
  

Abstract— The problem we address in this paper is how to 
plan and execute high quality paths for robots subject to 
nonholonomic constraints while navigating obstacles in 2D 
space.  The navigation is to be carried out continuously at speed 
and may be subject to drift that is not predictable a priori.  The 
problem raises the challenge of adaptively maintaining a 
smooth robust path of low computational cost.  The algorithm 
is complete in providing feasible paths connecting to the goal in 
cluttered environments without global maps or positioning 
while also optimising the path curvature in free space.  The 
approach is a generic gradient-based methodology set in 
dynamic potential fields that are not subject to fixed local 
minima or other misdirecting surface features of static fields. 
Multiple planning and execution cycles are interleaved to allow 
frequent updates for dealing with unanticipated obstacles and 
drift. We present our methodology and demonstrate 
experimental results for simulated robots. The results show 
that low curvature paths are found that robustly connect to the 
goal under perturbation through a sequence of fast adaptive 
replanning. 

I. INTRODUCTION 

A. Problem and Hypothesis 
Many tasks such as navigation under tight constraints in 

space and time require a high quality goal-connecting path 
as well as simply reaching a desired configuration.  The 
contribution of this paper is to provide a tested generic 
methodology for high quality solutions to nonholonomic 
obstacle navigation problems.  High quality here means 
smooth, robust, and relatively fast to replan. Also, although 
this is yet to be tested, the methodology may be capable of 
extension to other tasks requiring high quality solution. 

The problem we address in this paper is how to plan and 
execute these high quality paths for robots subject to 
nonholonomic constraints while navigating obstacles in 2D 
space.  The navigation is to be complete and carried out 
continuously at speed without the use of global obstacle 
maps or positioning.  It may also be subject to drift that is 
not predictable a priori.   

Many planners opt for a shortest path to reduce the time 
taken [1].  We instead opt for a smoother low realizable 
curvature solution that is less distance-greedy.  Such a 
solution is still reasonably short while also promoting more 
even distribution of minimal curvature that is useful for both 
quick replanning and traveling at speed. 

The hypothesis is that low realisable curvature paths can 
be found that robustly connect to the goal under perturbation 
through a sequence of fast adaptive replanning. 

B. Multi-step and Single-Step Planning 
Holonomic constraints are constraints on the robot’s 

realisable positions, of which obstacles are examples.  
Nonholonomic constraints are non-positional constraints on 
the paths in a given configuration space for a particular 
robot.  They are derivative constraints that cannot be 
integrated out, i.e. turned into holonomic constraints [2].  

The presence of nonholonomic constraints means that 
only some differentially smooth geometric goal-connecting 
paths are realisable and knowing the set which is realisable 
does not have a priori solution. Our approach, which gives 
dynamic solutions, handles all robots whose only limitation 
is a minimum turning circle.  An example will be provided 
for individual differential drive and car-like robots 
navigating from and to (x,y,φ) states where x and y are 
cartesian planar coordinates and φ is the robot’s horizontal 
orientation in (x,y). These wheeled robots are well known to 
have nonholonomic constraints on the differentially smooth 
paths that are realisable between end poses in (x,y,φ) space, 
though not in (x,y) (except for turning circle considerations). 
For example, they cannot move in many linear directions in 
(x,y,φ) space, even though they can in (x,y) space. 

When nonholonomic (NH) constraints restrict the paths as 
just described, an M-step planner (where step = arc), M > 1, 
may be needed to ensure constraint satisfaction by the whole 
path [3].  A 1-step planner may suffice in other cases [4]. 

Designing planners of high quality paths, especially 
generic ones coping with drift, is a substantial part of the 
major challenge presented by nonholonomic motion 
planning (NMP) over the last two decades [2,3,5]. 

C. Smooth Nonholonomic Motion Planning 
In common with many approaches [3,6,7] we will use 

obstacle potential to promote smooth travel around 
obstacles.  In planning a goal-connecting path, we will plan 
a path that assumes free space lies ahead unless a sensed 
obstacle across the path proves otherwise. In addition we 
will optimize the curvature of the path while meeting NH 
constraints. 

