
Out-of-Plane Orbit Estimation and Tracking for Aerial Recovery of

Micro Air Vehicles

Daniel C. Carlson and Mark B. Colton, Member, IEEE

Abstract— Aerial recovery of autonomous micro air vehicles
(MAVs) presents many unique challenges due to the difference
in size and speed of the recovery vehicle and MAV. This paper
presents algorithms to enable an autonomous MAV to estimate
the orbit of a recovery vehicle and track the orbit until the final
docking phase. Several algorithms are presented, which are
shown to be robust and computationally inexpensive. Methods
for estimating ellipses that are rotated out of the x-y plane are
developed and demonstrated through simulation. An algorithm
to enable the MAV to track the recovery vehicle’s orbit, based
on the vector field approach, is also presented.

I. INTRODUCTION

In recent years unmanned air vehicles (UAVs) have be-

come increasingly important in modern warfare. Certain

large UAVs have high-altitude, long-endurance intelligence,

surveillance and reconnaissance (ISR) capabilities, whereas

micro air vehicles (MAVs) are better suited for short-term,

low-altitude ISR missions. Backpackable MAVs can be car-

ried and launched by a common soldier to provide time-

critical ISR. Due to their limited range, retrieving MAVs is

problematic in certain applications. One recovery method is

for ground forces to retrieve the MAV after the completion of

the mission. This, however, is potentially dangerous because

a landing MAV may reveal the location of the forces, who

must by necessity be in the vicinity of the MAV. Another

solution is for the MAV to return to a distant base, but MAVs

are often deployed deep in enemy territory and lack sufficient

range to return to base.

The approach taken in this paper is to use a larger aircraft,

either manned or unmanned, for in-flight recovery of MAVs.

A major challenge with this solution is the high speed of

the large aircraft relative to that of the MAV, making gentle

retrieval using methods similar to those employed for mid-

air fueling unfeasible. Additionally, large aircraft generate

significant regions of turbulence (“wash”) from their engines

and air flow around their wings and fuselage. This wash

can cause major disturbances to a MAV trying to dock

with a significantly larger vehicle. Due to these challenges,

aerial recovery of MAVs is problematic and has not been

previously implemented. The purpose of this paper is to

describe methods that will make possible the autonomous

aerial recovery of MAVs using a larger, faster recovery

vehicle.

A. Aerial Recovery Concept

Our method of aerial recovery is illustrated in Figure 1.

In this method, a towplane (“mothership”) tows a smaller

drogue that is used as a docking station for the MAV. As

shown in references [1], [2], a large, relatively fast orbit

Fig. 1. Aerial recovery concept. The mothership tows a drogue, which
executes a relatively slow orbit to facilitate MAV-drogue docking.

of the mothership results in a smaller, slower orbit of the

drogue. Skop and Choo show that for a sufficiently long

cable and with sufficient drag, the radius of the drogue

orbit will approach zero. In our method of aerial recovery,

the mothership executes an orbit such that the speed of

the drogue is slightly lower than the nominal speed of the

MAV, and the radius of the drogue orbit is larger than the

minimum turn radius of the MAV. This allows the MAV

to enter the orbit of the drogue, approach it from behind

at a relatively low closing speed, and gently dock with

the drogue. The problem of the large difference in speeds

between the mothership and MAV is therefore overcome by

enabling docking between the MAV and the slower drogue.

There are three critical components in this research. First,

the dynamics of the mothership-drogue system must be

modeled. Specifically, the forward and inverse dynamics of

the mothership-drogue system are needed for simulation and

control, respectively [3], [4], [5]. This first component of

this research has been considered previously [6]. Second,

estimation and control algorithms must be developed that

enable autonomous cooperative docking between the MAV

and the drogue. Third, the drogue and towing system must

be designed to achieve the desired aerodynamic properties

and to enable consistent and robust retrieval of the MAV.

This paper focuses on the algorithms that enable a MAV to

estimate and enter the orbit of the drogue in preparation for

final rendezvous and docking. By estimating and tracking the

orbit of the drogue, the attitudes and velocities of the vehicles

will be similar as the MAV approaches the drogue, thus

facilitating docking. For this work, it is assumed that there is
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communication between the drogue and MAV, allowing the

drogue to transmit its position and heading (from an on-board

GPS receiver) to the MAV. The drogue orbit is estimated

from the transmitted data and a coordinated rendezvous

approach is taken, rather than treating the drogue as a

target during the initial stages of rendezvous. During the

final stages of rendezvous, when the distance between the

MAV and drogue is small compared to the error of the

orbit estimate, it is necessary to use some other rendezvous

algorithm (e.g., vision-based proportional navigation) [7].

