

Abstract— The problem we address in this paper is how to
plan and execute high quality paths for robots subject to
nonholonomic constraints while navigating obstacles in 2D
space. The navigation is to be carried out continuously at speed
and may be subject to drift that is not predictable a priori. The
problem raises the challenge of adaptively maintaining a
smooth robust path of low computational cost. The algorithm
is complete in providing feasible paths connecting to the goal in
cluttered environments without global maps or positioning
while also optimising the path curvature in free space. The
approach is a generic gradient-based methodology set in
dynamic potential fields that are not subject to fixed local
minima or other misdirecting surface features of static fields.
Multiple planning and execution cycles are interleaved to allow
frequent updates for dealing with unanticipated obstacles and
drift. We present our methodology and demonstrate
experimental results for simulated robots. The results show
that low curvature paths are found that robustly connect to the
goal under perturbation through a sequence of fast adaptive
replanning.

I. INTRODUCTION

A. Problem and Hypothesis
Many tasks such as navigation under tight constraints in

space and time require a high quality goal-connecting path
as well as simply reaching a desired configuration. The
contribution of this paper is to provide a tested generic
methodology for high quality solutions to nonholonomic
obstacle navigation problems. High quality here means
smooth, robust, and relatively fast to replan. Also, although
this is yet to be tested, the methodology may be capable of
extension to other tasks requiring high quality solution.

The problem we address in this paper is how to plan and
execute these high quality paths for robots subject to
nonholonomic constraints while navigating obstacles in 2D
space. The navigation is to be complete and carried out
continuously at speed without the use of global obstacle
maps or positioning. It may also be subject to drift that is
not predictable a priori.

Many planners opt for a shortest path to reduce the time
taken [1]. We instead opt for a smoother low realizable
curvature solution that is less distance-greedy. Such a
solution is still reasonably short while also promoting more
even distribution of minimal curvature that is useful for both
quick replanning and traveling at speed.

The hypothesis is that low realisable curvature paths can
be found that robustly connect to the goal under perturbation
through a sequence of fast adaptive replanning.

B. Multi-step and Single-Step Planning
Holonomic constraints are constraints on the robot’s

realisable positions, of which obstacles are examples.
Nonholonomic constraints are non-positional constraints on
the paths in a given configuration space for a particular
robot. They are derivative constraints that cannot be
integrated out, i.e. turned into holonomic constraints [2].

The presence of nonholonomic constraints means that
only some differentially smooth geometric goal-connecting
paths are realisable and knowing the set which is realisable
does not have a priori solution. Our approach, which gives
dynamic solutions, handles all robots whose only limitation
is a minimum turning circle. An example will be provided
for individual differential drive and car-like robots
navigating from and to (x,y,φ) states where x and y are
cartesian planar coordinates and φ is the robot’s horizontal
orientation in (x,y). These wheeled robots are well known to
have nonholonomic constraints on the differentially smooth
paths that are realisable between end poses in (x,y,φ) space,
though not in (x,y) (except for turning circle considerations).
For example, they cannot move in many linear directions in
(x,y,φ) space, even though they can in (x,y) space.

When nonholonomic (NH) constraints restrict the paths as
just described, an M-step planner (where step = arc), M > 1,
may be needed to ensure constraint satisfaction by the whole
path [3]. A 1-step planner may suffice in other cases [4].

Designing planners of high quality paths, especially
generic ones coping with drift, is a substantial part of the
major challenge presented by nonholonomic motion
planning (NMP) over the last two decades [2,3,5].

C. Smooth Nonholonomic Motion Planning
In common with many approaches [3,6,7] we will use

obstacle potential to promote smooth travel around
obstacles. In planning a goal-connecting path, we will plan
a path that assumes free space lies ahead unless a sensed
obstacle across the path proves otherwise. In addition we
will optimize the curvature of the path while meeting NH
constraints.

Smoothness in the sense of optimal low curvature may be
defined as minimal path strain, i.e. where σ is the
curvature along the path p [8], which is a property of the
path as a whole. Splines provide minimal path strain for a
given collection of spline knots [8]. We go one step further
and dynamically optimize the planned positions of the knots
in line with NH constraints during travel so the low
curvature path is nonholonomically realizable (Fig. 1).

