we
obtained a sensor response. Lower: The actual sensor readings collected
during the run.

V. RESULTS

The algorithms proposed have been evaluated performing
a 5-fold cross validation where every fold has been formed
by taking all the samples collected in a specific experimental
setup. This evaluation scheme has been chosen in order to

Fig. 3. Upper: Example of experiment in which the analyte used
was ethanol. The robot follows a E-W sweeping trajectory and remains
continuously in the plume. The arrow shows the average direction and
magnitude of the wind flow. The square indicates the position of the source.
The solid line is the trajectory of the robot. The circles are locations in which
we obtained a sensor response. Lower: The actual sensor readings collected
during the run.

analyze the ability of the system to generalize and perform
well in an unknown experimental setup. Figure 5 gives the
classification performance obtained selecting features with
the proposed filter approach with α = 10 and with α = 0
(based only on the mutual information between the features
and the labels). The optimal value of α has been iteratively
evaluated.

The error bars display the average performance across
the 5 folds together with the standard deviation. We can
notice that the proposed filter clearly outperforms the filter
based solely on the mutual information with the classes.
Moreover the proposed approach obtains in average a smaller
standard deviation for the performance across the fold. This
is important because it shows how the feature subset obtained
with the proposed filter are more robust with respect to
variations in the data.

Fig. 5. Error bars displaying average and standard deviation of the
performance of the classifier obtained selecting the features using the filter
approach. The lines represent the performance of the proposed approach
with α = 10 and α = 0. Notice that α = 0 is a filter based only on the
mutual information between each feature and the labels vector.
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(a) The robot with the electronic
nose and the anemometer

(b) The robot in the large room (c) The robot in the courtyard

Fig. 4. The robot and snapshots from two experimental runs in different locations.

Figure 6 shows the classification performance obtained by
the proposed wrapper approach compared with a wrapper
that in case of ties selects to eliminate the first feature in
the list. In the proposed approach features are considered
equally ranked if the classification performance differs by
less than ε = 0.2% (given that we have 592 samples, each
sample contributes for 0.16%). Also in this case we can see
how the proposed approach outperforms the traditional one
both with a higher average performance and with a lower
standard deviation for the performance across the folds.

Fig. 6. Error bars displaying average and standard deviation of the
performance of the classifier obtained selecting the features using the
wrapper approach. The solid line represents the performance of the proposed
approach while the dashed line represents the performance of a wrapper that
eliminates the feature that when removed obtains the highest classification
performance. In case of a tie the wrapper eliminates the first feature of the
list.

Comparing the performances of the two proposed ap-
proaches we can notice that the number of features yield-
ing the best classification performance is 9-10. Also, the
wrapper outperforms the filter both for average classification
performance and small variance in between the folds. This
has to be expected since the wrapper approach scores the
features according to the performance of the target classifier
(in contrast with the filter approach that uses a score that
is independent from the classifier). The main drawback of
the wrapper approach is that it is computationally more
expensive since it requires a training of the classifier for

Sensor Filter Wrapper
TGS 2600 (1) 7.65 - 9.81 6.52 - 8.55

TGS 2620 7.92 - 10.07 10.38 - 12.42

TGS 2611 5.59 - 7.74 6.25 - 8.28

TGS 2602 4.65 - 6.81 4.12 - 6.15

TGS 2600 (2) 8.79 - 10.94 7.65 - 9.68

TABLE III
95% CONFIDENCE INTERVALS FOR THE AVERAGE RANKING OBTAINED

BY THE FEATURES GROUPED BY SENSOR.

Coefficient Filter Wrapper
a 2.66 - 3.57 6.46 - 7.62

b 8.34 - 9.25 4.02 - 5.18

c 11.62 - 12.53 11.78 - 12.94

TABLE IV
95% CONFIDENCE INTERVALS FOR THE AVERAGE RANKING OBTAINED

BY THE FEATURES GROUPED BY PARABOLA COEFFICIENT.

every feature subset to be evaluated.
To further analyze the results it is also possible to examine

the regularity between the ranking of the features across the
different sensors and the coefficients of the parabola that
we fit to the sensor response. In order to do this we group
the features with respect to either the sensor (5 groups)
or the coefficient to which they belong (3 groups). By
analyzing the rankings obtained by the groups as random
variables it is possible to get some insight on how a specific
sensor/coefficient contributes to the classification task.