Smoothness in the sense of optimal low curvature may be 
defined as minimal path strain, i.e.                where σ is the 
curvature along the path p [8], which is a property of the 
path as a whole.  Splines provide minimal path strain for a 
given collection of spline knots [8].  We go one step further 
and dynamically optimize the planned positions of the knots 
in line with NH constraints during travel so the low 
curvature path is nonholonomically realizable (Fig. 1). 
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There are approaches that enable nonholonomic robots to 
plan whole paths through decoupling control from geometry 
to more easily find a geometric path first and corresponding 
controls afterwards e.g. [9].  The decoupling approach may 
be seen as inherently limited in suitability for a generic 
approach though when trying to meet NH constraints.  This 
is because, as described above, not all paths may be 
realizable, so the geometric path found first may possibly 
not be realizable. 

Consequently, planning realizable whole paths under NH 
constraint benefits from attention to control and geometry 
simultaneously.  Our methodology plans a whole M-step 
control sequence that connects a current configuration state 
to the goal configuration state through appropriate forward 
kinematics to meet the NH constraints for the current robot. 
This is not to say that a perfect forwards kinematics and 
control sequence has to be assumed.  Imperfection resulting 
in drift is catered for here through feasible replanning. 
Earlier work has laid out the symbolic detail for how this 
may be done for travel solely in free space [10]. 

D. Obstacle Navigation  
Obstacle navigation without global knowledge of obstacle 

shapes and locations presents a general challenge for 
guaranteeing being able to find high quality paths that 
connect to the goal configuration state.  This is to be done 
armed with sensors providing only goal data relative to the 
robot, actuator movement, and local obstacle distance data.   

Obstacle navigation poses problems for NMP in 
particular, as NMP may rely on correct sequences of 
controls to attain the goal and obstacles may disrupt 
trajectories planned a priori.  Sensor error or other causes 
leading to unpredictable drift are further sources of irregular 
perturbation that are difficult for NMP to handle [3]. 

A generic nonholonomic planning system ought to be able 
to provide M-step as well as 1-step plans.  In our examples, 
we will view planning that assumes free space as solving an 
M-step travel problem in (x,y,φ).  Obstacles will be viewed 
as holonomic (x,y) constraints that temporarily interrupt the 
M-step solution and for which a 1-step planner suffices to 
attain various (x,y) positions that safely and smoothly avoid 
collision while rounding the obstacle.  The 1-step planner 
uses the same forward kinematics as the M-step planner to 
ensure the NH constraints are always met.  

E. Related Approaches  
There are existing nonholonomic approaches for obstacle 

navigation that offer some of the properties needed for quick 
low curvature travel. These include a version of Tanbug 
using splines in free space [6], Euclidean minimization [3], 
Rapidly Exploring Random Trees (RRTs) [9,11], and Path 
deformation [12].  One major issue is that the related 
approaches each possess at least one different feature that 
undermines generic fast low curvature goal connection. 

Tanbug using free space splines for example creates target 
paths of relatively low curvature.  However, the associated 
controls are for (x,y) paths only and as such are not capable 

of generic extension to other spaces such as (x,y,φ). 
Euclidean minimization provides generic nonholonomic 

goal connection in free space.  However, if it is set in a static 
potential field, it is subject to fixed local minima and gets 
stuck when navigating a variety of obstacle shapes, and so is 
not complete.  The path shapes are also only designed to 
greedily shorten Euclidean distance to the goal.  
Consequently they can create significant unnecessary 
curvature, including loops [10]. 

RRTs provide complete as well as generic goal 
connection given sufficient nodes [11], and can be enhanced 
to optimize dynamically and remove at least some of the 
initial unnecessary curvature [9]. However, the random 
nature of path creation and modification means they either 
provide an unoptimized path relatively quickly or a low 
curvature path relatively slowly.  

