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Abstract— Optimal heuristic searches such as A* search are
commonly used for low-dimensional planning such as 2D path
finding. These algorithms however, typically do not scale well to
high-dimensional planning problems such as motion planning
for robotic arms, computing motion trajectories for non-
holonomic robotic vehicles and motion synthesis for humanoid
characters. A recently developed randomized version of A*
search, called R* search, scales to higher-dimensional planning
problems by trading off deterministic optimality guarantees of
A* for probabilistic sub-optimality guarantees. In this paper,
we show that in addition to its scalability, R* lends itself well to

a parallel implementation. In particular, we demonstrate how
R* can be implemented on the GPU. On the theoretical side, the
GPU version of R*, called R*GPU, preserves all the theoretical
properties of R* including its probabilistic bounds on sub-
optimality. On the experimental side, we show that R*GPU
consistently produces lower cost solutions, scales better in terms
of memory, and runs faster than R*. These results hold for both
motion planning for a 6DOF robot arm planar as well as 2D
path finding.

I. INTRODUCTION

A* search is a widely-used tool for finding a least-

cost path in a graph. This technique is a provably optimal

algorithm in terms of both the quality of the path it finds as

well as the amount of work (state computations) the search

has to do to in order to guarantee the optimality of the

solution [1]. The provable optimality of the solution however

comes at the expense of thorough exploration of a large

fraction of states in the graph. Such exploration prohibits

the application of A* search to higher-dimensional planning

problems in which even a small fraction of the space contains

too many states to explore all in run-time. To address this,

a number of suboptimal variants of A* have been proposed

[2], [3], [4], [5], that aim for the provable suboptimality of

the solution instead. While they can often scale to much

larger problems [3], [5], [6], [7], [8], they still perform a

thorough exploration of the (much smaller) state-space and

rely heavily on the guiding power of the heuristic function.

In contrast to A* and its variants, randomized motion

planning techniques such as Probabilistic Roadmaps and

RRTs [9], [10] explore the state-space sparsely. Sparse explo-

ration makes these approaches suitable to high-dimensional

planning but completely gives up the optimality guarantees.

R* search [11] is a recently developed randomized version

of A* search that offers a compelling compromise. R*

explores the state-space in a sparse fashion. Scheduling the

exploration in a clever way provides probabilistic guarantees

on suboptimality and good cost minimization.

In this paper, we show that the structure of R* search

makes it well-suited to a parallel implementation. R* search

was originally designed for sequential processing. It operates

by decomposing the usual single-shot A* search into a

series of properly-scheduled short-range and easy-to-solve

searches, each guided by the heuristic function towards a

randomly chosen goal. It turns out that this decomposition

lends itself naturally to a parallel implementation. First, each

short-range search is independent of others which makes

them suitable for running in parallel. Second, each search is

short-range and easy-to-solve. This means that each search

doesn’t require vast amounts of memory. This allows for

multiple searches to share the DRAM on the GPU. Finally,

each search in R* discards its memory after it exits. This

eliminates the need for time-consuming transfers of memory

and makes it ideal for running in the DRAM on the GPU.

The paper is structured as follows. We first briefly describe

the related work including several GPU-based graph search

implementations. We then give a short overview of GPU

architecture and an overview of R* search and the guarantees

it makes. In section IV, we present the implementation of

R* search on the GPU, that we refer to as R*GPU. In

sections V and VI, we evaluate the performance of R*GPU

experimentally on two domains: motion planning for a 6DOF

simulated planar robot arm and a 2D path finding. Both

domains show that R*GPU consistently produces lower cost

solutions, scales better in terms of memory, runs faster, has

a much higher chance of finding a feasible solution, and

can solve much harder problems than R*. Since R*GPU

also preserves all the theoretical guarantees of R*, our

experimental analysis concludes that R*GPU is a better

choice for planning if GPU hardware is available.

II. RELATED WORK

A. Parallel-based Planning

Planning tends to become computationally burdensome.

This serves as a good motivation for a number of researchers

working on developing Parallel-based implementations of

path finding. For example, Bleiweiss [12] presented a GPU-

based implementation of A* in the context of global 2D plan-

ning. His GPU-based A* implementation showed roughly

an order of magnitude improvement to a single and two-

threaded CPU-based implementation of A* using C++. Sim-

ilarly, Katz and Kider [13] presented a cache-effcient GPU

implementation of the all-pairs shortest-path problem and

demonstrated that it results in a significant performance

improvement. Edelkamp and Sulewski [14] obtained speed-

ups for breadth-first search using a bitvector representation

of the search frontier on the GPU. Burns et al. [15], [16]

presented a parallel version of best-first search for an 8 core
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machine that combines duplication detection and speculative

expansion. Zhou and Hansen [17] parallelized graph search

using structured duplicate detection. Evett et al. [18] de-

signed a variant of A* search on SIMD Connection Machine.

