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Abstract— Turning is one of the most important maneuvers
for biological and robotic fish. In our group’s prior work, an
analytical framework was proposed for modeling the steady
turning of fish, given asymmetric, periodic body/tail movement
or deformation. However, the approach was not illustrated with
simulation or validated with experiments. The contributions of
the current paper are three fold. First, an extension to the
modeling framework is made with a more rigorous formulation
of the force balance equation. Second, we have worked out
two examples explicitly, one with an oscillating, rigid tail, and
the other with a flexible tail having a uniform curvature, and
compared their turning behaviors through numerical results.
Third, for model validation purposes, a robotic fish prototype
has been developed, with the tail shaft controlled precisely
by a servo motor. For a rigid tail, experimental results have
confirmed the model prediction that, for the tested range, the
steady-state turning radius and turning period decrease with
an increasing bias in the tail motion, and that the turning
period drops with an increasing tail beat frequency. We have
also found that, with a flexible fin attached to the tail shaft, the
robot can achieve faster turning with a smaller radius than the
case of a rigid fin, and modeling within the same framework
is underway to understand this phenomenon.

I. INTRODUCTION

There is a tremendous interest in developing highly ma-

neuverable and efficient robotic fish [1]–[10]. In contrast

to underwater vehicles powered by propellers, these robots

achieve locomotion and maneuvering through deformation

and movement of the body and fin-like devices which are

often actuated with motors [9], [11], [12] or smart materials

[3], [7], [8], [13], [14]. An important maneuver for robotic

fish, as is for biological fish, is the turning. Turning has

been studied extensively in experimental and mathematical

biology. For example, wake dynamics and fluid forces during

the turning maneuver of a sunfish were studied by Drucker

and Lauder [15], and the kinematics and muscle dynamics of

carp in sharp turn during C-start were examined by Spierts

and van Leeuwen [16]. Weihs performed hydrodynamic

analysis of turning maneuvers of real fish using the slender

body theory [17]. In robotics, turning strategies for robotic

fish have been studied analytically and experimentally [18]–
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It is desirable to have an analytical understanding of

turning behavior in terms of the body and/or fin move-

ment, which would be instrumental in the design and

control of robotic fish. Existing modeling work extracts

turning information from simulated trajectories based on

dynamics-governing equations (e.g., [19], [20]), which is

time-consuming and does not provide much direct insight.

In our group’s prior work [21], a modeling framework was

proposed for the computation of steady-state turning motion

given asymmetric, periodic body/tail deformation of a robotic

fish. In this approach it is postulated that the two key

parameters of turning motion, the radius and the period, can

be obtained by solving the implicit force and moment balance

equations for the averaged, steady-state motion, where the

hydrodynamic force and the resulting moment are evaluated

with Lighthill’s large-amplitude elongated-body theory [22].

However, the modeling framework was not illustrated with

simulation results or validated in experiments.

The contributions of the current paper lie in the extension,

illustration, and experimental validation of the analytical

modeling framework originally proposed in [21]. First, we

provide a modified, more rigorous formulation for the force

balance equation, which is consistent with the classical

case of forward swimming [23]. Second, two examples are

worked out explicitly to illustrate the modeling approach.

The first example is a robotic fish with a rigid tail that

oscillates periodically with a fixed bias angle, while the

second example deals with a flexible tail having a uniform

curvature, where the curvature varies periodically with a

fixed bias. In both cases, explicit equations of the turning

radius and turning period (or angular frequency of turning)

are derived in terms of the tail gait parameters. Numerical

results are provided to illustrate the turning behavioral dif-

ferences between the two tails.

For model validation purposes, we have further devel-

oped a robotic fish prototype, with the tail shaft controlled

precisely by a servo motor. Different passive fins can be

attached to the shaft. For a rigid tail, experimental data on

turning have confirmed the model prediction that, for the

tested range, the steady turning radius and turning period

decrease when the bias in the tail motion increases, and

that the turning period drops when the tail beat frequency

increases. A flexible passive fin has also been amounted on

the tail shaft, and with the same input to the servo motor,

the flexible tail results in faster turning with a smaller radius

than the case of a rigid tail. A closer look reveals that the

flexible tail undergoes biased rotation of its base point and

(approximately) symmetric change of curvature caused by

the fin-fluid interactions. Work is underway to apply the
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analytical modeling framework to elucidate the observed

turning behavior for the flexible tail.

