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Analytical Modeling and Experimental Studies of Robotic Fish Turning
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Abstract— Turning is one of the most important maneuvers
for biological and robotic fish. In our group’s prior work, an
analytical framework was proposed for modeling the steady
turning of fish, given asymmetric, periodic body/tail movement
or deformation. However, the approach was not illustrated with
simulation or validated with experiments. The contributions of
the current paper are three fold. First, an extension to the
modeling framework is made with a more rigorous formulation
of the force balance equation. Second, we have worked out
two examples explicitly, one with an oscillating, rigid tail, and
the other with a flexible tail having a uniform curvature, and
compared their turning behaviors through numerical results.
Third, for model validation purposes, a robotic fish prototype
has been developed, with the tail shaft controlled precisely
by a servo motor. For a rigid tail, experimental results have
confirmed the model prediction that, for the tested range, the
steady-state turning radius and turning period decrease with
an increasing bias in the tail motion, and that the turning
period drops with an increasing tail beat frequency. We have
also found that, with a flexible fin attached to the tail shaft, the
robot can achieve faster turning with a smaller radius than the
case of a rigid fin, and modeling within the same framework
is underway to understand this phenomenon.

I. INTRODUCTION

There is a tremendous interest in developing highly ma-
neuverable and efficient robotic fish [1]-[10]. In contrast
to underwater vehicles powered by propellers, these robots
achieve locomotion and maneuvering through deformation
and movement of the body and fin-like devices which are
often actuated with motors [9], [11], [12] or smart materials
[31, [7], [8], [13], [14]. An important maneuver for robotic
fish, as is for biological fish, is the turning. Turning has
been studied extensively in experimental and mathematical
biology. For example, wake dynamics and fluid forces during
the turning maneuver of a sunfish were studied by Drucker
and Lauder [15], and the kinematics and muscle dynamics of
carp in sharp turn during C-start were examined by Spierts
and van Leeuwen [16]. Weihs performed hydrodynamic
analysis of turning maneuvers of real fish using the slender
body theory [17]. In robotics, turning strategies for robotic
fish have been studied analytically and experimentally [18]-
[20].
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It is desirable to have an analytical understanding of
turning behavior in terms of the body and/or fin move-
ment, which would be instrumental in the design and
control of robotic fish. Existing modeling work extracts
turning information from simulated trajectories based on
dynamics-governing equations (e.g., [19], [20]), which is
time-consuming and does not provide much direct insight.
In our group’s prior work [21], a modeling framework was
proposed for the computation of steady-state turning motion
given asymmetric, periodic body/tail deformation of a robotic
fish. In this approach it is postulated that the two key
parameters of turning motion, the radius and the period, can
be obtained by solving the implicit force and moment balance
equations for the averaged, steady-state motion, where the
hydrodynamic force and the resulting moment are evaluated
with Lighthill’s large-amplitude elongated-body theory [22].
However, the modeling framework was not illustrated with
simulation results or validated in experiments.

The contributions of the current paper lie in the extension,
illustration, and experimental validation of the analytical
modeling framework originally proposed in [21]. First, we
provide a modified, more rigorous formulation for the force
balance equation, which is consistent with the classical
case of forward swimming [23]. Second, two examples are
worked out explicitly to illustrate the modeling approach.
The first example is a robotic fish with a rigid tail that
oscillates periodically with a fixed bias angle, while the
second example deals with a flexible tail having a uniform
curvature, where the curvature varies periodically with a
fixed bias. In both cases, explicit equations of the turning
radius and turning period (or angular frequency of turning)
are derived in terms of the tail gait parameters. Numerical
results are provided to illustrate the turning behavioral dif-
ferences between the two tails.

For model validation purposes, we have further devel-
oped a robotic fish prototype, with the tail shaft controlled
precisely by a servo motor. Different passive fins can be
attached to the shaft. For a rigid tail, experimental data on
turning have confirmed the model prediction that, for the
tested range, the steady turning radius and turning period
decrease when the bias in the tail motion increases, and
that the turning period drops when the tail beat frequency
increases. A flexible passive fin has also been amounted on
the tail shaft, and with the same input to the servo motor,
the flexible tail results in faster turning with a smaller radius
than the case of a rigid tail. A closer look reveals that the
flexible tail undergoes biased rotation of its base point and
(approximately) symmetric change of curvature caused by
the fin-fluid interactions. Work is underway to apply the
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analytical modeling framework to elucidate the observed
turning behavior for the flexible tail.