Kishimoto et al. [19] parallelize A* by distributing and

scheduling work among processors based on a hash function

of the search state.

The work we present in this paper differs in that we are

concerned with problems that cannot afford thorough explo-

ration of the state-space characteristic of A* and its variants.

We therefore present a GPU-based implementation of an R*

search that combines A*-type search with randomized sparse

exploration of the state-space. It sacrifices deterministic

guarantees on optimality and sub-optimality for the ability

to plan in large and/or high-dimensional state-spaces. In

addition to reduced time complexity, R* (and consequently

R*GPU) imposes drastically smaller memory requirements

than optimal graph searches such as A*, making it even more

suitable to GPU hardware.

B. Planning Algorithms

R*, and consequently R*GPU, fall into the category of

heuristic searches such as A* [1] and its suboptimal vari-

ants [2], [3], [4], [5]. These searches examine states in the

search-space thoroughly and in a systematic manner and

therefore return solutions that are often of much better quality

than those found by randomized planners. However, the

methodological exploration limits them from being widely

applicable to high-dimensional planning.

Within the class of heuristic searches, R* is somewhat

related to K-best-first search [20]. The latter limits the

number of successors for each expanded state to at most K

states. R* also does this, but these successors are remote, and

each transition to them is computed via a separate short-range

search. All short-range searches run in parallel in R*GPU.

Both R* and R*GPU are also closely related to the family

of randomized motion planners [9], [10]. These algorithms

have gained tremendous popularity in the last decade. They

have been shown to consistently solve impressive high-

dimensional motion planning problems. In addition, these

methods are simple, fast and general enough to solve a

variety of motion planning problems. R* and R*GPU differ

from these algorithms in several aspects. Most importantly,

the current randomized planners are mainly concerned with

finding any feasible path rather than minimizing the cost

of the solution. In addition, they provide no guarantees

on the sub-optimality of the solution. In contrast, R* and

R*GPU try to find the solutions with minimal cost and

provide probabilistic guarantees on the quality of the so-

lution. These two aspects of these algorithms are important

when solving planning problems for which the minimization

of the objective function is important (such as planning

dynamically-feasible trajectories for unmanned vehicles [8],

motion planning for highly articulated robots [21], [22],

motion synthesis of human characters in animation [23] and

others).

1 select unexpanded state s ∈ Γ (priority is given to states not labeled AVOID)

2 if path that corresponds to the edge bp(s) → s has not been computed yet

3 try to compute this path

4 if failed then label state s as AVOID

5 else

6 update g(s) based on the cost of the found path and g(bp(s))
7 if g(s) > w h(sstart, s) label s as AVOID

8 else //expand state s (grow Γ)

9 let SUCCS(s) be K randomly chosen states at distance ∆ from s

10 if goal state within ∆, then add it to SUCCS(s)
11 for each state s′ ∈ SUCCS(s), add s′ and edge s → s′ to Γ, bp(s′) = s

Fig. 1. Single iteration of R*

The most relevant work to ours is a very recently and

independently developed Randomized A* algorithm [24].

The major difference from our work is that Randomized A*

mainly targets continuous domains and does not provide the

analysis of bounds on sub-optimality. Diankov and Kuffner’s

work contains a number of interesting ideas including the use

of statistical learning to learn the heuristic function in order

to avoid tweaking its parameters.

III. OVERVIEW

A. G80 Architecture and CUDA

With the introduction of NVIDIA G80 GPU architecture

an abundance of scientific and numeric general purpose

GPU applications found performance gains due to the graph-

ics hardware’s streaming data-parallel organizational model.

The graphics pipeline now features a single unified set of

processors that function as vertex, geometry, and fragment

processors. Additionally, the release of the Compute Uni-

fied Device Architecture (CUDA) API [25] on the G80

architecture allows developers to easily develop and manage

general purpose scientific and numerical algorithms without

formulating solutions in terms of nontrivial shaders and

graphic primitives making the programming model much

more programmer friendly.