This paper focuses on the problem of estimating the drogue

orbit from GPS data and tracking that orbit until the point

when vision-based rendezvous is required. The algorithms

for the final docking will be addressed in future work.

In this paper we assume that the drogue follows an

elliptical orbit. Ideally, the drogue will travel in a circular

orbit in a plane parallel to the ground. In practice, the

actual drogue orbit is not circular and is not restricted to

the horizontal plane due to 1) wind and other disturbances,

2) unmodeled mothership-drogue dynamics, and 3) the nu-

merical approximations inherent in the inverse dynamics to

find the required mothership orbit from the desired circular

drogue orbit. Additionally, initial flight tests demonstrate that

an ellipse is an appropriate model [8]. Consequently, for

estimation purposes, the drogue orbit will be treated as an

ellipse. In Section II we present methods for estimating the

parameters of an elliptical orbit that is in the horizontal plane.

In Section III we extend the work to the case of an elliptical

orbit that is arbitrarily rotated out of the horizontal plane.

In Section IV we present methods that enable the MAV to

track the estimated drogue orbit.

II. IN-PLANE ORBIT ESTIMATION

The parametric equations for an elliptical orbit in the

horizontal (x-y) plane are given by

x− x0 = a cos(t) cos(ψ) − b sin(t) sin(ψ)
y − y0 = a cos(t) sin(ψ) + b sin(t) cos(ψ),

(1)

where t is time, x0 and y0 are the coordinates of the

center of the ellipse, a and b are the major and minor axes,

respectively, and ψ is the angle of rotation of the ellipse in the

horizontal plane, measured from the x-axis. An ellipse may

also be represented using the general equation of a conic,

F (x, y) = a1x
2 + a2xy+ a3y

2 + a4x+ a5y+ a6 = 0, (2)

where ai, i = 1...6 are the conic parameters. The objec-

tive is to estimate these parameters from N measurements

of the drogue’s x and y GPS coordinates, which can be

accomplished using least squares regression. The resulting

parameters may be converted to the parameters that describe

an ellipse in parametric form, as defined by (1).

A. Fitzgibbon’s Method

The disadvantage of the method just described is that the

parameters estimated in this way are not guaranteed to rep-

resent an ellipse; since (2) is the equation for general conics,

the estimated parameters may instead represent parabolic or

hyperbolic trajectories. Fitzgibbon proposed a method in

which an ellipse-specific constraint is used to guarantee that

the solution represents an ellipse [9]. For (2) to represent an

ellipse, the parameters are constrained by

4a1a3 − a2
2 > 0. (3)

It has been shown that recasting this as an equality constraint,

in which (3) is still satisfied, results in valid parameter

estimates whose values are not dependent on the particular

constant value used on the right side of (3) [9]. Essentially,

since (3) can be multiplied by a constant and the result is the

same ellipse, equation (3) can be set to an arbitrary constant

without loss of generality. Thus the constraint can be written,

without loss of generality, as

4a1a3 − a2
2 = 1.

Equation (2) can be written in matrix form as

F (x) = x · a

where

a =
[

a1 a2 a3 a4 a5 a6

]T
(4)

and

x =
[

x2 xy y2 x y 1
]

.

Determining the conic parameters is equivalent to mini-

mizing the distance from all of the points to the conic,

min
a

N
∑

i=1

(xi · a)2 subject to 4a1a3 − a2
2 = 1,

or, in matrix form, as

min
a

‖Da‖2
subject to a

T
Ca = 1, (5)

where

D =







x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...

x2
N xNyN y2

N xN yN 1






,

and

C =

















0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















.

D therefore contains the N measured drogue locations and

C describes the ellipse constraint. Equation (5) describes a

quadratically constrained least squares minimization prob-

lem. By applying Lagrange multipliers, this equation can
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be solved using a method proposed by Gander [10], which

recasts (5) as

Sa = λCa subject to a
T
Ca = 1, (6)

where S = D
T
D. Solving (6) yields six possible solutions

for a; the correct least-squares solution is the eigenvector

that corresponds to the smallest positive eigenvalue.

