
 
 

 

  

Abstract— Cable robots have seen considerable recent 
interest ensuing from their ability to combine a large 
workspace with significant payload capacity. However, the 
cables can apply forces to the end-effector only when they are 
in tension, and thus form a subclass of control problems 
requiring unilateral control inputs. Furthermore, actuation 
redundancy occurs when surplus cables are introduced within 
the system. On one hand, such redundancy needs to be 
carefully resolved for accurate tracking of the task. On the 
other hand, it allows the redistribution of the actuation forces 
to satisfy some secondary criteria. In this paper, we apply such 
redundancy for enhanced trajectory tracking by actively 
controlling the task stiffness of the end-effector. The scheme 
allow us to specify a lower bound of the task stiffness, which is 
intended to provide improved trajectory tracking and 
disturbance rejection performance. Finally, we illustrate the 
improved control performance within a virtual prototype co-
simulation framework. 

I. INTRODUCTION 
ABLE ROBOTS are formed by replacing the multiple sets 
of articulated links within a parallel manipulator with 

cables. This allows various motion trajectories at the end-
effector to be created by coordinated extension or retraction 
of the cables within the system. However, the cables can 
apply forces to the end-effector only when they are in 
tension. Thus, they form a subclass of the set of control 
problems requiring unilateral control inputs. In addition, 
when more cables than the required degree-of-freedom 
(DOF) of the task are introduced, a redundant system is 
created and requires suitable resolution scheme in order to 
properly track the desired task [1]. On one hand, this creates 
indeterminacy in terms of the force distribution required to 
achieve the desired end-effector motion. On the other hand, 
without careful coordination, substantial internal forces can 
build up within the closed-loop system, which can 
potentially damage to the system. Thus, effective resolution 
scheme for such actuation redundancy is critical to ensure 
accurate yet robust task execution.  

Suitable development of actuation redundancy resolution 
schemes can not only allow better (primary) trajectory 
tracking performance but also allow the redistribution of the 
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actuation forces to satisfy secondary criteria. For instance, 
from a parallel manipulator perspective, redundancy 
resolution methods have proved useful in eliminating 
singularities within workspace [2], reducing the chance of 
system failure, realizing optimal actuation distribution and 
power consumption [3], and enabling active stiffness control 
for modulating internal actuation distribution [1, 4]. 

Stiffness is an important characteristic that is directly 
related to the rigidity of a robotic structure, the robot’s 
performance of trajectory tracking, and the robot’s 
capability for disturbance rejection [5-6]. In the task space, 
it relates the tracking error to external force exerted by the 
end-effector. A class of control method called stiffness 
control (or more generally impedance control) seeks to track 
or regulate such stiffness in order to achieve better control 
performance. In [4], such stiffness control method was 
developed to achieve desired end-effector stiffness using 
redundant actuation for general rigid robotic manipulators.  

While redundantly actuated parallel robots have been 
treated extensively in the past, the problem of the unilateral 
nature of the cable tension constraint is challenging. 
However, many parallels exist between such requirement 
with the unilateral normal force constraints arising in the 
context of multi-fingered hands and multi-legged walkers 
[7]. Several approaches, including the feedback linearization 
[8] and time optimal control [9], were proposed to resolve 
redundancy under unilateral actuation.  

However, to our knowledge, the application of stiffness 
control method for redundantly actuated cable robots with 
the unilateral actuation constraints has not been explored. In 
this paper, we formulate the redundancy resolution scheme 
using the active stiffness control method for cable robot. We 
apply such redundancy for enhanced trajectory tracking by 
way of introducing a lower bound task stiffness within the 
control scheme. Such bounding is intended to provide 
minimal guarantees of trajectory tracking and disturbance 
rejection performance. Finally, we illustrate the improved 
control performance within a virtual prototype co-simulation 
framework. 

The rest of the paper is organized as follows: Section II 
presents the modeling and the feedback linearization control 
method for a cable robot. Section III then explores the 
resolution scheme to take into account for the redundant 
actuation within the robot. Section IV introduces the 
proposed active stiffness control scheme with LBSC in 
detailed, and Section V presents the case studies to illustrate 
the effectiveness of the method. We conclude the paper in 
Section V. 
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II. MODELING AND CONTROL OF CABLE ROBOT 

A. Kinematic and Dynamic Modeling 

 
(a) (b) 

Fig. 1. (a) Schematic of the spatial cable robot under consideration, and (b) 
sketch of cable i and its related position vector. 
 