The remainder of the paper is organized as follows. The

analytical modeling framework is described in Section II.

Illustrative examples for a rigid tail and a flexible tail with

uniform curvature are presented in Section III. Experimental

results on a robotic fish prototype are provided in Section IV.

Concluding remarks are provided in Section V.

II. THE MODELING FRAMEWORK FOR STEADY TURNING

A. Evaluation of the Hydrodynamic Force

The framework uses Lighthill’s large-amplitude elongated-

body theory [22] to evaluate the hydrodynamic reactive force

experienced by a robotic fish. A frame of reference is chosen

such that the water far from the fish is at rest. As illustrated

in Fig. 1, the x− and z−axes are horizontal while the y−axis

is vertical (pointing into water). The fluid is considered to

be inviscid. It is assumed that the fish swims at a fixed depth

y = 0 and thus moves only in the horizontal x− z plane. The

spinal column of the fish is assumed to be inextensible and is

parameterized by a, with a = 0 denoting the anterior end of

the fish and a= L denoting the posterior end. The coordinates

(x(a, t),z(a, t)),0≤ a≤ L, denotes the time trajectory of each

point a on the spinal column, which could be due to fish

body/fin undulation or the resulting translational/rotational

motion of the whole fish.
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Fig. 1. Illustration of the coordinate system for the spinal column
of fish (view from top).

Following Lighthill [22], given (x(a, t),z(a, t)), the hydro-

dynamic reactive force density at each point a < L is

f(a) =

(

fx(a)
fz(a)

)

=−m
d

dt
(win), (1)

and at a = L, there is a concentrated force

FL =

(

FLx

FLz

)

=

[

1

2
mw2it − umwin

]

a=L

. (2)

In (1) and (2), m denotes the virtual mass per unit length and

can be approximated by 1
4
πρs2, where ρ is the density of

water and s is the depth of the cross-section. As illustrated in

Fig. 1, it =(−∂x/∂a,−∂ z/∂a)T and in =(∂ z/∂a,−∂x/∂a)T

(with T denoting transpose) represent the unit vectors tan-

gential and perpendicular to the spinal column, respectively,

and u and w represent the components of the velocity v =

(∂x/∂ t,∂ z/∂ t)T at a in it and in directions, respectively:

u = < v, it >=−
∂x

∂ t

∂x

∂a
−

∂ z

∂ t

∂ z

∂a
, (3)

w = < v, in >=
∂x

∂ t

∂ z

∂a
−

∂ z

∂ t

∂x

∂a
. (4)

B. Analytical Modeling of Steady Turning

While the theory in Section II-A allows one to evaluate the

reactive force given the motion trajectories (x(a, t),z(a, t)),
it cannot predict the motion given the body/tail deformation.

If we view the motion of a fish or robotic fish as the sum

of the global, rigid-body motion (translation and rotation)

and the local deformation or movement of body/fin, it is

desirable to understand what would be the global motion

given the local movement. This problem is of particular

interest for robotic fish, because the local movement is

typically generated through actuation (an input that can be

manipulated) and the global motion represents the outcome.

We consider the steady turning motion of a robotic fish un-

der general, periodic, asymmetric movement of body and/or

fin. For ease of presentation, however, we will focus on the

case of a carangiform robotic fish, consisting of a rigid body

part and a caudal fin. It is expected that, under periodic,

asymmetric tail movement, the robotic fish will settle down

to a “steady” turning motion1. The key parameters of interest

are the turning radius R and the turning period T1 (or

equivalently, the angular velocity of turning, ω 1 = 2π/T1).