B. Numerically Stable Improvement

Fitzgibbon’s method has the drawback that the compu-

tation of the eigenvalues is sometimes unstable and can

yield infinite or complex results. This arises from the fact

that D
T
D is often nearly singular. Halir and Flusser [11]

proposed a method for improving the accuracy and speed of

the algorithm. This method makes use of the special structure

of the matrices to eliminate the singularities. The result is

unstable only if all of the points lie on the same line, in

which case there is no suitable approximation for an ellipse.

In this method D is restructured as D =
(

D1 D2

)

,

where

D1 =

















x2
1 x1y1 y2

1
...

...
...

x2
i xiyi y2

i
...

...
...

x2
N xNyN y2

N

















, D2 =

















x1 y1 1
...

...
...

xi yi 1
...

...
...

xN yN 1

















.

S, C, and a are also restructured:

S =

[

S1 S2

ST2 S3

]

where

S1 = D
T
1
D1

S2 = D
T
1
D2

S3 = D
T
2
D2

C =

[

C1 0

0 0

]

where C1 =





0 0 2
0 −1 0
2 0 0





a =

[

a1

a2

]

where a1 =





a

b

c



 and a2 =





d

e

f



 .

Equation (6) then becomes

[

S1 S2

S
T
2

S3

]

·
[

a1

a2

]

= λ ·
[

C1 0

0 0

]

·
[

a1

a2

]

,

which is used to solve for the parameters in vectors a1 and

a2.

C. Recursive Least Squares

The method introduced by Halir and Flusser is used to

obtain an estimate of orbit parameters from the first N GPS

data points provided by the drogue. As new GPS data become

available during the course of the aerial recovery process, it

is computationally expensive to continue to use the method

just described to update the orbit estimates because the size

of D continues to increase with each new data point. Instead,

−50 0 50 100 150

−50

0

50

100

150

x(m)

y
(m

)

 

 

GPS Data

Estimated

True

Fig. 2. Estimated drogue orbit from simulated noisy data.. The solid line
represents the true orbit. The circles represent simulated noisy GPS data
points. The dashed line represents the estimated drogue orbit.

recursive least squares (RLS) [12] is used to update the

estimate for each new GPS data point received from the

drogue. The parameters to estimate are again represented

by the vector a defined in (4). The parameter estimates are

updated using

γn+1 =
1

λ+ xTn+1Pnxn+1

an+1 = an − γn+1Pnxn+1x
T
n+1an

Pn+1 =
1

λ

(

Pn − γn+1Pnxn+1x
T
n+1Pn

)

The matrix P (the Grammian) is initialized to the identity

matrix. The vector x represents a vector of the most recent

GPS data received from the drogue, and λ is the forgetting

factor, which is a tunable parameter that controls the respon-

siveness of the estimates and the level of filtering, with higher

λ values resulting in smoother but less-responsive parameter

estimates.

D. Simulation Results

The Halir-Flusser method followed by RLS was applied to

simulated GPS data from the drogue, with additive Gaussian

noise with a standard deviation of 5 m to simulate uncertainty

in the GPS measurement. Figure 2 shows the resulting

estimated elliptical orbit. Figure 3 shows the evolution of

the estimate of x0 (the north position of the center of the

ellipse) as new GPS data points are included in the recursion.

It is clear that the estimate converges to the true value of 50

m. Figure 3 also shows the evolution of the estimate of the

ellipse major axis. Again, the estimate converges to the true

value. Estimates for the other ellipse parameters (minor axis,

rotation angle, and east location of the center) follow similar

trends.

III. OUT-OF-PLANE ORBIT ESTIMATION

As mentioned in Section I-A, the drogue orbit will, in

general, not be perfectly aligned with the horizontal plane.

This, in fact, has been observed in initial experiments to

validate the mothership-drogue dynamic model [6]. The
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Fig. 3. Estimate of x0 and major axis using Halir-Flusser method and
RLS.

purpose of this section is to extend the methods of Section

II, by which elliptical orbits in the horizontal plane may

be estimated, to the more general problem of estimating

arbitrarily rotated, out-of-plane elliptical orbits.

A. Methods

An ellipse in 3-space is described by eight parameters,

{(x, y, z) | f(x0, y0, z0, a, b, ψ1, θ, ψ2) = 0} ,

where x0, y0, and z0 describe the center of the ellipse, a

and b are the major and minor axes, respectively, and ψ1,

θ, and ψ2 are 3-2-3 Euler angles describing the rotation

of the ellipse [13]. With the added degrees of freedom,

estimating the ellipse becomes significantly more difficult.