High Quality Goal Connection For Nonholonomic Obstacle
Navigation Allowing For Drift Using Dynamic Potential Fields

Michael K. Weir and Matthew P. Bott

School of Computer Science, University of St Andrews
St Andrews Fife Scotland{mkw, mb1}@cs.st-andrews.ac.uk

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3221

There are approaches that enable nonholonomic robots to
plan whole paths through decoupling control from geometry
to more easily find a geometric path first and corresponding
controls afterwards e.g. [9]. The decoupling approach may
be seen as inherently limited in suitability for a generic
approach though when trying to meet NH constraints. This
is because, as described above, not all paths may be
realizable, so the geometric path found first may possibly
not be realizable.

Consequently, planning realizable whole paths under NH
constraint benefits from attention to control and geometry
simultaneously. Our methodology plans a whole M-step
control sequence that connects a current configuration state
to the goal configuration state through appropriate forward
kinematics to meet the NH constraints for the current robot.
This is not to say that a perfect forwards kinematics and
control sequence has to be assumed. Imperfection resulting
in drift is catered for here through feasible replanning.
Earlier work has laid out the symbolic detail for how this
may be done for travel solely in free space [10].

D. Obstacle Navigation
Obstacle navigation without global knowledge of obstacle

shapes and locations presents a general challenge for
guaranteeing being able to find high quality paths that
connect to the goal configuration state. This is to be done
armed with sensors providing only goal data relative to the
robot, actuator movement, and local obstacle distance data.

Obstacle navigation poses problems for NMP in
particular, as NMP may rely on correct sequences of
controls to attain the goal and obstacles may disrupt
trajectories planned a priori. Sensor error or other causes
leading to unpredictable drift are further sources of irregular
perturbation that are difficult for NMP to handle [3].

A generic nonholonomic planning system ought to be able
to provide M-step as well as 1-step plans. In our examples,
we will view planning that assumes free space as solving an
M-step travel problem in (x,y,φ). Obstacles will be viewed
as holonomic (x,y) constraints that temporarily interrupt the
M-step solution and for which a 1-step planner suffices to
attain various (x,y) positions that safely and smoothly avoid
collision while rounding the obstacle. The 1-step planner
uses the same forward kinematics as the M-step planner to
ensure the NH constraints are always met.

E. Related Approaches
There are existing nonholonomic approaches for obstacle

navigation that offer some of the properties needed for quick
low curvature travel. These include a version of Tanbug
using splines in free space [6], Euclidean minimization [3],
Rapidly Exploring Random Trees (RRTs) [9,11], and Path
deformation [12]. One major issue is that the related
approaches each possess at least one different feature that
undermines generic fast low curvature goal connection.

Tanbug using free space splines for example creates target
paths of relatively low curvature. However, the associated
controls are for (x,y) paths only and as such are not capable

of generic extension to other spaces such as (x,y,φ).
Euclidean minimization provides generic nonholonomic

goal connection in free space. However, if it is set in a static
potential field, it is subject to fixed local minima and gets
stuck when navigating a variety of obstacle shapes, and so is
not complete. The path shapes are also only designed to
greedily shorten Euclidean distance to the goal.
Consequently they can create significant unnecessary
curvature, including loops [10].

RRTs provide complete as well as generic goal
connection given sufficient nodes [11], and can be enhanced
to optimize dynamically and remove at least some of the
initial unnecessary curvature [9]. However, the random
nature of path creation and modification means they either
provide an unoptimized path relatively quickly or a low
curvature path relatively slowly.

Lamiraux’s path deformation technique is similar to ours
in using dynamic optimization through potential fields and
sets paths that follow the smooth obstacle potential contours
to enable low curvature navigation around obstacle
boundaries. However, it presently lacks a number of key
features for our purposes. One is that the technique is
incomplete in the sense of not making goal connection
generically and through sensor-based deformation alone.
The internal parameters have to be tuned differently to make
the method work in different situations [13]. It relies on a
global map both initially and when the path deformation is
insufficient to remove collisions [13,14]. A second is that
there is no design for maintaining low curvature across the
whole path. A third is that the overall time for basic
deformation in the replanning process is relatively slow
(over 10 times slower than our method on an equivalent
machine) with the travel also stopping at times [14].