The GPU serves, to an extent, as a coprocessor to the

CPU programmed through the CUDA API. A single program

known as a kernel is compiled to operate on the GPU device

to exploit the massive data parallelism inherent to Single

Instruction, Multiple Data (SIMD) architecture. Groups of

threads then execute the kernel on the GPU. This batch of

threads is organized as a grid of thread blocks. Data in a

block is shared through a high-speed shared memory region

(16 kB in size) on the G80 architecture accessible to the

programmer and explicitly managed through CUDA. CUDA

also defines per thread registers, read only constants, and

texture memory, and per grid global memory. This memory

hierarchy facilitates higher bandwidth and overall perfor-

mance gains. Therefore, algorithms must manage memory

effectively to achieve maximum performance.

B. R* Algorithm

R* operates by constructing a small graph Γ of sparsely

placed states, connected to each other via edges. Each edge

represents a path in the original graph in between the

corresponding states in Γ. In this respect, Γ is related to

the graphs constructed by randomized motion planners [9],

[10]. The difference is that R* constructs Γ in such a way
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as to provide explicit minimization of the solution cost and

probabilistic guarantees on the suboptimality of the solution.

To achieve these objectives, R* grows Γ in the same way as

A* grows a search tree.

Every iteration, R* selects the next state s to expand from

Γ (see figure 1). While normal A* expands s by generating

all the immediate successors of state s, R* expands s by

generating K states residing at some distance ∆ from s

(lines 8-11). The distance ∆ is some metric that measures

how far two states are from each other. This metric can be

domain dependent or independent, such as the difference

in heuristic values of two states. The metric should be

applicable to whatever domain we are solving, be it a discrete

or continuous one. If a goal state is within ∆ from state s

then it is also generated as the successor of s. R* grows Γ
by adding these successors of s and edges from s to them.

A path that R* returns is a path in Γ from the start state

to the goal state. This path consists of edges in Γ. Each

such edge, however, is actually a path in the original graph.

Finding each of these (local) paths may potentially be a

challenging planning task. R* postpones finding these paths

until necessary and tries to concentrate on finding the paths

that are easy to find instead. It does this by labeling the

states to which it cannot find paths easily as AVOID states.

Initially, when generating K successors, none of these states

are labeled as AVOID - R* does not try to compute paths

to all of the generated states. Instead, only when state s is

selected for expansion does R* try to compute a path from

the predecessor of s, stored in the backpointer of s bp(s), to

state s (lines 2-7).

R* uses the weighted A* search with heuristics inflated by

w to compute local paths. R* stops the search, however, if it

fails to find the path easily. (Different heuristics can be used

to establish when to stop the search, for example a time limit

or number of state expansions. In our experiments, we used

a threshold of 1024 generated states to detect that a path can

not be found easily.) If the search does fail, then R* labels

state s as an AVOID state since it assumes that it will be

time-consuming to find a path to state s. If the weighted A*

search does find a path, then the cost of the found path can

be used to assign the cost of the edge bp(s) → s. The cost

of the edge and the cost of the best path from sstart to bp(s),
stored in g(bp(s)), can then be used to update g(s) in the

same way A* updates g-values of states.

R* provides probabilistic guarantees on the suboptimality

of the solution. The uncertainty in the guarantee is purely

due to the randomness of selecting K successors during each

expansion. For a given graph Γ, on the other hand, R* can

state that the found path is no worse than w times the cost

of an optimal path that uses only the edges in Γ.

Suppose g(s) ≤ wh(sstart, s). Then the cost of the found

path from sstart to s via the edges in Γ is clearly no worse

than w times the cost of an optimal path, since h(sstart, s)
is supposed to be no more than the cost of the optimal

path. Suppose now g(s) > w h(sstart, s). This means that

a path from sstart to s may not be w suboptimal. To prove

otherwise, similarly to weighted A*, R* needs to expands

1 procedure UpdateState(s)
2 if (g(s) > w h(sstart, s) OR

(pathbp(s),s = null AND s is labeled AVOID))
3 insert/update s in OPEN with priority k(s) = [1, g(s) + w h(s, sgoal)];
4 else

5 insert/update s in OPEN with priority k(s) = [0, g(s) + w h(s, sgoal)];

6 procedure ReevaluateState(s)
7 [pathbp(s),s, clow(pathbp(s),s)] = TrytoComputeLocalPath(bp(s), s);

8 if (pathbp(s),s = null OR

g(bp(s)) + clow(pathbp(s),s) > w h(sstart, s))
9 bp(s) = arg mins′|s∈SUCCS(s′)(g(s′) + clow(paths′,s));

10 label s as AVOID state;