Lamiraux’s path deformation technique is similar to ours 
in using dynamic optimization through potential fields and 
sets paths that follow the smooth obstacle potential contours 
to enable low curvature navigation around obstacle 
boundaries.  However, it presently lacks a number of key 
features for our purposes.  One is that the technique is 
incomplete in the sense of not making goal connection 
generically and through sensor-based deformation alone.  
The internal parameters have to be tuned differently to make 
the method work in different situations [13].  It relies on a 
global map both initially and when the path deformation is 
insufficient to remove collisions [13,14].  A second is that 
there is no design for maintaining low curvature across the 
whole path.  A third is that the overall time for basic 
deformation in the replanning process is relatively slow 
(over 10 times slower than our method on an equivalent 
machine) with the travel also stopping at times [14]. 

F. Our Approach 
Our own approach extracts four key features of genericity, 

completeness, overall low curvature, and relatively quick 
replanning from the above approaches and sets them in 
dynamic potential fields, i.e. fields with associated travel 
surfaces and attractors that vary during the behaviour.  The 
key properties provided and not provided by the various 
approaches are summarized in Table I. 

The travel needs to be locally optimal at each stage and 
yet also has to connect to the goal.  We also need to replan 
quickly to counter drift within space-time constraints.  
Consequently we use a dynamic attractor in the form of a 
mobile local minimum moved along an adaptive target path 
to reach the goal.  

 

TABLE I 
 TABLE OF METHODS AND PROPERTIES 

Planning Method G C LC Q
Tanbug With Free space Splines × √ √ √ 
Euclidean Minimisation √ × × √ 
Quick RRT √ √ × √ 
Smooth RRT √ √ √ × 
Path Deformation √ × × × 
Dynamic Fields √ √ √ √ 

G: genericity. C: completeness; LC: low curvature; Q: quick replanning 
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II. METHODOLOGY 

A. Dynamic field method 
In this paper, we develop a method for nonholonomic robots 
that generalises previously separate approaches for 
nonholonomic robots travelling in free space [10] and 
holonomic robots travelling around obstacles [7].   

Two planners are derived from the approaches.  One is an 
M-step (x,y,φ) path planner that is updated continuously but 
only executed in free space.  Its execution is interrupted by a 
second 1-step (x,y) path planner while rounding obstacles 
and then leaving to join an M-step path. 

Robot localisation relative to the goal is achieved through 
triangulation using sensors able to detect distance and angle 
to goal and actuator movement. 

B. M-step planning 
The M-step planner needs to find a path of minimal strain 

that connects to the goal as described earlier.  To begin the 
design, an M-step path without strain (or drift) 
considerations can be found using a static potential field [3].  
That is, planning a sequence of M controls and V control 
variables that ends in the goal configuration may be done 
using the control-configuration mapping provided by the 
forwards kinematics to enable descent in potential over 
control space <C11, …CMV> where potential is a goal 
disconnection penalty such as Euclidean distance to goal. 
(For the example solutions, M is initially set to 3 and V is 2.)  
The use of the forward kinematics in the mapping ensures 
the robot’s NH constraints are obeyed. 
 Simply then adding strain to the potential in a static field 
to also minimize strain leaves the global minimum short of 
the goal if the penalty is set too low relative to the strain or 
makes the global minimum too difficult to access from a 
random initial state if it is set too high due to distorting the 
travel surface [10].   
 

 
Fig. 1.  Subgoals SGi in (x,y,φ) are moved during planning to instigate 

attempts Ai that stretch and reshape the configuration path resulting from 
controls M1-M3 towards the goal (x,y,φ) state (SG3).  The resulting path has 
a locally optimal curvature spline relative to other paths in the vicinity. 

 

Consequently instead of this, the algorithm starts with a 
subgoal that is a nearby local minimum using a low penalty 
and then moves the subgoal to bend the path towards the 
goal (Fig. 1) by gradually increasing the penalty.  In this way 
the robot is able to plan a goal-connecting path with locally 
optimized curvature. Locally optimal means no unnecessary 
undulations, kinks, or loops relative to other realizable paths 
in the vicinity. 