As shown in Figure 1, the spatial cable robot under 
consideration consists of an upper fixed plate and a lower 
moving end-effector plate actuated by the tension forces 
created by extending and retracting the n  cables connected 
between the plates. Following [8], the connection points of 
the cables at the upper and lower plates are respectively 
labeled as iA  and iB , for   1,  2,   i n= L , and frames { }0F  

and { }EF  are respectively rigidly fixed at the centers of the 

polygon formed by the vertices iA  and iB . Assuming that 

the cables are always in tension, let il  be the length, il&  be 

the extending/retracting rate, 
0

il
v

 be the position vector, and 
0 0

/ || ||i i il l l=
v v

$  be the unit vector of the i th cable. Defining 
E

iev  be the position vector with respect to frame { }EF  of the 

cable connection in the lower plate, 0
iev  be the position 

vector with respect to frame { }0F  of the cable connection in 

the upper plate, 0
ER  is the rotation matrix from frame { }0F  

to { }EF , and taking into account for the closed kinematic 
loops formed, the kinematics of the system can be derived 
as: 

l JX=& &  (1) 
where  
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& & &L  is the cable velocity vector and 

T
x y zX x y z ω ω ω⎡ ⎤= ⎣ ⎦

& & & &  is the end-effector velocity 

with respect to the fixed plate. 

Finally, assuming that the cables are massless, the 
dynamic equation can be derived using Newton-Euler 
method as: 

 

1

2T

x x x

m y y m y n

z z z

mx
my F
mz F

J

I I F
ω ω ω
ω ω ω
ω ω ω

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+ × ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

&&

&&

&&

& M

&

&

 (2) 

where m  and mI  are respectively the mass and the moment 
of inertia of the lower plate. The general (task space) 
dynamic can then be written as the following form: 
 ( ) ( ) ( ), TM X X h X X X g X J F+ + = −&& & &  (3) 

where M , h , g , 0F ≥  are respectively inertial matrix, 
Coriolis/centrifugal matrix, gravitational forces and tension 
forces of the cables. 

B. Feedback Linearization 
The trajectory tracking for system (3) can be achieved by 

using the feedback linearization method [8]. Define the error 
between the desired task trajectory ( )dX t  and actual task 

trajectory ( )X t  be ( ) ( ) ( )de t X t X t= − . Choosing the 
feedback law of the form: 
 ( )T

d p dJ F hX g M X K e K e− = + + − −& && &  (4) 

where pK  and dK  are respectively the positive diagonal PD 
gain matrices. The task space error dynamics can then be 
solved, by substituting (4) into (3), as: 
 0p de K e K e+ + =&& &  (5) 
which shows that X  will asymptotically track dX . 

III. REDUNDANCY RESOLUTION 
In this section, we formulate an effective actuation 

redundancy resolution scheme based on the generalized 
pseudo-inverse method. Given an n  dimensional cable 
actuation and m ( n≤ ) dimensional task, from (4), let: 
 1 1m m n nW S F× × ×= , T

m n m nS J× ×= −  (6) 
The linear equation can generally be solved by the pseudo-
inverse method as: 
 ( )# #F S W I S S z= + − v  (7) 
where I  is an n n×  identity matrix, zv  is an arbitrary n  

vector, and ( ) 1# T TS S SS
−

=  is Moore-Penrose pseudo-

inverse of S . The solution in (7) consists of two terms: the 
first term #

pF S W=  is the particular solution to (6), which 
corresponds to its minimum norm solution in the least 
squares sense; and, the second term ( )#

hF I S S z= − v  is the 

homogeneous (null space) solution to Eq. (6). In [10-11], 
pF  is interpreted as the required equilibrating force that 

causes the effective motion of the system, but hF  is internal 
force that does not contribute the effective work to the 
system. In general, in the control of cable robot, the 
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positivity of the particular solution cannot be guaranteed, 
which can cause the input force F  to violate the unilateral 
tension constraint. Hence, we can take the advantage of the 
additional homogeneous term (which can take on any 
arbitrary value due to the redundancy) to maintain the 
positivity of the input force F . Effectively, we are 
modulating and redistributing the internal forces within the 
redundant system so that the positivity of the input forces to 
the system is ensured. 