F. Our Approach
Our own approach extracts four key features of genericity,

completeness, overall low curvature, and relatively quick
replanning from the above approaches and sets them in
dynamic potential fields, i.e. fields with associated travel
surfaces and attractors that vary during the behaviour. The
key properties provided and not provided by the various
approaches are summarized in Table I.

The travel needs to be locally optimal at each stage and
yet also has to connect to the goal. We also need to replan
quickly to counter drift within space-time constraints.
Consequently we use a dynamic attractor in the form of a
mobile local minimum moved along an adaptive target path
to reach the goal.

TABLE I
 TABLE OF METHODS AND PROPERTIES

Planning Method G C LC Q
Tanbug With Free space Splines × √ √ √
Euclidean Minimisation √ × × √
Quick RRT √ √ × √
Smooth RRT √ √ √ ×
Path Deformation √ × × ×
Dynamic Fields √ √ √ √

G: genericity. C: completeness; LC: low curvature; Q: quick replanning

3222

II. METHODOLOGY

A. Dynamic field method
In this paper, we develop a method for nonholonomic robots
that generalises previously separate approaches for
nonholonomic robots travelling in free space [10] and
holonomic robots travelling around obstacles [7].

Two planners are derived from the approaches. One is an
M-step (x,y,φ) path planner that is updated continuously but
only executed in free space. Its execution is interrupted by a
second 1-step (x,y) path planner while rounding obstacles
and then leaving to join an M-step path.

Robot localisation relative to the goal is achieved through
triangulation using sensors able to detect distance and angle
to goal and actuator movement.

B. M-step planning
The M-step planner needs to find a path of minimal strain

that connects to the goal as described earlier. To begin the
design, an M-step path without strain (or drift)
considerations can be found using a static potential field [3].
That is, planning a sequence of M controls and V control
variables that ends in the goal configuration may be done
using the control-configuration mapping provided by the
forwards kinematics to enable descent in potential over
control space <C11, …CMV> where potential is a goal
disconnection penalty such as Euclidean distance to goal.
(For the example solutions, M is initially set to 3 and V is 2.)
The use of the forward kinematics in the mapping ensures
the robot’s NH constraints are obeyed.
 Simply then adding strain to the potential in a static field
to also minimize strain leaves the global minimum short of
the goal if the penalty is set too low relative to the strain or
makes the global minimum too difficult to access from a
random initial state if it is set too high due to distorting the
travel surface [10].

Fig. 1. Subgoals SGi in (x,y,φ) are moved during planning to instigate

attempts Ai that stretch and reshape the configuration path resulting from
controls M1-M3 towards the goal (x,y,φ) state (SG3). The resulting path has
a locally optimal curvature spline relative to other paths in the vicinity.

Consequently instead of this, the algorithm starts with a
subgoal that is a nearby local minimum using a low penalty
and then moves the subgoal to bend the path towards the
goal (Fig. 1) by gradually increasing the penalty. In this way
the robot is able to plan a goal-connecting path with locally
optimized curvature. Locally optimal means no unnecessary
undulations, kinks, or loops relative to other realizable paths
in the vicinity.

The subgoal acts as a moving nearby configuration

attractor and moves from near the initial configuration in a
series of dynamically evolved subgoals that end in the goal
configuration. At each stage, the subgoal is set in a new
locally accessible position further towards the goal. This
method enables the subgoal to generate a moving dip in the
dynamic potential field's travel surface (Fig. 2) that carries
the configuration and control sequence to the goal.

Fig. 2. Minima Mi in control corresponding to configuration subgoals SGi
are moved forwards after each attempt Ai to create a forwards moving dip in
potential.