11 g(s) = g(bp(s)) + clow(pathbp(s),s);

12 UpdateState(s);

13 procedure RStarSearch()
14 g(sgoal) = ∞, bp(sgoal) = bp(sstart) = null, k(sgoal) = [1,∞];
15 OPEN = CLOSED = ∅;

16 g(sstart) = 0;

17 insert sstart into OPEN with priority k(sstart) = [0, w h(sstart, sgoal)];
18 while (k(sgoal) ≥ mins′∈OPEN k(s′) AND OPEN 6= ∅)
19 remove s with the smallest priority from OPEN;

20 if s 6= sstart AND pathbp(s),s = null

21 ReevaluateState(s);

22 else //expand state s

23 insert s into CLOSED;

24 let SUCCS = set of K randomly chosen states at distance ∆ from s

25 if distance from sgoal to s is smaller than or equal to ∆
26 SUCCS(s) = SUCCS(s) ∪ {sgoal};

27 SUCCS(s) = SUCCS(s) − SUCCS(s) ∩ CLOSED

28 for each state s′ ∈ SUCCS(s)
29 [paths,s′ , clow(paths,s′ )] = [null, h(s, s′)];
30 if s′ is visited for the first time

31 g(s′) = ∞, bp(s′) = null;

32 if bp(s′) = null OR g(s) + clow(paths,s′ ) < g(s′)
33 g(s′) = g(s) + clow(paths,s′); bp(s′) = s;

34 UpdateState(s′);

Fig. 2. The pseudocode of R*

all the states s′ in Γ with f(s′) = g(s′) + w h(s′) ≤

g(s)+w h(s) = f(s). Expanding all of these states, however,

is computationally expensive, because some of these states

are labeled AVOID and therefore require the computation of

hard-to-find local paths to them. Moreover, it may even be

unnecessary to use state s. For a given w, there often exist

a wide spectrum of solutions that satisfy w suboptimality

though some are easier to find than others. Therefore, R*

considers the states s with g(s) > wh(sstart, s) as the

states it should also avoid expanding. It labels these states

as AVOID (line 7).

To provide the suboptimality guarantees and minimize

solution costs while avoiding as much as possible the states

labeled AVOID, R* selects states for expansion in the order

of smaller f(s) = g(s) + w h(s)), same as in weighted A*.

However, it selects these states from the pool of states not

labeled AVOID first. Only when there are no more such states

left, R* starts selecting AVOID states (in the same order of

f -values).

Implementation Details The pseudocode of the R* algo-

rithm is given in figure 2. The algorithm first goes through

the initialization of variables. The g-values are estimates of

the distance from the start state to the state in question,

same as in normal A* search. bp-values are backpointers

in graph Γ that can be used to backtrack the solution after

the search terminates. k-values are priorities used to select

states for expansion from OPEN - the list of states in Γ
that have not been expanded yet. A state with the minimum
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priority is always selected for expansion first. Priorities are

two-dimensional values and are compared according to the

lexicographical ordering (first dimension is compared first,

and the second is used to break ties). Whenever a state is

labeled AVOID, the first dimension of its priority is set to

1. Otherwise, it is 0. This way, the states labeled AVOID

are only selected for expansion if there are zero states not

labeled AVOID left to expand. The second dimension of the

priority k(s) is f(s) = g(s) + w h(s), where h-values are

heuristic values and must be consistent [1].

As in weighted A*, R* expands states until the priority of

the goal state is smaller than the smallest priority in OPEN.

The lines 22-34 correspond to a normal expansion of state

s. It generates K random successors of state s, that haven’t

been expanded (closed) previously and goal state if within

∆ from s. For each generated state s′, it then sets paths,s′ =
null to represent that no path from s to s′ has been found yet.

The cost of the edge s → s′ is therefore set to the heuristic

estimate of the distance, clow(paths,s′) = h(s, s′), which is

an admissible estimate. Finally, similar to (weighted) A*, R*

tries to decrease the g-value of state s if it has been already

generated previously.

If R* selects a state s for expansion and the path to s

from its parent bp(s) in Γ has not been computed yet, then

R* tries to compute this path first by calling the function

ReevaluateState(s) on line 21. If path is found, R* updates

the cost clow(pathbp(s),s′) of the edge bp(s) → s based

on the cost of the found path. If not found, weighted A*

search is supposed to return the smallest (un-inflated) f -

value of a state in its queue which can be used to set the

edge cost clow(paths,s′) to an improved estimate of the

path. Depending on whether R* successfully finds the path

and how costly the path is, R* labels s as AVOID or not

(described above). If it does set the state as AVOID, it re-

computes the best predecessor of s (in case there are multiple

predecessors) and sets bp(s) accordingly. Afterwards, g(s) is

updated based on the g-value of bp(s) and the cost of the

edge in between bp(s) and s.