A. Parameterization of Null Space 

Consider the null space matrix #Ŝ I S S= −  in (7), which 
generally has rank n m n− ≤ . This implies that only n m−  
independent vectors are required to parameterize the null 
space. During the computation of Ŝ ,  arbitrary switching of 
the n m−  columns may cause discontinuity of hF  [12]. To 
solve this problem, we can make use of the singular value 
decomposition of Ŝ  to take advantage of its unique basis 
vector arrangement. Decompose Ŝ  into TU VΔ , where the 
matrices U  and V  are respectively formed by the 
normalized eigenvectors of ˆ ˆTSS and ˆ ˆTS S , and the matrix Δ  
consists of the singular values of Ŝ  along its diagonal in the 
descending order. The new null space matrix can then be 
formed by choosing the first n m−  columns of U , where 

( ) [ ]1 2 n mN S u u u −= L . Hence, (7) can be rewritten 
using this new parameterization as: 

 #

1
( )

n m

k k p
k

F S W N F N Sα α
−

=

= + = +∑ v  (8) 

where [ ]1 2    T
n mα α α α −=v

L  is the new arbitrary vector. 

B. Resolution by Tension Force Optimization 
Since the vector αv  in (8) is arbitrary, we can take 

advantage of these free variables to optimize the tensions 
among the cables, which can be formulated as a linear 
programming problem: 
 :                    T

fmin
α

β αv

v  (9) 

  :        ( ) psubject to N S Fα− ≤v  (10) 
where F  is defined in (8), fβ  are vector of weights, and the 
inequality constraint in (10) is intended to maintain the 
positivity of cable input F . 

IV. ACTIVE STIFFNESS CONTROL 

A. Task Stiffness of Cable Robot 
Consider the force system at the end-effector 

[ ]TW f m= , the incremental displacement of the end-
effector Xδ caused by the incremental force Wδ  can be 
related by a stiffness matrix XK  as: 
 XW K Xδ δ=  (11) 
where XK  is called the task or Cartesian stiffness matrix. 

Similarly, the incremental tension forces exerted by the 
cables Fδ  and the incremental displacement within the 
cables lδ  caused by the tension forces can be related as: 
 lF K lδ δ=  (12) 
where lK  the joint space stiffness matrix, which is simply 
the diagonal matrix with entries of the stiffness of each 
cable. Differentiating (6), we get: 
 ( ) ( )dW dS F S dF= +  (13) 
Substituting, (11) and (12) into (13) yield: 
 ( )X lK dX dS F SK dl= +  (14) 
Note carefully that dS  is the differential of the matrix S , 
which can be computed as: 
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m

j
j j

SdS dX
X=

∂
=

∂∑  (15) 

In addition, noting from (1) that dl JdX= , canceling the 
common dX term in (14) yield: 
 X g cK K K= +  (16) 
where 

 
1 2 6

 g
S S SK F F F
X X X

⎡ ⎤∂ ∂ ∂
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L  (17) 

 T
c l lK SK J J K J= = −  (18) 

Chen and Kao [13] termed this mapping as Conservative 
Congruence Transformation (CCT). It is important to note 
from this transformation that the task stiffness not only 
depends on the cable stiffness in the term cK , the internal 
cable actuation force F  in the term gK  can also 
significantly contribute to the overall task stiffness. Hence, 
in what follows, we modulate this required tension force 
such that some specific task stiffness can be achieved. 

Defining the tensor operator: 

 
( )1 2

T

m m m n

S S SH
X X X

× ×

⎡ ⎤∂ ∂ ∂
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and substituting (8) into (17) yields: 
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g p

p
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α
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v

v  (20) 

The overall task stiffness (16) can then be written as:  
 ( ){ } { }T

X p lK HF H N S J K Jα= + −⎡ ⎤⎣ ⎦
v  (21) 

Hence, one way to resolve the actuation redundancy in the 
system is to add the requirement of a desired overall task 
stiffness d

XK . The tension force optimization problem in (9) 
and (10) can then be augmented using an equality constraint 
as: 
 :                 T

fmin
α

β αv

v  (22) 

 ( ){ } { } : T d
p l Xsubject to HF H N S J K J Kα+ − =⎡ ⎤⎣ ⎦

v  (23) 

     ( ) pN S Fα− ≤v  (24) 
The computational issue for (23) is addressed in [14]. 