The remainder of the paper is organized as follows. The
analytical modeling framework is described in Section II.
Mlustrative examples for a rigid tail and a flexible tail with
uniform curvature are presented in Section III. Experimental
results on a robotic fish prototype are provided in Section IV.
Concluding remarks are provided in Section V.

II. THE MODELING FRAMEWORK FOR STEADY TURNING

A. Evaluation of the Hydrodynamic Force

The framework uses Lighthill’s large-amplitude elongated-
body theory [22] to evaluate the hydrodynamic reactive force
experienced by a robotic fish. A frame of reference is chosen
such that the water far from the fish is at rest. As illustrated
in Fig. 1, the x— and z—axes are horizontal while the y—axis
is vertical (pointing into water). The fluid is considered to
be inviscid. It is assumed that the fish swims at a fixed depth
y =20 and thus moves only in the horizontal x — z plane. The
spinal column of the fish is assumed to be inextensible and is
parameterized by a, with a = 0 denoting the anterior end of
the fish and a = L denoting the posterior end. The coordinates
(x(a,t),z(a,1)),0 <a < L, denotes the time trajectory of each
point a on the spinal column, which could be due to fish
body/fin undulation or the resulting translational/rotational
motion of the whole fish.

zZ
X 4—I
a=0 T a=1L
Spinal
column

Fig. 1. Illustration of the coordinate system for the spinal column
of fish (view from top).

Following Lighthill [22], given (x(a,t),z(a,t)), the hydro-
dynamic reactive force density at each point a < L is

o= (£ ) =-mgoin

and at a = L, there is a concentrated force

F 1 . .
F, = ( FZ ) = [Emwzll —umw1n} a:L. 2)

In (1) and (2), m denotes the virtual mass per unit length and
can be approximated by %npsz, where p is the density of
water and s is the depth of the cross-section. As illustrated in
Fig. 1,i, = (—dx/da,—dz/da)" andi, = (dz/da,—dx/da)"
(with T denoting transpose) represent the unit vectors tan-
gential and perpendicular to the spinal column, respectively,
and u and w represent the components of the velocity v =

(dx/0t,0z/dt)T at a in i, and i, directions, respectively:

u = <vi> _E%_E%, 3)
= <, >o X0 02ox “)
VT SV TS %a T dida

B. Analytical Modeling of Steady Turning

While the theory in Section II-A allows one to evaluate the
reactive force given the motion trajectories (x(a,t),z(a,t)),
it cannot predict the motion given the body/tail deformation.
If we view the motion of a fish or robotic fish as the sum
of the global, rigid-body motion (translation and rotation)
and the local deformation or movement of body/fin, it is
desirable to understand what would be the global motion
given the local movement. This problem is of particular
interest for robotic fish, because the local movement is
typically generated through actuation (an input that can be
manipulated) and the global motion represents the outcome.

We consider the steady turning motion of a robotic fish un-
der general, periodic, asymmetric movement of body and/or
fin. For ease of presentation, however, we will focus on the
case of a carangiform robotic fish, consisting of a rigid body
part and a caudal fin. It is expected that, under periodic,
asymmetric tail movement, the robotic fish will settle down
to a “steady” turning motion!. The key parameters of interest
are the turning radius R and the turning period 7| (or
equivalently, the angular velocity of turning, w; = 27 /Ty).
By taking R and ®; as unknowns, one can first derive
(x(a,t),z(a,t)) in terms of the global motion characterized by
R and o; and the given tail motion. Hydrodynamic reactive
force and the resulting moment can be evaluated using (1)
and (2). Force and moment balance equations will then lead
to implicit equations involving R and ®;, the solution of
which provides the values of R and ®w;. A more detailed
account of the approach follows.

Fig. 2 shows the coordinate systems used. The x —z
coordinate system is the global reference system and does
not change with time. On the other hand, there is a moving
coordinate system x’ — 7’ attached to the body of the robotic
fish, with 7/ —axis pointing to the heading direction of the
robot. The periodic tail movement relative to the body is
specified by (x'(a,t),7/(a,t)) with some period Ty. The origin
of the moving frame is set to be at the center O’ of inertia of
the robot. For ease of discussion, we assume that the center
of mass is also located at O'. The distance between O’ and
the beginning of tail (a = 0) is denoted as c. As mentioned
earlier, the robot is assumed to swim on the circle with radius
R, at an angular velocity of ®;. Consequently, the x’—axis
coincides with the ray connecting the origin of x — z frame
to the center of the robot.