In detail, an (x,y,φ) spline is initially placed through the
configuration states corresponding to the beginning and end
of each of M small random controls. The spline shape is
evaluated for its potential including strain and other
elements in (1). Descent takes place to change the controls
and hence the spline’s knot configurations. Descent
proceeds until a configuration path is found obeying the NH
constraints whose spline has locally optimised low realisable
curvature relative to those of other splines in the vicinity.
The resulting end state is short of the goal such as A1 in Fig.
1. The path is then stretched and reshaped by descending
towards a new nearby subgoal end state in (x,y,φ) that both
decreases the gap with the goal and maintains locally
optimal curvature for the extended curve. This is done using
a potential UAttractor for an attractor configuration subgoal α
of

 (1)

where n is the number of configuration variables and
 is the strain of the ith of n component cubic splines of the
variable n-D spline curve p. (For the example solutions, n is
3.) The attractor subgoal α is set through the non-negative
term γα which increasingly penalizes disconnection between
the Mth attained state and the goal state. The value of γα is
automatically increased gradually for each non-zero degree
of disconnection throughout plan formation to keep the
subgoal moving to the goal as described above. (For the
earlier Euclidean distance example, a scaling factor for the
distance may be increased to increase γα .)

B is a boundary condition on configuration states c to
prevent any invalid solution configuration paths associated
with the M controls from being considered, e.g. those
containing backward motion or curvatures greater than that
of the minimum turning circle. B is composed of potential
fall-off functions in control space that fall away to zero

3223

inside valid regions of configuration space. This enables the
final planned solution path to have locally minimal strain
that is realizable. See [10] for more details.

The process is iterated until a plan emerges for a whole
M-step goal-connecting path as shown for an (x,y,φ) goal
state in Fig. 1. If the path is completely clear of obstacles,
the M-step plan’s 1st control is executed. Replanning occurs
during intervals allocated to each control to keep the plan up
to date regardless of whether it is executed or not. This is to
take account of events that have occurred to undermine the
plan such as drift or having to go round obstacles, and also
to further optimise smoothness. It is relatively quick to
replan due to similarity between successive smooth plans.
Obstacle rounding is done using a separate holonomic
planner described below.

The top level algorithm for planning and executing an M-
step goal connecting path P with inputs of goal direction and
distance, sensed obstacle edges and actuator motion is:

1. Initialize a sequence of M controls.
2. Initialize a corresponding n-D configuration spline.
3. Compute the initial cost gradients of the configuration

spline from the initial configuration to the goal
configuration – for an initially low penalty for the
forward end being disconnected from the goal.

4. Descend through control until descent slows to indicate
closeness to the current subgoal of local minimum cost
potential.

5. Increase the penalty for goal disconnection to move the
subgoal towards the goal and then descend again.

6. Repeat 4,5 until a locally optimized control sequence is
planned to reach the goal configuration within 1% of
the initial distance to the goal.

7. If in free space then execute the plan’s 1st control.
8. Re-plan 1 to 6 at regular intervals.
9. Repeat 7,8 until the goal configuration is reached

within the tolerance described in 6.
If the number of controls proves insufficient for keeping

the trajectory flexed and descent slows despite γα
increasing then M is automatically increased until there is
sufficient flexibility [10].

C. 1-step planning
As alluded to above, when obstacles are sensed to lie

across the planned path, a 1-step path planner interrupts
execution of the M-step planner controls and temporarily
takes over execution. The interrupting system also uses
descent over a dynamic field but with changes to the
subgoal, M value and potential. The mobile local attractor
subgoal is changed to be a target configuration in (x,y) set
continually ahead of the current location clear of obstacle
collision. The subgoal travel follows a BUG algorithm set in
dynamic potential fields [7]. That is, the subgoal and
executed attempt on it approach each obstacle and then
engage at a hit point on a contour of obstacle potential to
round the obstacle along the contour. Once progress has
been made, and can be made, towards the goal in free space,

the obstacle is left. M is changed to 1 and the potential is
changed so that single step controls are planned for moving
to the single mobile (x,y) subgoal using a Euclidean
minimization technique based on a fixed fall-off function for
obstacle potential and Euclidean distance.