The subgoal acts as a moving nearby configuration 

attractor and moves from near the initial configuration in a 
series of dynamically evolved subgoals that end in the goal 
configuration.  At each stage, the subgoal is set in a new 
locally accessible position further towards the goal.  This 
method enables the subgoal to generate a moving dip in the 
dynamic potential field's travel surface (Fig. 2) that carries 
the configuration and control sequence to the goal. 

 

 
Fig. 2.  Minima Mi in control corresponding to configuration subgoals SGi 
are moved forwards after each attempt Ai to create a forwards moving dip in 
potential.   
 

In detail, an (x,y,φ) spline is initially placed through the 
configuration states corresponding to the beginning and end 
of each of M small random controls.  The spline shape is 
evaluated for its potential including strain and other 
elements in (1). Descent takes place to change the controls 
and hence the spline’s knot configurations.  Descent 
proceeds until a configuration path is found obeying the NH 
constraints whose spline has locally optimised low realisable 
curvature relative to those of other splines in the vicinity.  
The resulting end state is short of the goal such as A1 in Fig. 
1.  The path is then stretched and reshaped by descending 
towards a new nearby subgoal end state in (x,y,φ) that both 
decreases the gap with the goal and maintains locally 
optimal curvature for the extended curve.  This is done using 
a potential UAttractor for an attractor configuration subgoal α 
of 

 

 (1) 
 

where  n is the number of configuration variables and  
 is the strain of the ith of n component cubic splines of the 
variable n-D spline curve p. (For the example solutions, n is 
3.)  The attractor subgoal α is set through the non-negative 
term γα which increasingly penalizes disconnection between 
the Mth attained state and the goal state.  The value of γα  is 
automatically increased gradually for each non-zero degree 
of disconnection throughout plan formation to keep the 
subgoal moving to the goal as described above.  (For the 
earlier Euclidean distance example, a scaling factor for the 
distance may be increased to increase γα .) 

B is a boundary condition on configuration states c to 
prevent any invalid solution configuration paths associated 
with the M controls from being considered, e.g. those 
containing backward motion or curvatures greater than that 
of the minimum turning circle.  B is composed of potential 
fall-off functions in control space that fall away to zero 
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inside valid regions of configuration space.  This enables the 
final planned solution path to have locally minimal strain 
that is realizable.  See [10] for more details. 

The process is iterated until a plan emerges for a whole 
M-step goal-connecting path as shown for an (x,y,φ) goal 
state in Fig. 1.  If the path is completely clear of obstacles, 
the M-step plan’s 1st control is executed.  Replanning occurs 
during intervals allocated to each control to keep the plan up 
to date regardless of whether it is executed or not.  This is to 
take account of events that have occurred to undermine the 
plan such as drift or having to go round obstacles, and also 
to further optimise smoothness.  It is relatively quick to 
replan due to similarity between successive smooth plans.  
Obstacle rounding is done using a separate holonomic 
planner described below. 

The top level algorithm for planning and executing an M-
step goal connecting path P with inputs of goal direction and 
distance, sensed obstacle edges and actuator motion is: 

1. Initialize a sequence of M controls. 
2. Initialize a corresponding n-D configuration spline. 
3. Compute the initial cost gradients of the configuration 

spline from the initial configuration to the goal 
configuration – for an initially low penalty for the 
forward end being disconnected from the goal. 

4. Descend through control until descent slows to indicate 
closeness to the current subgoal of local minimum cost 
potential. 

5. Increase the penalty for goal disconnection to move the 
subgoal towards the goal and then descend again. 

6. Repeat 4,5 until a locally optimized control sequence is 
planned to reach the goal configuration within 1% of 
the initial distance to the goal.  

7. If in free space then execute the plan’s 1st control. 
8. Re-plan 1 to 6 at regular intervals. 
9. Repeat 7,8 until the goal configuration is reached 

within the tolerance described in 6. 
If the number of controls proves insufficient for keeping 

the trajectory flexed and descent slows despite γα  
increasing then M is automatically increased until there is 
sufficient flexibility [10]. 