After the while loop of R* terminates, the solution can

be re-constructed by following backpointers bp backwards

starting at state sgoal until sstart is reached. The path is given

in terms of edges in R*, but each edge is guaranteed to have a

local path computed. Thus, the solution in the original graph

can be re-constructed.

IV. PARALLELIZATION OF R*GPU

It turns out that the decomposition of a single-shot search

into a series of easy-to-solve short-range searches lends itself

naturally to a parallel implementation on GPU. In particular,

while the main loop (figuring out what short-range search to

run next) can run on CPU, each of the short-range searches

can run on a thread in CUDA. This results in significant

speedups for the following reasons. First, each short-range

search is independent of others, which makes it suitable for

running them in parallel. Second, each search is short-range

and easy-to-solve search. This means that each search does

not require vast amounts of memory. This allows for multiple

searches to share states in the DRAM on the GPU so there

are no unnecessary expansions. Finally, each search in R*

discards its memory after it exits. This eliminates the need

for time consuming transfers of memory and makes it ideal

for running in the DRAM on the GPU.

Figure 4 shows the high-level pseudocode of R*GPU.

R*GPU runs the high level loop on CPU while performing

all short-range (local) weighted A* searches in parallel on

GPU (line 6). The search performs the same initialization as

R*. In addition, before the main loop is executed, R*GPU

generates K random successors of the start state. In the main

loop, R*GPU repeatedly selects M states from OPEN with

minimum priorities. For all the states s for which the paths

from their respective predecessors bp(s) to s have not been

found yet, R*GPU uses GPU to run local weighted A* to

compute these paths (line 6). The main difference between

R*GPU and R* is that unlike the sequential R*, R*GPU

computes up to M paths to the selected M states, all at the

same time. To compute all M paths simultaneously, we run

local weighted A* searches on GPU in parallel using one

of the two methods described in our implementation section.

After the GPU is done processing the weighted A* searches,

the costs of the found paths are retrieved from GPU, the

state values are updated and states are re-inserted into

OPEN. Figure 3 shows graphically the difference between

R* and R*GPU. After three timesteps (where each timestep

corresponds to the time allocated to a single local weighted

A* search), R* computes graph Γ that contains only three

local paths (Figure 3(a)). In contrast, R*GPU computes a

graph Γ that contains many more edges (Figure 3(b)). As a

result, R*GPU searches the state-space far more effectively

than its sequential version R*.

When the main loop terminates, the path from start to goal

is computed. At this point, the path is given by a series of

edges in the high-level graph Γ. To reconstruct the actual

path, R*GPU re-executes local weighted A* searches to find

the actual paths that correspond to each of the edges in the

path in graph Γ (line 13). Once again, this operation is done

on GPU in parallel. The found paths can now be combined

into a single path that represents a path from start to goal in

the original graph.

(a) graph Γ generated by R* (b) graph Γ generated by R*GPU

Fig. 3. High-level graphs Γ generated for 2D planning after 3 iterations
of the main loop in R* and R*GPU. The circles represent generated states.

A. Implementation on GPU

We have implemented the local weighted A* searches

in R*GPU using two different implementations. In the first

implementation, we utilized a hash table that fully protects
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1 initialize {lines 14-17 in Fig. 2}
2 generate K random successors at distance ∆ from sstart

3 Loop until sgoal is expanded

4 retrieve M states s with minimum priority k from OPEN

5 for every selected state s s.t. s 6= sstart AND pathbp(s),s = null

6 run a local weighted A* on GPU to find a path from bp(s) to s

7 retrieve the costs of all found paths from GPU and re-insert them into OPEN

8 for all selected states s that have not been sent to GPU for processing

9 expand s {lines 22-34 in Fig. 2}
10 if pathbp(s),sgoal

6= null

11 re-construct the path in Γ from sstart to sgoal

12 for every state s in the found path

13 run a local weighted A* on GPU to find a path from bp(s) to s

14 retrieve the found paths

15 combine the found paths into a single path from sstart to sgoal

Fig. 4. The high-level pseudocode of R*GPU

against having any duplicate states (in the experimental

results section we will refer to this implementation as full).

This method allows us to always find a state that has already

been generated and therefore no state is ever generated more

than once. This is a standard implementation of A* search.