This function has an infinite value on the edge of an
obstacle and falls off to a value of 0 over a finite range from
the obstacle. The fall-off function U is given by

 (2)

where di is the sensed distance of a point from an edge point
i of an obstacle, and s is the fall-off range. The total fall-off
at the point is summed over all sensed edge points and the
parameter s is set to be Max(r, 3w) where r is the robot's
minimum turning circle radius, and w is robot width.
Passages narrower than 2s + 2r are occluded using local
sensor information so that U-turns in passages can be safely
made if required. These features enable navigation plans
around obstacles and through passages to suit the robot.

The Euclidean distance potential is given by

 (3)

where dα is the Euclidean distance from the end
configuration resulting from a single control to the attractor
configuration subgoal α. The attractor α is positioned on a
contour of obstacle potential at a distance s close to but
safely away from the obstacle edge [10]. Descent towards
the attractor is continued using the cost potential metric
defined as in (3) until the attempt is within an acceptable
fraction (e.g. 1%) of the initial subgoal distance.

The Euclidean minimiser is designed to effectively
counter drift in all 3 approach, engage, and leave modes.
Moves made in attempting any given subgoal are small, and
the updates are frequent (every 50 ms). Consequently only a
small adjustment is required to bring the robot back on
course to correct the drift.

Travel goes forwards along a chain of subgoal positions
even if this means temporarily being at a greater Euclidean
distance from the goal configuration, such as can occur
when going around the c-shape obstacle in Fig. 3. In this
way, the moving dip in the dynamic field passes through
locations such as the centre of the c-shape that would be
fixed local minima using a Euclidean metric in static fields.

Leaving an obstacle requires progress to the goal to be
assured. Such progress is measured here as Euclidean
distance to goal relative to the hit point, and also involves
the plan for the future path if the robot were to leave the
obstacle. This plan is made up from the 1-step planner’s
leave path and the M-step plan for free space travel that it
joins. A leave path that is quick to plan is composed of two
end arcs, with curvature that of the minimum turning circle,
joined by a straight line. In the actual system, we use a
smoother (x,y) spline whose peak curvature could breach the
minimum turning circle constraint in theory but which does
not in practice. The arc-based version is kept as a fail-safe.

3224

Progress is taken to be sufficient when the planned future
path has an initial direction pointing inside a circle centered
at the goal with a radius to the hit point (Fig. 3). The
planned future path will then keep turning inside the circle to
its center. Since the path all lies within the circle, this
guarantees that traveling along this path would diminish
Euclidean distance to goal. When the robot is also clear to
leave the obstacle forwards along the planned future path
away from the nearest obstacle edge, the robot is thus safe to
leave with further convergence to the goal assured as per all
BUG algorithms [7].

The top-level obstacle-rounding algorithm with input of
sensed obstacle edges may be described as follows:

1. When nearest obstacle sensed to lie across planned
M-step path, enter approach mode.

2. Make moves (in (x,y)) towards obstacle potential
contour until robot position smoothly hits the contour.

3. If not clear to leave immediately, enter engage mode
 else go to 5. and enter leave mode.
4. Make moves forwards along obstacle potential contour

until safe to leave obstacle.
5. Enter leave mode.
6. Make moves until robot position merges smoothly with

the latest planned M-step path.
For more detail on the holonomic aspects, see [10].

D. Completeness
Each of the 4 travel modes ensures any path planned for

the mode satisfies the turning constraint. Paths with excess
curvature breaking this condition do not occur in plans for
free and leave modes as they are not solutions with locally
optimised curvature under the safeguards in either mode’s
scheme as given earlier. For the approach mode, paths with
excess curvature do not occur because targets are set at a
minimal distance of the minimum turning circle radius. For
the engage mode, they do not occur because the obstacle
potential contour followed is set at a distance of s away from
the obstacle edge so that it is not asked to curve round any
obstacle point(s) with excess curvature.

Fig. 3. Subgoals SGi are set one at a time to pull executed attempts Ai on
them around obstacles and then to join with an M-step path in free space
connecting smoothly to the goal (x,y,φ) configuration state.