By taking R and ω1 as unknowns, one can first derive

(x(a, t),z(a, t)) in terms of the global motion characterized by

R and ω1 and the given tail motion. Hydrodynamic reactive

force and the resulting moment can be evaluated using (1)

and (2). Force and moment balance equations will then lead

to implicit equations involving R and ω1, the solution of

which provides the values of R and ω1. A more detailed

account of the approach follows.

Fig. 2 shows the coordinate systems used. The x − z

coordinate system is the global reference system and does

not change with time. On the other hand, there is a moving

coordinate system x′− z′ attached to the body of the robotic

fish, with z′−axis pointing to the heading direction of the

robot. The periodic tail movement relative to the body is

specified by (x′(a, t),z′(a, t)) with some period T0. The origin

of the moving frame is set to be at the center O ′ of inertia of

the robot. For ease of discussion, we assume that the center

of mass is also located at O′. The distance between O′ and

the beginning of tail (a = 0) is denoted as c. As mentioned

earlier, the robot is assumed to swim on the circle with radius

R, at an angular velocity of ω1. Consequently, the x′−axis

coincides with the ray connecting the origin of x− z frame

to the center of the robot.

Without loss of generality, we take the angle α between

the x− and x′−axes to be ω1t. The trajectory of a in the

1Strictly speaking, the hydrodynamics is constantly under an unsteady
state. By “steady” turning, we mean that the mean motion averaged over
the actuation period is constant.
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Fig. 2. The inertial x− z frame and the moving x′ − z′ frame on
the robotic fish, which swims in a circle.

x− z frame can then be represented by
(

x(a, t)
z(a, t)

)

=

(

xo′(t)
zo′(t)

)

+

[

cosα −sinα
sinα cosα

](

x′(a, t)
z′(a, t)

)

, (5)

where α = ω1t, and (xo′(t),zo′(t)) represents the position of

center of robotic fish: xo′(t) = Rcos(ω1t), zo′(t) = Rsin(ω1t).
The hydrodynamic force density f(a) = ( f x(a), fz(a))

T and

the concentrated force FL = (FLx,FLz)
T at z = L can then be

evaluated with (1) and (2), with a total force given by

F =

(

Fx

Fz

)

=

[

1

2
mw2it − umwin

]

a=L

−
d

dt

∫ L

0
mwinda.

(6)

Let f′(a) = ( fx′(a), fz′(a))
T and F′

L = (FLx′ ,FLz′)
T be the

representations of f(a) and FL in the x′ − z′ frame, respec-

tively. Note that

f′(a) =

(

fx′(a)
fz′(a)

)

=

[

cosα sinα
−sinα cosα

](

fx(a)
fz(a)

)

, (7)

and

F′
L =

(

FLx′

FLz′

)

=

[

cosα sinα
−sinα cosα

](

FLx

FLz

)

. (8)

The reactive force F=(Fx,Fz)
T in the x−z frame, as a whole,

can be represented in the x′− z′ frame as F′ = (F ′
x ,F

′
z )

T via

transformation

F′ =

(

Fx′

Fz′

)

=

[

cosα sinα
−sinα cosα

](

Fx

Fz

)

. (9)

Note that all the force terms will be functions of R, ω1, and

the tail movement pattern.

At steady turning, the robot achieves a constant tangential

speed. This implies that the average of F ′
z over one tail

movement period T0 will be balanced by the mean drag force

in the opposite direction. Define

Ft =
1

T0

∫ T0

0
F ′

z (t)dt. (10)

F t will be written as F t(R,ω1) since it is a function of R

and ω1. It then follows that

Ft(R,ω1) =
CdρS(ω1R)2

2
, (11)

where Cd is the drag coefficient, and S is the wetted surface

area. Note that in our group’s prior work [21], the mean

centripetal force was involved in the force balance equation.

Comparing to the earlier approach, Eq. (11) is a more

rigorous formulation and effectively accommodates the effect

of drag, and it is consistent with the approach used by

Lighthill in deriving the forward swimming speed of a fish

[23].