Without loss of generality, we take the angle o between
the x— and x'—axes to be w¢. The trajectory of a in the

IStrictly speaking, the hydrodynamics is constantly under an unsteady
state. By “steady” turning, we mean that the mean motion averaged over
the actuation period is constant.
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Fig. 2. The inertial x —z frame and the moving ¥ — 7 frame on
the robotic fish, which swims in a circle.

x —z frame can then be represented by
@)\ _ (w0,
Aat) )\ z(0)
coso.  —sina X (a,t)
sinot  coso d > ©)
Z(a,1)
where o0 = @yt, and (x,(t),z,/(t)) represents the position of
center of robotic fish: x,/ () = Rcos(@; 1), z,/(t) = Rsin(w;1).
The hydrodynamic force density f(a) = (fx(a), f;(a))” and

the concentrated force Fj = (F,F;;)" at z=L can then be
evaluated with (1) and (2), with a total force given by

S F\ |1, . d (L .
F= ( F ) = [Emw lt—ulen:| a:L_E/O mwi,da.

(6)
Let f'(a) = (fv(a), fs(a))! and F} = (F ¢,F;)" be the
representations of f(a) and Fy in the x' — 7 frame, respec-

tively. Note that
_ Y (a) _ cos o sin o S (a)
fla)= < f2(a) > { —sino  cosa } ( -(a) )7 7
sin o F
cos o, ] ( FZ ) ®)

and
F — Fipy \ | coso
L=\ F. ) | —sina
The reactive force F = (F,F,)" in the x — z frame, as a whole,

can be represented in the x' — 7' frame as F' = (F/,F/)T via
transformation

, _( Fv )\ _| cosoe sino Fy
F_(FZ/ " | —sino coso F, ) ©)

Note that all the force terms will be functions of R, w;, and
the tail movement pattern.

At steady turning, the robot achieves a constant tangential
speed. This implies that the average of F, over one tail
movement period 7y will be balanced by the mean drag force
in the opposite direction. Define

_ 1 (B,

F,= ?0/0 F.(t)dt.

F; will be written as F,(R,®) since it is a function of R

and ;. It then follows that

. CdpS(a)lR)2
2 b

(10)

F(R, ) an

where C; is the drag coefficient, and S is the wetted surface
area. Note that in our group’s prior work [21], the mean
centripetal force was involved in the force balance equation.
Comparing to the earlier approach, Eq. (11) is a more
rigorous formulation and effectively accommodates the effect
of drag, and it is consistent with the approach used by
Lighthill in deriving the forward swimming speed of a fish
[23].

At steady turning, the robot also undergoes constant
rotation and thus the moment balance equation holds. The
moment T generated by f'(a) and F; with respect to O’ can
be evaluated as

L
W) = /O Fa(@¥ (a,1) = fu(a)? (a,1)da

+Fp X (Lyt) — FyeZ (Lyt). (12)
Define the average of T over the period Ty as
1 b
T= —/ T(t)ds. (13)
To Jo

Note that T will be a function of R and ®;, so we write
T(R, ;). The moment balance equation reads

T(R, 1) = you, (14

where 7 is the rotational damping coefficient of the robot.
Egs. (11) and (14) form a pair of equations involving the
two unknowns R and @;. By solving these two equations
jointly, we can obtain the values of turning radius R and
angular velocity @ for the given pattern of tail movement.

III. ILLUSTRATIVE EXAMPLES

In this section we illustrate the analytical modeling ap-
proach with examples. As shown in Fig. 3, two types of tail
movement are considered. The first is an oscillating rigid tail,
with the angle 0 satisfying

9([) :6b+60sin(a)0)t, (15)

where 0, and 0y denote the bias and the amplitude of the
tail oscillation, respectively. In the second case (Fig. 3(b)),
the tail is flexible with a uniform curvature throughout its
length, and we assume that the curvature k(¢) satisfies

K(t) = K + Ko sin(wp)t, (16)

where x;, and K denote the bias and the amplitude of curva-
ture variation. Note that an ionic polymer-metal composite
(IPMC) caudal fin could produce a uniform curvature that
varies according to (16) with a biased sinusoidal voltage
input, if the surface resistance of the IPMC material is zero
[24].