The two planners always reduce the Euclidean distance
between each hit or leave point and the goal. Hence the

planners combine so that, in the absence of drift, where there
is a possible goal-connecting path, such a path is found. By
“possible” path is meant one that satisfies the turning circle
constraint, as well as the narrow passage constraint
mentioned earlier, so that the goal is approachable by the
robot without being less than s away from the obstacles.
Illustrations of overall travel to a goal (x,y,φ) state using the
planners are given in Figs. 3, 4, and 5.

III. RESULTS
The system’s completeness has been tested on a series of

simulated differential drive and car-like robots, with each
type having a different forwards kinematics, in a series of
simulated 2D environments. These consisted of ten obstacle
courses each containing between one and twenty obstacles
of significantly different shapes and sizes. Each
environment used 4 pairs of initial and goal (x,y,φ)
configurations, over which all areas of the course were
travelled. These courses were deemed a representative
subset of all possible obstacle environments as all conceived
robot-obstacle interactions are present. This is because
testing included obstacles of regular and irregular shapes of
sizes larger and smaller than both the robot and its sensing
capabilities, as well as closely packed and well-spaced
obstacles. C-Shaped obstacles were also tested to confirm
that the method is not subject to traditional local minima
problems (Figs. 3&4). Initial and goal positions close to and
far from obstacles have also been tested, as have initial and
goal headings which face the robot towards or away from
obstacles and each other. Overall 3000 tests were conducted
during which none of the internal parameters (see §II.B&C)
were altered thus showing that different tuning is not
required for each test, environment, or robot. Throughout
testing the results were found to be the same for differential
drive and car-like robots of the same size and turning circle
within the test granularity.

Fig. 4. One of the environments and the 4 travel modes in a typical solution
path, together with an unexecuted path segment.

One of the environments and the 4 travel modes in a
typical solution path is shown in Fig. 4 together with a path
segment which is unexecuted due to the detection of an
obstacle during motion. Another is shown in Fig. 5 along
with the area reached by the obstacle range sensors. All
courses were tested for turning circles and robot radii at
regular values between 0.15 and 1m. These values are

3225

representative of commonly used sizes of robots and their
turning circles. Although turning circles are not necessary
for differential drive robots they were applied with the same
values as applies to a car-like robot of the same size.

Fig. 5. One of the environments and the travel modes in a typical solution
path, together with the sensor range used (10x robot radius – grey area)

Without perturbation through sensor error and with
perfect forwards kinematics, all tasks were completed
successfully with solution paths conforming to their
theoretical expectations. These were: locally minimal
curvature in free space and tight circumnavigation of
obstacles without any unnecessary undulation, kinks or
loops in the path. Accepting that a system with no global
map may turn right or left somewhat arbitrarily upon initial
sensing of an obstruction, no unnecessary circumnavigation
of obstacles was observed, i.e the paths were tightly focused
towards the goal. In the tests, an (x,y) spline for the leave
path was used and the arc-based alternative was unused.

Perturbation was then put into effect. Table II shows the
range of error artificially introduced to sensors and actuators
and the limits at which the tests depicted in Figs. 4&5
suffered collision or connection failure. All % errors were
started at 0% and incremented by 10% for each subsequent
test. The radian increments were 0.04.

As perturbation is increased, although sensor error may be
averaged out to a large extent, significant drift occurs. The
drift makes travel go inside the intended obstacle potential
contour, solution passages become unnecessarily passed by,
and the robot steers away from the goal direction. It
nevertheless takes substantial perturbation to prevent
replanning from maintaining goal connection without
collision as Table II shows.

TABLE II.
PERTURBATION AND SUCCESS LIMITS FOR FIGS. 4&5

Error Application Range Tested Limit Fig 4 Limit Fig 5
Goal distance sensor -50% to 50% ±40% ±40%
Goal angle sensor -1 to 1 radian ±0.12 radians ±0.8 radians
Obstacle sensors -50% to 50% ±40% ±20%
Actuator sensors -50% to 50% ±40% ±30%
Control executions -60% to 60% ±50% ±40%

TABLE III.
COMPUTATIONAL PERFORMANCE

Operation Time Taken
M-step re-plan < 1 second
1-step re-plan < 50ms

The algorithms are coded in Java 5, computational
performance running on Mac OS 10.5 with a 2Ghz Intel core
2 duo processor with 2GB of ram is shown in Table III.