At steady turning, the robot also undergoes constant

rotation and thus the moment balance equation holds. The

moment τ generated by f ′(a) and F′
L with respect to O′ can

be evaluated as

τ(t) =

∫ L

0
fz′(a)x

′(a, t)− fx′(a)z
′(a, t)da

+FLz′x
′(L, t)−FLx′z

′(L, t). (12)

Define the average of τ over the period T0 as

τ̄ =
1

T0

∫ T0

0
τ(t)dt. (13)

Note that τ̄ will be a function of R and ω1, so we write

τ̄(R,ω1). The moment balance equation reads

τ̄(R,ω1) = γω1, (14)

where γ is the rotational damping coefficient of the robot.

Eqs. (11) and (14) form a pair of equations involving the

two unknowns R and ω1. By solving these two equations

jointly, we can obtain the values of turning radius R and

angular velocity ω1 for the given pattern of tail movement.

III. ILLUSTRATIVE EXAMPLES

In this section we illustrate the analytical modeling ap-

proach with examples. As shown in Fig. 3, two types of tail

movement are considered. The first is an oscillating rigid tail,

with the angle θ satisfying

θ (t) = θb +θ0 sin(ω0)t, (15)

where θb and θ0 denote the bias and the amplitude of the

tail oscillation, respectively. In the second case (Fig. 3(b)),

the tail is flexible with a uniform curvature throughout its

length, and we assume that the curvature κ(t) satisfies

κ(t) = κb +κ0 sin(ω0)t, (16)

where κb and κ0 denote the bias and the amplitude of curva-

ture variation. Note that an ionic polymer-metal composite

(IPMC) caudal fin could produce a uniform curvature that

varies according to (16) with a biased sinusoidal voltage

input, if the surface resistance of the IPMC material is zero

[24].

We assume that both tails have a uniform width b. For the

rigid tail case, one can show that the final force and moment

balance equations take the following form:

a0 + a1ω1 + a2ω2
1 + a3ω1R+ a4ω2

1 R+ a5ω2
1 R2 = 0, (17)

A0 +A1ω1 +A2ω2
1 +A3ω1R+A4ω2

1 R+A5ω2
1 R2 = 0, (18)
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Fig. 3. Definitions of tail movement patterns. (a) Rigid tail; (b)
Flexible tail with uniform curvature.

where the coefficients are evaluated as

a0 = −
1

T0

∫ T0

0
L2 sin(θ )θ̈dt,

a1 =
1

T0

∫ T0

0
2cLθ̇ sin2 θdt,

a2 =
1

T0

∫ T0

0

[

c2 cosθ (1+ sin2 θ )+ cL(1− cos2θ )
]

dt,

a3 =
1

T0

∫ T0

0

[

2csin3 θ − 2Lθ̇ sin(2θ )
]

dt,

a4 = −
1

T0

∫ T0

0
Lsin(2θ )dt,

a5 = −
1

T0

∫ T0

0

[

sin2 θ cosθ +
CdρS

m

]

dt,

A0 = −
1

T0

∫ T0

0

[

cL2θ̈ cosθ +
2

3
L3θ̈

]

dt,

A1 =
1

T0

∫ T0

0

[

3cL2θ̇ sinθ + 2c2Lθ̇ sin(2θ )−
2γ

m

]

dt,

A2 =
1

T0

∫ T0

0

[

2c2Lsin(2θ )+ 2cL2 sinθ

+c3 sin(2θ )cosθ − c3 sinθ cos2 θ
]

dt,

A3 = −
1

T0

∫ T0

0

[

3L2θ̇ cosθ + 4cLθ̇ cos2 θ
]

dt,

A4 = −
1

T0

∫ T0

0

[

cL+ 2L2 cosθ + 3cLcos(2θ )

+2c2 cos3 θ
]

dt,

A5 = −
1

T0

∫ T0

0

[

(L+ ccosθ )sin(2θ )− csin3 θ
]

dt,

where T0 = 2π/ω0, and θ denotes the time function θ (t).
For the flexible tail with a uniform curvature function κ(t),

it can be shown that the force and moment balance equations

take the same form as (17) and (18), but the expressions

for the coefficients are much longer and thus omitted here

because of space limitation.