In Table III the average rankings for the features grouped
by sensor with a 95% confidence interval are reported. We
can see that the wrapper approach ranks sensor TGS2602 as
best and TGS2620 as worse, while the filter approach ranks
sensor TGS2602 significantly better than all the other sensors
except the TGS2611. Instead in Table IV the average rank-
ings for the features grouped by coefficients show that the
constant coefficient c in the parabola equation is consistently
ranked worse both by the filter and the wrapper approaches.
A geometrical interpretation of this result can be seen in
Figure 7 and suggests that the characteristics of the sensor
response which are of interest are independent of the vertical
position of the parabola. Noting that the characteristics of the
sensor response which are of interest are those which contain
discriminative power and at the same time are not dependent
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on the experimental setup. The implication of this is that
instead of estimating the 3 coefficients for the parabola we
can translate the parabola so that it passes through the origin
(parameter c = 0, see Figure 7) and then estimate only the
two remaining parameters. The result of which makes the
fitting procedure more robust since it requires the estimation
of fewer parameters. Said differently, the parameter c can
be interpreted as the state of the sensor when a gas patch
hits the array and triggers a response. As the previous state
information is not necessarily relevant for classification of the
current signal and the parameter c can be discarded. In fact
this can be seen by comparing Figure 2 and Figure 3, where
in the former the value of c is low and in the latter high. Since
the experimental condition are similar this is most likely due
to the different sweeping patterns of the robot with respect
to the odour plume. Future work will address the possibility
to use a parabola pasing through the origin (2 parameters
only) as feature extraction method.

Fig. 7. Illustration of the shape of a parabola indicating the coordinates of
the vertex V . Notice how coefficient c determines only the vertical position
of the parabola but does not influence the concavity nor the horizontal
position.

VI. DISCUSSION AND FUTURE WORK
The purpose of this work has been to move a step forward

towards an olfactory robot that can be deployed in a variety
of settings and is therefore more suitable for real world
applications. Indeed the intended use of mobile olfactory
robots within search and rescue often involves environments
that are difficult to predict in advance and for this reason it is
important to derive from a limited amount of data, collected
in a limited amount of situations, a model that is as general as
possible. Clearly, the optimal solution would be to be able to
extract features from the sensors response that are dependent
only on the target analyte. However this task is extremely
difficult given the multivariate nature of the sensor data and
the difficulty to capture the properties of a response that are
due to the target analyte versus the ones that depend on con-
tingencies (airflow, temperature, humidity, interaction with
the plume). For example, temperature and humidity which
are assumed to have varied from the indoor experiments to
the outdoor experiments, and between experimental runs in
the outdoor experiments depending on weather conditions
were not explicitly measured nor taken in account. Future
investigations could measure explicitly these variables and
take them into account in the algorithmic process to further
improve the feature selection process. Nevertheless, in this
work the starting point was to extract relevant features that

were not intrinsically coupled to deployment of the sensor
on a mobile robot nor on the motion of the robot per se.
Although in the presented works the robot was following a
pre-defined path, the complexity of the problem is the same
if the robot were to use another movement strategy.

To sum, this paper proposes two feature selection algo-
rithms that improve the performance of an olfactory robotic
system. Indeed one of the most crucial abilities for an
olfactory robot is to be able to perform well in an unknown
situation as is the case with other mobile robotic applications
such as long term localization of an outdoor robot that has to
cope with variations in the data due to different seasons [16].
In this work the unknown parameters include the properties
of the environment as well as the task and behavior of the
robot (e.g, different exploration strategies). The algorithms
have been validated on a large data set of experiments
performed in different uncontrolled conditions. Future works
will include the merging of the discrimination ability with
the other artificial olfaction tasks, namely source localization
and gas distribution mapping.
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[12] C. M. Bishop, Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer, August 2006.

[13] V. Cherkassky and F. Mulier, Learning from Data: Concepts, Theory
and Methods. Wiley Inter-Science, 1998.

[14] I. Guyon, “An introduction to variable and feature selection,” Journal
of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

[15] B. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems,” in Proceed-
ings of the IEEE International Conference on Advanced Robotics
(ICAR), 2003, pp. 317–323.

[16] C. Valgren and A. J. Lilienthal, “Sift, surf and seasons: Long-term
outdoor localization using local features,” Robotics and Autonomous
Systems, to appear, 2009.

2857