However, this scheme can be greatly limiting when the 
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number of extra cables is less than the independent 
components of desired stiffness matrix. Furthermore, 
realistically, it is not desirable to introduce too many extra 
cables as it increases the probability of cable interference 
and greatly limits its workspace. In addition, the feasible 
solution may not always exist, i.e. the desired stiffness 
cannot be achieved in most designs under the strict criteria. 
We noted some of these limitations in our previous work 
[15], and, hence, we improve the control scheme by relaxing 
this criteria as discussed subsequently. 

B. Lower Bound Stiffness Control (LBSC) 

 
 

 
Task 
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Trajectory 

 

Feedback 
Linearization 

Controller 
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Fig. 2. Block diagram of Lower Bound Stiffness Control for the cable robot.  
 
In Lower Bound Stiffness Control (LBSC), instead of 

specifying a strict desired value for all components of the 
task stiffness, we relax the requirement by just specifying a 
lower bound for the stiffness. The task stiffness matrix is a 
positive semi-definite symmetric matrix, where the 
eigenvalues are the values of the stiffness of the 
corresponding principal directions given by the 
corresponding eigenvectors. Hence, in the formulation, we 
can make sure the smallest eigenvalue minσ  to be greater 
than the minimum value of min

dσ . Specifically, from (21), the 
objective function to be minimized can be defined by: 

 
( )

( ){ } { }( )
min min

min min

d
X

T d
p l

f K

HF H N S J K J

σ σ

σ α σ

= −

= + − −⎡ ⎤⎣ ⎦
v  (25) 

The overall LBSC scheme is shown in the block diagram 
form in Fig. 2. lk  is first prescribed as the stiffness constant 
of each cable. In each iteration, we solve for the cable 
control input forces as an optimization problem with explicit 
design variable αv  to minimize the objective function (25) 
under the positive cable input forces F  constraint (10). 
Then the simultaneous position and velocity information of 
the cable robot is provided to the feedback linearization 
controller and the task space control output is generated. 
This output is then filtered through the inverse dynamics 

operator ( ) 1TJ
−

−  to calculate the particular solution and the 

homogenous solution of the new cable control input force 
candidates in terms of the design variables in αv . αv  is then 
optimized by a optimizer and used to compute the new cable 
control input forces F . 

V. SIMULATION FRAMEWORK AND CASE STUDIES 

 
Fig. 3. MATLAB/Simulink/MSC visualNastran co-simulation framework. 
 

 
Fig. 4. The configuration of the planar cable robot with rigid-body end-
effector under consideration modeled in MSC visualNastran. 

 
We evaluate the proposed redundancy resolution and 

control method in a virtual prototype co-simulation 
framework using MATLAB/Simulink/MSC visualNastran 
as shown in Fig. 3. Such implementation is also intended to 
form the basis of real-time hardware-in-the-loop co-
simulation with a physical prototype - see [14] for details. 
Several case studies were performed including both planar 
and spatial cases with point-mass and rigid-body end-
effector.  

In this paper, we present the results with planar 4-cable 
robot system manipulating a rigid-body end-effector for (a) 
trajectory tracking with/without LBSC, and (b) disturbance 
rejection with/without LBSC. The planar rigid-body end-
effector, shown in Fig. 4, is modeled as a rigid plate attached 
to four cables in a plane and actuated independently by four 
motors. The four motors forming the base are located at (0, 
0) m, (1, 0) m, (1, 1) m and (0, 1) m. Since the end-effector 
has three task space DOF , ,x y φ  but is driven by four 
actuated cables, it has degree of redundancy of one. In all 
case studies, the trajectory traced is a straight line with 

0.55 x m= , (0.5  0.1 ) y t m= + , and 0 radφ =  at desired 
velocity of 0.1 /m s , and it is initially placed with an error at 
(0.5,  0.5) m , 0 radφ = . 
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A. Trajectory Tracking with/without LBSC 

 
(a) 

 
(b) (c) 

Fig. 6. Trajectory tracking performance without LBSC: (a) the desired and 
actual tracking trajectories; (b) the tracking errors of , ,x y φ ; and (c) the 
tension force in all the cables during the trajectory tracking. 
 