C. 1-step planning  
As alluded to above, when obstacles are sensed to lie 

across the planned path, a 1-step path planner interrupts 
execution of the M-step planner controls and temporarily 
takes over execution.  The interrupting system also uses 
descent over a dynamic field but with changes to the 
subgoal, M value and potential. The mobile local attractor 
subgoal is changed to be a target configuration in (x,y) set 
continually ahead of the current location clear of obstacle 
collision.  The subgoal travel follows a BUG algorithm set in 
dynamic potential fields [7].  That is, the subgoal and 
executed attempt on it approach each obstacle and then 
engage at a hit point on a contour of obstacle potential to 
round the obstacle along the contour. Once progress has 
been made, and can be made, towards the goal in free space, 

the obstacle is left.  M is changed to 1 and the potential is 
changed so that single step controls are planned for moving 
to the single mobile (x,y) subgoal using a Euclidean 
minimization technique based on a fixed fall-off function for 
obstacle potential and Euclidean distance.   

This function has an infinite value on the edge of an 
obstacle and falls off to a value of 0 over a finite range from 
the obstacle. The fall-off function U is given by 

 
 (2) 
 

where di is the sensed distance of a point from an edge point 
i of an obstacle, and s is the fall-off range.  The total fall-off 
at the point is summed over all sensed edge points and the 
parameter s is set to be Max(r, 3w) where r is the robot's 
minimum turning circle radius, and w is robot width.  
Passages narrower than 2s + 2r are occluded using local 
sensor information so that U-turns in passages can be safely 
made if required.  These features enable navigation plans 
around obstacles and through passages to suit the robot. 

The Euclidean distance potential is given by 
 

 (3) 
 

where dα is the Euclidean distance from the end 
configuration resulting from a single control to the attractor 
configuration subgoal α. The attractor α is positioned on a 
contour of obstacle potential at a distance s close to but 
safely away from the obstacle edge [10].  Descent towards 
the attractor is continued using the cost potential metric 
defined as in (3) until the attempt is within an acceptable 
fraction (e.g. 1% ) of the initial subgoal distance. 

The Euclidean minimiser is designed to effectively 
counter drift in all 3 approach, engage, and leave modes.  
Moves made in attempting any given subgoal are small, and 
the updates are frequent (every 50 ms).  Consequently only a 
small adjustment is required to bring the robot back on 
course to correct the drift. 

Travel goes forwards along a chain of subgoal positions 
even if this means temporarily being at a greater Euclidean 
distance from the goal configuration, such as can occur 
when going around the c-shape obstacle in Fig. 3.  In this 
way, the moving dip in the dynamic field passes through 
locations such as the centre of the c-shape that would be 
fixed local minima using a Euclidean metric in static fields. 

Leaving an obstacle requires progress to the goal to be 
assured.  Such progress is measured here as Euclidean 
distance to goal relative to the hit point, and also involves 
the plan for the future path if the robot were to leave the 
obstacle.  This plan is made up from the 1-step planner’s 
leave path and the M-step plan for free space travel that it 
joins.  A leave path that is quick to plan is composed of two 
end arcs, with curvature that of the minimum turning circle, 
joined by a straight line.  In the actual system, we use a 
smoother (x,y) spline whose peak curvature could breach the 
minimum turning circle constraint in theory but which does 
not in practice.  The arc-based version is kept as a fail-safe. 
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Progress is taken to be sufficient when the planned future 
path has an initial direction pointing inside a circle centered 
at the goal with a radius to the hit point (Fig. 3).  The 
planned future path will then keep turning inside the circle to 
its center.  Since the path all lies within the circle, this 
guarantees that traveling along this path would diminish 
Euclidean distance to goal.  When the robot is also clear to 
leave the obstacle forwards along the planned future path 
away from the nearest obstacle edge, the robot is thus safe to 
leave with further convergence to the goal assured as per all 
BUG algorithms [7]. 