We assume that both tails have a uniform width b. For the
rigid tail case, one can show that the final force and moment
balance equations take the following form:

ap+ a0 + a0? + a301R + ay0?R + aso?R* =0, (17)
Ag+A 0] +Ar07 + A30 R+ A40? R+ Aso?R* =0, (18)
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Fig. 3. Definitions of tail movement patterns. (a) Rigid tail; (b)
Flexible tail with uniform curvature.

where the coefficients are evaluated as

1 rh 5 . ..
ag = ——/ L sin(0)6dt,
To Jo
1 T < .9
a, = —/ 2¢L0 sin” Odt,
To Jo
LT, .2
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070
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1
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1 B
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Ty Jo 3
1 D . . 2
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To Jo m
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Ay = —/ [2¢*Lsin(20) +2cL*sin 0
To Jo
+¢?5in(20) cos 6 — ¢ sin B cos? 0] dt,
1 (% . .
Ay = ——/ [3L290059—|—4CL9c052 6] dr,
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1 T 5
Ay = —7/ [cL+2L"cos 6 + 3cLcos(20)
070
+2¢% cos® 6] dt,
1 (% . . 3
As = —7/ [(L+ccos0)sin(20) — csin’ 0] dt,
070

where Ty =21/ @y, and 6 denotes the time function 0(¢).

For the flexible tail with a uniform curvature function k(z),
it can be shown that the force and moment balance equations
take the same form as (17) and (18), but the expressions
for the coefficients are much longer and thus omitted here
because of space limitation.

Fig. 4 and Fig. 5 show the numerical results for the
two cases. The parameters used in the computation are:
L=0.08 m, »=0.015 m, c=0.07 m, C; =0.01, p=
1000 kg/m3, § = 0.01 m?, and y = 2.5 x 10~*. Egs. (17)
and (18) are solved using the fsolve command in Matlab.
For both cases, it can be seen that, when the bias increases,
the turning radius becomes smaller, which is consistent with
one’s intuition. The effect of bias on the turning period is

more interesting, since it seems that, for both cases, there
exists an optimal bias that minimizes the turning period.
In the simulation, we have made the two tail movements
somewhat comparable in the following sense: the angle 6’
defined in Fig. 3(b) for the curvature case is equal to 0
defined in Fig. 3(a) for the rigid tail case. From the numerical
results in Figs. 4 and 5, it appears that for “comparable” tail
movement, the curvature-controlled tail results in a smaller
turning radius and smaller turning period than the bending-
controlled tail. To some extent, this difference also indicates
the advantage of a flexible tail in maneuvering.
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Fig. 4. Simulation results for a rigid fin: turning radius and period
versus bias angle. In all cases, the tail beats at 1 Hz with amplitude
10°.
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Fig. 5. Simulation results for a flexible fin with uniform curvature:
turning radius and period versus bias curvature. In all cases, the tail
deforms at 1 Hz with curvature amplitude 4.36m™!.

IV. EXPERIMENTAL RESULTS

A robotic fish prototype has been constructed to further
validate the modeling approach. As shown in Fig. 6, a
servo motor (HS-5085MG from Hitec) is used to control the
angular position of a tail shaft through a chain transmission
mechanism. A slit is cut in the shaft, where a tail can been
inserted and secured with screws. The shell of the robot
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is custom-made with fiberglass and carbon fiber. Control
signals and power to the servo motor are provided through
thin, flexible wires (Ultra-Flex Miniature Wire 36 Awg from
McMaster-Carr) off the robot. A carbon fiber foil, 5.3 cm
long and 1.7 cm wide, is attached to the tail shaft as a caudal
fin. The foil has little deformation when moved through water
and is considered to be rigid in this study. With a given
pattern 6(z), (15), for the tail shaft, it is observed that the
robot trajectory converges to a circular orbit (Fig. 7). Videos
of the robot motion are taken and processed to extract the
turning radius and period for a given tail pattern.

Chain transmission

Servo motor

Fig. 7. Turning trajectories of the robotic fish with different bias
angles. In all cases, the tail beats at 2 Hz with amplitude 22.5°.

Fig. 7 shows the circular paths of the robot when the tail
beats at 2 Hz with amplitude 6y = 22.5° but with different
bias angles. It can be seen that the turning radius decreases
as the bias angle 6, increases. Fig. 8 shows the comparison
between the measured turning parameters and the model pre-
dictions. The following additional parameters for the model
have been identified and used in numerical computation:
¢=0.047 m, S=0.014m?, C;=0.13, and y=2.5x 107%.
From the figure, for the tested range, the model has predicted
correctly the decreasing turning radius and period when the
bias is increased, with good, quantitative agreement with the
experimental data. The model has been further validated with
a different set of experimental conditions. As shown in Fig. 9,

the model is able to predict how the turning period changes
when one varies the tail beat frequency.