In the second implementation, we only performed a partial

duplicate detection (we will refer to this implementation as

part). In this implementation, whenever we generate state s

and therefore need to see if it is already in the hash table,

we only check against the most recently added state in the

corresponding bin in the hash table. If this most recently

added state is indeed state s, we then do not need to re-

generate state s (i.e., duplicate is removed). Otherwise, s

is added to the hash table, even if the hash table already

contains it (i.e., duplicate is generated). This partial duplicate

elimination procedure results in some states being expanded

more than once, but drastically reduces the number of if-else

statements that need to be executed on GPU. The current

GPU architecture handles divergent branches poorly. In par-

ticular, Bleiweiss [26] describes how hash table construction

is a single threaded operation and is very expensive on

the GPU. Our partial duplicate elimination implementation

therefore mitigates thread divergence and minimizes data

accesses which are expensive. Since threads are running

multiple weighted A* searches in parallel, we therefore avoid

allocating memory on the fly using a structured array.

GPU Data Layout : We store our data in an efficient

collection of structure-of-arrays (SoA). This improves the

possibility of coalesced memory transactions on graphics

hardware. Most of our data structures reside in global mem-

ory on the GPU so we can increase the amount of generated

states per local search. Our search elements consist of simple

structs aligned to 64 bit coalesced global memory access to

foster aligned accesses on the graphics card. The rest of the

variables reside in a single cycle register memory on the

GPU to increase performance.

V. EXPERIMENTAL RESULTS

We implemented our R*GPU algorithm in the CUDA pro-

gramming language. All tests were performed on a machine

with an NVIDIA Tesla C870 card with 1.5 GB of GPU

memory and with a Core 2 Quad processor running at 2.33

GHz and 3 GB memory. In the first set of experiments,

we have evaluated the performance of R*GPU on simple

(a) motion generated (b) motion generated

by R*GPU (cost=78) by R* (cost=101)

Fig. 5. Motions generated for a simulated 6 DOF robot arm after 30 secs
of planning

2D planning on an eight-connected grid. In our tests, we

dedicated each R* or R*GPU search 10 seconds for planning

and then executed these R* and R*GPU searches repeatedly

for 2 minutes each. This corresponded to running as many

R* (R*GPU) searches as possible within 2 minutes to obtain

the best cost across these runs. Since each R* (R*GPU)

search comes with the probability of obtaining w-suboptimal

solution, running repeated R* (R*GPU) searches increases

this probability proportionally to the number of runs. Based

on these runs, we reported three performance measures: (a)

the best cost across all R* (R*GPU) searches executed within

the 2 minutes; (b) the number of R* (R*GPU) searches

that have successfully found solution within 10 seconds

allocated to them; and (c) the total number of local weighted

A* searches called by all of the R* (R*GPU) searches

executed within the 2 minutes. The reported performance

measures (Table I) are the (full) implementation of R* and

(part)implementation of R*GPU, which were the best set of

configuration parameters for both the CPU and GPU. We

averaged over on 90 randomly generated gridworld maps of

varying obstacle density (20% and 40%). In addition, we

have also evaluated the performances of R* and R*GPU on

both actual (simple) edgecost computations and artificially

slowed-down (hard) edgecost computations. The actual edge-

costs were Euclidean distances and were therefore cheap

to compute. The artificially slowed-down computations in

2D involved a series of trigonometric calculations to sim-

ulate complicated planning domains. Motion planning for

non-circular robots and motion planning for robotic arms

involve significantly more computationally expensive cost

evaluations. We analyze a more realistic problem domain,

motion planning for a robot arm, in our detailed experimental

analysis which includes computationally expensive edge cost

computations. In all the experiments, the heuristic we used

was based on Euclidean distance.

The results show that R*GPU outperforms the CPU ver-

sion of R* as obstacle density increases and as the edgecost

computation becomes time-consuming, which is often the

case when planning for complex systems. The number of

local weighted A* searches decreases drastically on the CPU

as the complexity of edgecost computations increases. In

these cases, R*GPU manages to perform over 30 times more

of weighted A* searches and consequently finds solutions of
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smaller cost and with higher probability.