The approach taken in this paper is to estimate the plane

on which the points describing the ellipse lie. The normal

vector describing that plane gives information about θ and

ψ1. The measured ellipse points are transformed into the

coordinate frame describing the plane (the “ellipse frame”),

and the ellipse parameters are estimated in the manner that

was developed in Section II.

The transformation from the inertial frame to the ellipse

frame is given by R = Rψ2
RθRψ1

, where Rψ1
is a rotation

about the inertial z axis, Rθ is a rotation about the y axis

of the first intermediate frame, and Rψ2
is a rotation about

the z axis of the second intermediate frame. The parametric

form for an ellipse described in the inertial frame is given

by





x− x0

y − y0
z − z0



 = RTψ1
RTθ R

T
ψ2





a cos (t)
b sin (t)

0



 .

The plane on which the ellipse points lie can be described

in vector form as db = 0, where d =
[

x y z 1
]

and b =
[

b1 b2 b3 b4
]T

. For N measurements of

the drogue position, the equation describing the orbit plane

becomes Db = 0, where

D =







x1 y1 z1 1
...

...
...

...

xN yN zN 1






.

Using Singular Value Decomposition (SVD) [12] the equa-

tion can be written as UΛV
T
b = 0. The column of V

that corresponds to the smallest singular value is the solution

vector containing the plane parameters b. The plane’s normal

vector, n =
[

nx ny nz
]

, can then be calculated from

nx = b1√
b2
1
+b2

2
+b2

3

ny = b2√
b2
1
+b2

2
+b2

3

nz = b3√
b2
1
+b2

2
+b2

3

.

The normal vector can be written in the ellipse frame as
[

0 0 1
]T

, and related to inertial frame using





0
0
1



 = Rψ2
RθRψ1





nx
ny
nz



 .

The angle ψ1 can then be calculated from

tanψ1 =
ny

nx
,

and the normal vector is expressed in the first intermediate

frame as n
′ = Rψ1

n. The angle θ is calculated from

tan θ =
n′

x

n′z
.

All data points can now be converted into the ellipse frame

using





x′′

y′′

z′′



 = RθRψ1





x

y

z



 ,

and the remaining parameters a, b, x′′0 , y′′0 , ψ2 are estimated

using Halir’s method as described in Section II-B, where

x′′0 and y′′0 are the center of the ellipse in the ellipse frame.

Finally, x′′0 and y′′0 can be transformed into the inertial frame

using





x0

y0
z0



 = RTψ1
RTθ





x′′0
y′′0
z′′0



 .

where z′′0 is 0.

After using these methods to obtain initial estimates of the

normal vector and ellipse parameters, RLS is again employed

to update the estimates as new drogue measurements become

available. The RLS algorithm is applied twice. First, it is used

to update the estimate of the normal vector that describes the

plane on which all the measurements lie. Second, the most

recent measurement is rotated into that frame and RLS is

used to update the ellipse parameter estimates.

B. Simulation Results

Figure 4 shows a 3D plot of the out-of-plane ellipse

estimation results. Figure 5 shows the evolution of the

estimate of x0 and of the Euler angle θ. Results for the other

parameters show similar trends.
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Fig. 4. Estimated out-of-plane drogue orbit from simulated noisy data.
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Fig. 5. Estimate of x0 and θ for an out-of-plane orbit.

IV. ORBIT TRACKING

In order to match the attitudes and velocities of the

drogue and MAV, the MAV inserts itself onto the drogue

orbit at a point behind the drogue, and then tracks the

orbit at a speed slightly higher than that of the drogue

until rendezvous occurs. This section describes methods that

enable the MAV to enter and track the drogue orbit. The

control approach taken in this work is to decouple lateral

control (for horizontal tracking) from longitudinal control

(for altitude tracking). The horizontal orbit is the elliptical

projection of the drogue orbit onto the horizontal plane,

which is estimated using the methods described in Sections

II and III.

A. Lateral Control

The lateral control to achieve elliptical orbit tracking of the

MAV is done using a vector field method based on the work

done by Barber, but it is expanded to tracking of ellipses in

addition to circles [14]. First, the coordinate frame is rotated

so that there is no rotation of the ellipse from the x axis.