Fig. 4 and Fig. 5 show the numerical results for the

two cases. The parameters used in the computation are:

L = 0.08 m, b = 0.015 m, c = 0.07 m, Cd = 0.01, ρ =
1000 kg/m3, S = 0.01 m2, and γ = 2.5× 10−4. Eqs. (17)

and (18) are solved using the fsolve command in Matlab.

For both cases, it can be seen that, when the bias increases,

the turning radius becomes smaller, which is consistent with

one’s intuition. The effect of bias on the turning period is

more interesting, since it seems that, for both cases, there

exists an optimal bias that minimizes the turning period.

In the simulation, we have made the two tail movements

somewhat comparable in the following sense: the angle θ ′

defined in Fig. 3(b) for the curvature case is equal to θ
defined in Fig. 3(a) for the rigid tail case. From the numerical

results in Figs. 4 and 5, it appears that for “comparable” tail

movement, the curvature-controlled tail results in a smaller

turning radius and smaller turning period than the bending-

controlled tail. To some extent, this difference also indicates

the advantage of a flexible tail in maneuvering.
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Fig. 4. Simulation results for a rigid fin: turning radius and period
versus bias angle. In all cases, the tail beats at 1 Hz with amplitude
10◦.
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Fig. 5. Simulation results for a flexible fin with uniform curvature:
turning radius and period versus bias curvature. In all cases, the tail
deforms at 1 Hz with curvature amplitude 4.36m−1 .

IV. EXPERIMENTAL RESULTS

A robotic fish prototype has been constructed to further

validate the modeling approach. As shown in Fig. 6, a

servo motor (HS-5085MG from Hitec) is used to control the

angular position of a tail shaft through a chain transmission

mechanism. A slit is cut in the shaft, where a tail can been

inserted and secured with screws. The shell of the robot
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is custom-made with fiberglass and carbon fiber. Control

signals and power to the servo motor are provided through

thin, flexible wires (Ultra-Flex Miniature Wire 36 Awg from

McMaster-Carr) off the robot. A carbon fiber foil, 5.3 cm

long and 1.7 cm wide, is attached to the tail shaft as a caudal

fin. The foil has little deformation when moved through water

and is considered to be rigid in this study. With a given

pattern θ (t), (15), for the tail shaft, it is observed that the

robot trajectory converges to a circular orbit (Fig. 7). Videos

of the robot motion are taken and processed to extract the

turning radius and period for a given tail pattern.

Chain transmission

Tail shaft

Tail

Servo motor

Fig. 6. A robotic fish prototype with a servo-driven tail.

Bias: 20 q

Bias: 50 qBias: 40 q

Bias: 30 q

Fig. 7. Turning trajectories of the robotic fish with different bias
angles. In all cases, the tail beats at 2 Hz with amplitude 22.5◦.

Fig. 7 shows the circular paths of the robot when the tail

beats at 2 Hz with amplitude θ0 = 22.5◦ but with different

bias angles. It can be seen that the turning radius decreases

as the bias angle θb increases. Fig. 8 shows the comparison

between the measured turning parameters and the model pre-

dictions. The following additional parameters for the model

have been identified and used in numerical computation:

c = 0.047 m, S = 0.014 m2, Cd = 0.13, and γ = 2.5× 10−4.

From the figure, for the tested range, the model has predicted

correctly the decreasing turning radius and period when the

bias is increased, with good, quantitative agreement with the

experimental data. The model has been further validated with

a different set of experimental conditions. As shown in Fig. 9,

the model is able to predict how the turning period changes

when one varies the tail beat frequency.

20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

T
u
rn

 r
a
d
iu

s
 (

m
)

20 25 30 35 40 45 50
0

10

20

30

40

Bias (°)

T
u
rn

 p
e
ri
o
d
 (

s
)

Experiment

Simulation

Experiment

Simulation

Fig. 8. Experimental validation of the turning model: turning radius
and period versus bias angle. In all cases, the tail beats at 2 Hz with
amplitude 22.5◦.
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Fig. 9. Experimental validation of the turning model: turning period
versus tail beat frequency. In all cases, the tail beats with bias 20◦

and amplitude 22.5◦.