 
(a) (b) 

  
(c) (d) 

Fig. 7. Trajectory tracking performance with LBSC: (a) the desired and 
actual tracking trajectories; (b) the tracking errors of , ,x y φ ; (c) the tension 
force in all the cables during the trajectory tracking; and (d) the evolution of 
the maximum and minimum eigenvalues of the stiffness matrix. 
 

We first examined the performance of the trajectory 
tracking without LBSC. The desired and actual tracked 
trajectory is shown in Fig. 6(a). It can be seen in Fig. 6(b) 
that the errors converges to zero from the initial offset. Fig. 
6(c) also shows that the tensions of all the cables are always 
positive. We then examined trajectory tracking with a 
desired lower bound stiffness of min 50 /d N mσ = . While 
tracking performance is similar as shown Fig. 7(a), the 
addition of the LBSC now causes the increase in the 

required tensions in all the cables to increase stiffness, as 
shown in Fig. 7(c). Fig. 7(d) depicts the maximum and 
minimum eigenvalues of the stiffness matrix and highlights 
that the minimum requirement of 50 /N m  is met. 

B. Disturbance Rejection with/without LBSC 

 
(a) (b) 

 
(c) (d) 

Fig. 8. Disturbance rejection performance without LBSC: (a) the desired 
and actual tracking trajectories; (b) the tracking errors of , ,x y φ ; (c) the 
tension force in all the cables during the trajectory tracking; and (d) the 
evolution of the maximum and minimum eigenvalues of the stiffness matrix. 
 

 
(a) (b) 

 
(c) (d) 

Fig. 9. Disturbance rejection performance with LBSC: (a) the desired and 
actual tracking trajectories; (b) the tracking errors of , ,x y φ ; (c) the tension 
force in all the cables during the trajectory tracking; and (d) the evolution of 
the maximum and minimum eigenvalues of the stiffness matrix. 
 

In this case study, we apply a sinusoidal disturbance 
forces of  0 ,  5sin(4 ) x yF N F t Nπ= =  at the end-effector 
within the time period of 0.5 1.5 s t s< < . We again first 
examine its performance without LBSC. Fig. 8(a) shows the 
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tracking performance reflecting the deviations from the 
desired trajectory due the sinusoid disturbance. The 
maximum position error of about  36 10 m−×   can be noticed 
in the error plots in Fig. 8(b). The corresponding tension 
force profiles of cables shown in Fig. 8(c) indicates that the 
required forces fluctuate significantly due to the 
corresponding disturbance. Fig. 8(d) shows the maximum 
and minimum eigenvalues of the stiffness matrix, which also 
fluctuates according to the disturbance. 

Referring to Fig. 9(a), the end-effector tracks the desired 
trajectory much better when the LBSC with min 50 /d N mσ =  
is added. The maximum position error is 32.3 10 m−×  as 
shown in Fig. 9(b). The corresponding tension profiles 
shown in Fig. 9(c) show less fluctuations, and Fig. 9(d) also 
shows less fluctuation in the minimum and maximum 
eigenvalue of the stiffness matrix, and the minimum 
stiffness of 50 /N m  is also achieved. 

VI. CONCLUSION 
The actuation redundancy by virtue of the surplus cables 

not only provides feasible solution under the unilateral 
control input constraint, but also provides flexibility by way 
of optimal cable force distribution and task space stiffness 
specification and adjustment. The CCT based task space 
stiffness mapping provides further insights and 
understanding of relationship between the redundant cable 
actuation forces and the task stiffness. Inclusion of a lower 
bound task stiffness within the control scheme enable us to 
provide a minimal guarantee of trajectory tracking and 
disturbance rejection performance. The case studies with the 
control scheme co-simulated with a virtual prototype 
showed that developed method was capable of achieving the 
improved performance in both trajectory tracking and 
disturbance rejection tasks. Future works include evaluation 
of the proposed control scheme in a physical prototype. 
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