This transformation is done using the rotation matrix

Rψ2
=





cosψ2 sinψ2 0
− sinψ2 cosψ2 0

0 0 1



 ,

where ψ2 is the rotation of the ellipse from the x axis

as calculated in Section III. By applying Rψ2
to (1), the

resulting parametric equation for the ellipse becomes

x− x0 = a cos (t)
y − y0 = b sin (t)

. (7)

The partial derivatives of these equations with respect to time

are

∂x
∂t

= −a sin (t) ,
∂y
∂t

= b cos (t) .

If the MAV lies on the ellipse, its desired heading is tangent

to the curve. Thus the commanded heading for the MAV, ψc,

is given by

tan (ψc) =
∂y

∂x
=

∂y
∂t
∂x
∂t

=
b cos (t)

−a sin (t)
. (8)

To eliminate the parameter t from (8) we can solve (7) for

cos (t) and sin (t), yielding

tan (ψc) =
b2 (x− x0)

−a2 (y − y0)
.

If the MAV is not on the desired elliptical orbit, then the

commanded heading must be modified. The position error

can be written as

1 − (x− x0)
2

a2
− (y − y0)

2

b2
= error.

Whether the MAV is on or off of the elliptical orbit, its

desired heading is calculated using

∂y = −b2 (x− x0)

+k(y−y0)
a

(

1 − (x−x0)
2

a2 − (y−y0)
2

b2

)

∂x = a2 (y − y0)

+k(x−x0)
a

(

1 − (x−x0)
2

a2 − (y−y0)
2

b2

)

and

ψc = tan−1

(

∂y

∂x

)

+ ψ2, (9)

where ψ2 is the rotation of the ellipse from the x-axis, ψc is

the commanded heading for the MAV, and k is a gain used

to tune the resulting vector field.

The left plot in Figure 6 shows a vector field for an ellipti-

cal orbit as described by (9). The right plot in Figure 6 shows

a simulation of the MAV entering and tracking an elliptical

orbit using the vector field approach. In this simulation, the

MAV starts in the center of the ellipse, enters the elliptical

orbit, and executes a complete orbit. The MAV tracks the

orbit to within one meter, as shown in Figure 7.

B. Longitudinal Control

The longitudinal control of the MAV is used to match the

altitude of the MAV to that of the drogue. The commanded

altitude for the MAV is the altitude of the drogue at its current

position. The autopilot calculates a desired angle of attack for

the MAV using a PID controller. In simulation, the altitude

of the MAV matches the altitude of the drogue to within one

meter for an entire orbit, as shown in Figure 7.
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V. CONCLUSION AND FUTURE WORK

In this paper, essential methods to enable aerial recovery

of micro air vehicles have been proposed. The methods allow

an autonomous MAV to estimate the elliptical orbit of a

recovery drogue, and then track the drogue’s orbit up until

the point in which final docking occurs. The methods for

ellipse estimation have been shown through simulation to ro-

bustly estimate arbitrarily rotated ellipses. A RLS algorithm

provides updated estimates to refine the initial estimate as

new GPS data is made available to the MAV. A decoupled

orbit tracking algorithm, based on vector fields, has also been

demonstrated.

Ongoing work seeks to address the key limitation of the

RLS algorithm, i.e., that the solution is not guaranteed to

be an ellipse. The initial orbit estimate is forced to be an

ellipse using the methods described in Section II-B, but once

the RLS algorithm takes over, the solution may evolve into

some other conic. By using a Kalman filter with nonlinear

state constraints, the solution can be projected onto the

space where the ellipse-specific constraint is satisfied [15],

[16]. Optimal insertion of the MAV into the drogue orbit to

avoid collision is being investigated, following the methods

described by McLain and Beard [17] and Kingston and Beard

[18]. This addition will introduce a phase into the control law

that describes the position of the drogue in the orbit. Their

work also extends to involve multiple MAVs, which may be

applicable in future work involving multiple MAVs docking

with the same drogue.

The algorithms used for orbit tracking currently result in

some steady state error. In order to eliminate this error, a

feed forward term will be added to the control. In order to

take advantage of the out of plane estimation, we are also

seeking to develop a 3D guidance law instead of decoupling

the control into separate lateral and longitudinal algorithms.

Vision-based proportional navigation will be added in

future work for the final phase of docking [7]. As in previous

work, the methods and algorithms will be validated and

refined through flight tests.
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