2D Planning

Performance Obstacle Planner Simple Hard
Measurement Density Expand Expand

Best Cost
20%

R*GPU 321.31 330.80

R* 316.75 344.19

40%
R*GPU 347.72 361.64
R* 349.90 392.39

# of succ R*
20%

R*GPU 69.87 5.94

R* 2461.55 3.55

40%
R*GPU 23.56 3.21

R* 45.54 2.15

# of Local A*
20%

R*GPU 79808.71 7114.38
R* 50327.09 204.42

40%
R*GPU 26020.94 1469.31

R* 54045.52 185.58

TABLE I

EXPERIMENTAL RESULTS: RESULTS FOR THE 2D PLANNER

In the second set of experiments, we compared the per-

formance of R*GPU with the CPU version of R* on a

simulated 6 degree of freedom (DOF) planar robotic arm

(shown in Figure 5) [11]. Each R* or R*GPU search was

dedicated 30 seconds for planning, but just as in the first

experiments, we ran as many R* (R*GPU) searches as

possible within 5 minutes. Based on these runs, we computed

the best cost across the runs, the number of successful R*

(R*GPU) searches, and the number of local weighted A*

searches performed across all R* (R*GPU) runs within the

5 minutes. We averaged these results over both (full and part)

implementations on 53 randomly generated maps of varying

obstacle placement.

As shown in Figure 5, in all of the experiments, the base of

the arm was fixed, and the task was to move its endeffector

to the goal (small circle on the left) while navigating around

obstacles (indicated by grey rectangles). The resulting state-

space was over 3 billion states. The cost of each change

in a joint angle was 1. We tested our algorithm using three

settings of w. A smaller value of w relates to a better bound

on suboptimality and therefore makes the search harder. The

results shown in Table II demonstrate that R*GPU produces

consistently a significantly lower “best cost”, and within

five minutes we execute over 38 times more of successful

R*GPU searches and over 64 times more of weighted A*

searches than when executing R* searches on CPU (Note

that the shown numbers are ratios). As a result, R*GPU has

a much higher chance of finding a feasible solution, and can

solve much harder problems than R* could. Our detailed

experimental analysis in the following section illustrates this

result in more detail.

VI. DETAILED EXPERIMENTAL ANALYSIS

In this section, we present the detailed experimental study

of the performance of R*GPU on a simulated 6 degree of

freedom planar robotic arm [11]. In these experiments, we

have tested our algorithm using three settings of w and two

thresholds for the number of generated states within each

1The goal state is partially specified in 2D by the end effector of the
robot arm.

6 DOF Robot Arm

Performance Measure w R*GPU/R*

Best Cost
2 0.965
4 0.921
6 0.918

# of Succ R*
2 38.5556
4 37.516
6 24.917

# of Local A*
2 24.899
4 44.268
6 64.262

TABLE II

EXPERIMENTAL RESULTS: AVERAGE OF PER RUN RATIO

(R*GPU / R*) FOR 3 DIFFERENT w SETTINGS FOR THE 6 DOF

ROBOT ARM.

local weighted A* search: 512 states and 1024 states. As

before, the smaller value of w relates to a better bound

on suboptimality and therefore makes the search harder.

The larger threshold on states generated within each local

weighted A* search allows for the search to search longer

before a state is deemed as an AVOID state. However, this

comes at the cost of more expensive memory accesses.

We tested both (full and part) implementations of R* and

R*GPU. All 12 (3 values of w, 2 values of thresholds, and 2

implementations) variants of R* and R*GPU were tested on

53 randomly generated maps of varying obstacle placement,

three times each. For each trial we ran as many R* (R*GPU)

searches as possible within five minutes and restricted each

R* (R*GPU) to no more than 30 seconds of planning.

Number of Successful R* Searches: Figure 6 compares

the number of R* searches and the number of R*GPU that

completed successfully in the allotted time of 30 seconds

per search over a total five minutes of running time. For

cases with smaller bounds on suboptimality (w = 2), R*GPU

completes 36 to 38 times more often than R*.

Fig. 6. Average ratio of successful searches (R*GPU / R*) within 5 min.

Total Number of A* Searches: Figure 7 compares the

total number of local weighted A* searches performed by R*

and R*GPU across all runs within five minutes. According

to the results, R*GPU was able to run two to five times more

local weighted A* searches than its sequential version.

Best Cost: Figure 8 shows that the motions generated by

five minutes of repeated R*GPU searches are consistently of

lower costs across all settings of R* and R*GPU algorithms.

Though, as w decreases (in other words, the search aims for

a better suboptimality bound), the gap between solution costs
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Fig. 7. The average ratio of the total number of local weighted A* searches
(R*GPU / R*).

returned by R*GPU and R* becomes smaller.

Fig. 8. The average Best Cost ratio (R*GPU / R*).