0.4 : :
—*— Experiment
— — & — Simulation
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Fig. 8. Experimental validation of the turning model: turning radius
and period versus bias angle. In all cases, the tail beats at 2 Hz with
amplitude 22.5°.
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Fig. 9. Experimental validation of the turning model: turning period
versus tail beat frequency. In all cases, the tail beats with bias 20°
and amplitude 22.5°.

We have also conducted experiments with different tail
materials to examine the effect of tail stiffness on turning. A
transparency film (from 3M) is cut into the same size as that
of the rigid tail and attached to the tail shaft. When moved
through water by the servo motor, the film deforms, as can
be seen in Fig. 10. Here the robot is anchored and the tail
movement is captured by a CCD camera (Grasshopper from
Point Grey Research Inc.) at 120 frames per second. The base
point of the flexible tail, where the tail connects to the shaft,
is highlighted. From the figure, the motion of the flexible
tail is a combination of the base point translation (with the
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shaft) and the tail shape change due to fin-fluid interactions.
The curvature of the tail is approximately uniform along
the length, and it tends to be maximum when the tail shaft
reverses. Note that the flexible tail movement here is different
from the one considered in Fig. 3(b) in that it has a moving
base point and its curvature change does not appear to be
biased. So we cannot apply the analytical results presented in
Section III, but the experimental results below are of interest
in their own right.

T T

t=0.2500

| Tail o "Tﬂ

Base point

t=0.0625s

Fig. 10. Snapshots of the flexible tail beating at 2 Hz with bias 20°
and amplitude 52.5°. The body of the robotic fish is anchored.

Figs. 11 and 12 compare the rigid and flexible tails on
their turning performance under a wide range of tail beat
conditions. It can be observed that, in general, the robot
turns faster with a smaller turning radius when equipped
with the flexible tail, for the same motion of the tail shaft.
The only exception is that, when the tail beat frequency gets
high (above 2 Hz), the period of turning with the flexible
tail seems to become longer (Fig. 12). This counterintuitive
phenomenon might be explained by that, due to the relatively
low resonant frequency of the flexible tail, the amplitude of
curvature change drops as the beat frequency increases, as
shown in Fig. 13.
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Fig. 11. Experimental comparison of turning performance between
rigid and flexible tails: turning radius and period versus tail os-
cillation amplitude. In all cases, the tail beats at 2 Hz with bias
20°.
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Fig. 12. Experimental comparison of turning performance between
rigid and flexible tails: turning radius and period versus tail beat
frequency. In all cases, the tail beats with bias 20° and amplitude
22.5°.

Max curvature (1/m)

1 115 2 215 3
Frequency (Hz)

Fig. 13. Measured maximum tail curvature versus tail beat fre-
quency for the flexible tail. In all cases, the tail beats with bias 20°
and amplitude 22.5°.

V. CONCLUSION AND FUTURE WORK

In this paper we have provided two numerical examples
to illustrate an analytical approach to the modeling of steady
turning of robotic fish. For an oscillating, perfectly rigid
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tail, and a flexible tail with curvature control, the force and
moment balance equations have been derived explicitly in
terms of two unknowns, the turning period and the turning
radius. Numerical results have been obtained, which provide
interesting comparisons between the two cases. We have
further validated the model with experiments on a robotic
fish prototype, for the case of a perfectly rigid tail. When
tails with different stiffness are attached to the tail shaft, we
have observed that a flexible tail tends to result in faster
turning with a smaller radius than a rigid tail.

Future work will be carried out in several directions. First,
the force and moment balance equations, (11) and (14),
are highly nonlinear and can admit multiple solutions. We
will examine the properties of these equations to provide
insight as to how to pick parameters (including initial values
for the solutions) for the solver. Second, the robotic fish
prototype used in this paper was tethered. Although the
wires were flexible, they introduced difficulty and errors in
characterizing the turning motion. Therefore, an untethered
robot with onboard power and control will be instrumental in
providing more accurate measurements. Third, we will apply
the modeling framework to elucidate the observed turning
phenomenon for the case of a flexible passive tail attached
to the servo-driven shaft.
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