These times have been found to be the same when testing
both differential drive and car-like robots, suggesting that
they will not change significantly for other robots with 2
controls and 3 configuration variables.

IV. CONCLUSION
In order to provide high quality paths for nonholonomic

obstacle navigation, a generic path planner with smooth low
curvature solutions has been presented based on coordinated
dynamic potential fields.

The methodology is designed so that obstacles may be
navigated without global maps or positioning systems. It is
also designed to provide complete goal connection in the
driftless case, and resist being broken when there is drift
through quick replanning based on search with the low costs
of local gradient descent.

The system has been tested on simulated differential drive
and car-like robots with various limited turning circles and
widths. Various simulated environments have been
successfully navigated without and with various forms of
substantial perturbation.

Future work is intended to test other approaches on the
same obstacle courses and examine further generic
coordinated organisation of dynamic potential fields.

REFERENCES
[1] Y. Guo, and T. Tang, “Optimal Trajectory Generation for

Nonholonomic Robots in Dynamic Environments”, IROS, 2008.
[2] J. P. Laumond, S. Sekhavat and F. Lamiraux, “Guidelines in

Nonholonomic Motion Planning for Mobile Robots”, Lecture Notes in
Control and Information Sciences 229, Springer, 1998, pp. 2-53.

[3] H. Choset, “Principles of Robot Motion : Theory, Algorithms, and
Implementation”, MIT Press, 2005.

[4] A. A. Masoud, “Dynamic Trajectory Generation for Spatially
Constrained Mechanical Systems Using Harmonic Potential Fields”,
ICRA, 2007, pp. 1980-1985.

[5] L. Zexiang and J. F. Canny, “Nonholonomic Motion Planning”, The
Kluwer International Series in Engineering and Computer Science,
Vol. 192, 1993.

[6] S. Wei and M. Zefran, “Smooth Path Planning and Control for Mobile
Robots”, IEEE International Conference on Networking, Sensing and
Control, 2005, pp. 894-899.

[7] M. K. Weir, A. Buck, J. Lewis, “POTBUG A Mind's Eye Approach to
Providing BUG-like Guarantees For Adaptive Obstacle Navigation
Using Dynamic Potential Fields”, In Proceedings of International
Conference on Simulation of Adaptive Behaviour (SAB), 2006.

[8] C. de Boor, “A Practical Guide to Splines”, Applied Mathematical
Sciences, Vol. 27, Springer-Verlag, 1978, pp. 66,67.

[9] K. Yang, S. Sukkarieh, “3D Smooth Path Planning for a UAV in
Cluttered Natural Environments”, IROS, Nice, France, 2008.

[10] M. Weir, J. Lewis, and M. Bott, “Enabling Nonholonomic
Smoothness Generically Allowing For Unpredictable Drift”,
International Conference on Control, Automation, Robotics and
Vision, 2008.

[11] D. Ferguson, and A. Stentz, “Anytime, Dynamic Planning in High-
dimensional Search Spaces”, ICRA, 2007.

[12] F. Lamiraux, D Bonnafous and Oliver Lefebvre, “Reactive Path
Deformation for Nonholonomic Mobile Robots”, IEEE Transactions
on Robotics, 2004, Vol. 20, No. 6, pp. 967-977.

[13] F. Lamiraux, D. Bonnafous and C. Van Geem, “Path Optimisation for
Nonholonomic Systems: Application to Reactive Obstacle Avoidance
and Path Planning”, Control Problems in Robotics, Springer 2002, pp.
1-16.

[14] D. Bonnafous and F. Lamiraux, “Sensor based trajectory following for
Nonholonomic systems in highly cluttered environment”, IROS, 2003.

3226