Percentage of Runs Completed: Figure 9 compares

the percentage of runs completed within five minutes. The

R*GPU (left bar) completes at a much higher rate across

all settings. For example, for w = 2 with threshold set to

512 states, 85% of R*GPU searches successfully completed

whereas only 40% of CPU R* searches were successful.

This is because R*GPU executes more local weighted A*

searches in parallel and therefore covers a larger area of the

state space.

Fig. 9. The average percentage of R* and R*GPU searches completed
within five minutes.

Number of Goal Paths: Since R* and R*GPU try to

satisfy the bounds on suboptimality, they may actually reach

the goal state before they terminate. In particular, they may

find multiple paths to the goal. Only the least-cost path is

finally recorded. However, looking at these statistics (shown

in Figure 10), R*GPU reaches the goal state 65x - 309x more

often than its CPU version depending on the setting. This is

so, because each R*GPU runs many more local weighted

A* searches. As a result, the GPU version of R* has a

much higher chance of producing a lower cost path since

it generates many more paths to the goal state.

Fig. 10. The average ratio of total number of goal paths (R*GPU / R*).

Performance Over Time: Figure 11 plots the perfor-

mance of three runs of five minute planning using repeated

R*GPU and repeated R* searches on one of the random

maps. The plots show that R*GPU consistently produces

a lower cost solution quicker than R*. This implies that

R*GPU may be executed fewer times than the CPU version

of R* to reach the desired solution quality. Figure 12 plots all

the solution costs returned by R* and R*GPU over the five

minute window. This plot demonstrates that there are more

R*GPU searches completed and they have a much higher

probability of producing a lower cost.

Fig. 11. Three trials showing the Best Cost tracked across five minute
planning with R* and R*GPU.

Fig. 12. Solution costs returned by R* and R*GPU in three trials, each
consisting of five minute planning with repeated R* and R*GPU searches.

Problem Hardness: Table III outlines three performance

metrics (best cost, # of Succ R* and # of local A*) for

different w settings and how they relate to the complexity
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of the problem. The hardness of the planning problem was

strongly correlated with obstacle density: the higher the

density, the more difficult it was to find a collision-free

motion for the robot arm. The results show that for easy

maps the GPU version performs equally well in best cost,

but the CPU version successfully completes many more easy

R* searches. As maps become very hard however, the CPU

version fails to solve any problems, whereas the R*GPU

is able to solve many. The conclusion is that the R*GPU

is better suited to planning for hard planning problems as

opposed to the problems in which heuristics are already

guiding the search well.

6 DOF Robot Arm

Performance w Planner Easy Medium Hard Very Hard

Measurement

Best Cost

2
R*GPU 50 61 59.7 N/A

R* 50 67 N/A N/A

4
R*GPU 51 63.3 65.7 89.7

R* 51 69.3 80 N/A

6
R*GPU 51 64 66.3 91

R* 51 70.7 79.5 N/A

# of Succ R*

2
R*GPU 330.3 166 129.3 N/A

R* 1,819 15 N/A N/A

4
R*GPU 391.3 218.7 257.3 7.3

R* 12,554.7 85.3 3.7 N/A

6
R*GPU 353.3 208.3 258.3 27.3

R* 16,415.3 69 1.0 N/A

# of Local A*

2
R*GPU 128,412 113,887.7 137,810.7 179,778.3

R* 73,059.3 57,238.3 59,686.7 62,225.3

4
R*GPU 106,858.3 94,006 116,268.7 144,635.7

R* 68,654.7 52,449.0 57,931 61,117.7

6
R*GPU 107,342.3 93,833.3 114,4799.7 134,779.3

R* 69,766.7 44,451 60721.3 60,489.7

TABLE III

DETAILED EXPERIMENTAL RESULTS SHOWING THE DEPENDENCY ON

PROBLEM HARDNESS.

VII. CONCLUSIONS

In this paper, we presented a novel implementation of a

randomized heuristic search, namely R* search. Our exper-

imental analysis shows that for easy problems with cheap

edge cost computations, the need for the GPU version of

R* is unnecessary. In fact, the CPU version of R* performs

better. Many real planning problems, especially in robotics,

are hard and involve expensive cost computations. For these

problems, the GPU version of R* offers a significant im-

provement in performance in terms of lower solution cost and

higher chances of finding a feasible solution. In the future,

we intend to port the R*GPU search onto a real robotic

manipulator and evaluate its performance there. We also plan

on further investigating how and what planning in robotics

can take advantage of parallel processing hardware that is

readily available today.
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