We have also conducted experiments with different tail

materials to examine the effect of tail stiffness on turning. A

transparency film (from 3M) is cut into the same size as that

of the rigid tail and attached to the tail shaft. When moved

through water by the servo motor, the film deforms, as can

be seen in Fig. 10. Here the robot is anchored and the tail

movement is captured by a CCD camera (Grasshopper from

Point Grey Research Inc.) at 120 frames per second. The base

point of the flexible tail, where the tail connects to the shaft,

is highlighted. From the figure, the motion of the flexible

tail is a combination of the base point translation (with the
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shaft) and the tail shape change due to fin-fluid interactions.

The curvature of the tail is approximately uniform along

the length, and it tends to be maximum when the tail shaft

reverses. Note that the flexible tail movement here is different

from the one considered in Fig. 3(b) in that it has a moving

base point and its curvature change does not appear to be

biased. So we cannot apply the analytical results presented in

Section III, but the experimental results below are of interest

in their own right.

t = 0 s

t = 0.0625 s

t = 0.1250 s

t = 0.1875 s

t = 0.2500 s

t = 0.3125 s

t = 0.3750 s

t = 0.4375 s

Tail

Base point

Fig. 10. Snapshots of the flexible tail beating at 2 Hz with bias 20◦

and amplitude 52.5◦. The body of the robotic fish is anchored.

Figs. 11 and 12 compare the rigid and flexible tails on

their turning performance under a wide range of tail beat

conditions. It can be observed that, in general, the robot

turns faster with a smaller turning radius when equipped

with the flexible tail, for the same motion of the tail shaft.

The only exception is that, when the tail beat frequency gets

high (above 2 Hz), the period of turning with the flexible

tail seems to become longer (Fig. 12). This counterintuitive

phenomenon might be explained by that, due to the relatively

low resonant frequency of the flexible tail, the amplitude of

curvature change drops as the beat frequency increases, as

shown in Fig. 13.
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Fig. 11. Experimental comparison of turning performance between
rigid and flexible tails: turning radius and period versus tail os-
cillation amplitude. In all cases, the tail beats at 2 Hz with bias
20◦.
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Fig. 12. Experimental comparison of turning performance between
rigid and flexible tails: turning radius and period versus tail beat
frequency. In all cases, the tail beats with bias 20◦ and amplitude
22.5◦.
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Fig. 13. Measured maximum tail curvature versus tail beat fre-
quency for the flexible tail. In all cases, the tail beats with bias 20◦

and amplitude 22.5◦.

V. CONCLUSION AND FUTURE WORK

In this paper we have provided two numerical examples

to illustrate an analytical approach to the modeling of steady

turning of robotic fish. For an oscillating, perfectly rigid
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tail, and a flexible tail with curvature control, the force and

moment balance equations have been derived explicitly in

terms of two unknowns, the turning period and the turning

radius. Numerical results have been obtained, which provide

interesting comparisons between the two cases. We have

further validated the model with experiments on a robotic

fish prototype, for the case of a perfectly rigid tail. When

tails with different stiffness are attached to the tail shaft, we

have observed that a flexible tail tends to result in faster

turning with a smaller radius than a rigid tail.

Future work will be carried out in several directions. First,

the force and moment balance equations, (11) and (14),

are highly nonlinear and can admit multiple solutions. We

will examine the properties of these equations to provide

insight as to how to pick parameters (including initial values

for the solutions) for the solver. Second, the robotic fish

prototype used in this paper was tethered. Although the

wires were flexible, they introduced difficulty and errors in

characterizing the turning motion. Therefore, an untethered

robot with onboard power and control will be instrumental in

providing more accurate measurements. Third, we will apply

the modeling framework to elucidate the observed turning

phenomenon for the case of a flexible passive tail attached

to the servo-driven shaft.
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