The top-level obstacle-rounding algorithm with input of 
sensed obstacle edges may be described as follows: 

1. When nearest obstacle sensed to lie across planned  
M-step path, enter approach mode. 

2. Make moves (in (x,y)) towards obstacle potential 
contour until robot position smoothly hits the contour. 

3. If not clear to leave immediately, enter engage mode  
 else go to 5. and enter leave mode. 
4. Make moves forwards along obstacle potential contour 

until safe to leave obstacle. 
5. Enter leave mode. 
6. Make moves until robot position merges smoothly with 

the latest planned M-step path. 
For more detail on the holonomic aspects, see [10]. 

D. Completeness 
Each of the 4 travel modes ensures any path planned for 

the mode satisfies the turning constraint. Paths with excess 
curvature breaking this condition do not occur in plans for 
free and leave modes as they are not solutions with locally 
optimised curvature under the safeguards in either mode’s 
scheme as given earlier. For the approach mode, paths with 
excess curvature do not occur because targets are set at a 
minimal distance of the minimum turning circle radius. For 
the engage mode, they do not occur because the obstacle 
potential contour followed is set at a distance of s away from 
the obstacle edge so that it is not asked to curve round any 
obstacle point(s) with excess curvature. 

 

 
Fig. 3.  Subgoals SGi are set one at a time to pull executed attempts Ai on 
them around obstacles and then to join with an M-step path in free space 
connecting smoothly to the goal (x,y,φ) configuration state. 
 

The two planners always reduce the Euclidean distance 
between each hit or leave point and the goal.  Hence the 

planners combine so that, in the absence of drift, where there 
is a possible goal-connecting path, such a path is found.  By 
“possible” path is meant one that satisfies the turning circle 
constraint, as well as the narrow passage constraint 
mentioned earlier, so that the goal is approachable by the 
robot without being less than s away from the obstacles. 
Illustrations of overall travel to a goal (x,y,φ) state using the 
planners are given in Figs. 3, 4, and 5.  

III. RESULTS 
The system’s completeness has been tested on a series of 

simulated differential drive and car-like robots, with each 
type having a different forwards kinematics, in a series of 
simulated 2D environments. These consisted of ten obstacle 
courses each containing between one and twenty obstacles 
of significantly different shapes and sizes.  Each 
environment used 4 pairs of initial and goal (x,y,φ) 
configurations, over which all areas of the course were 
travelled. These courses were deemed a representative 
subset of all possible obstacle environments as all conceived 
robot-obstacle interactions are present.  This is because 
testing included obstacles of regular and irregular shapes of 
sizes larger and smaller than both the robot and its sensing 
capabilities, as well as closely packed and well-spaced 
obstacles.  C-Shaped obstacles were also tested to confirm 
that the method is not subject to traditional local minima 
problems (Figs. 3&4).  Initial and goal positions close to and 
far from obstacles have also been tested, as have initial and 
goal headings which face the robot towards or away from 
obstacles and each other.  Overall 3000 tests were conducted 
during which none of the internal parameters (see §II.B&C) 
were altered thus showing that different tuning is not 
required for each test, environment, or robot.  Throughout 
testing the results were found to be the same for differential 
drive and car-like robots of the same size and turning circle 
within the test granularity. 

 

 
Fig. 4.  One of the environments and the 4 travel modes in a typical solution 
path, together with an unexecuted path segment.  
 

One of the environments and the 4 travel modes in a 
typical solution path is shown in Fig. 4 together with a path 
segment which is unexecuted due to the detection of an 
obstacle during motion.  Another is shown in Fig. 5 along 
with the area reached by the obstacle range sensors. All 
courses were tested for turning circles and robot radii at 
regular values between 0.15 and 1m.  These values are 
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representative of commonly used sizes of robots and their 
turning circles.  Although turning circles are not necessary 
for differential drive robots they were applied with the same 
values as applies to a car-like robot of the same size. 

 

 
Fig. 5.  One of the environments and the travel modes in a typical solution 
path, together with the sensor range used (10x robot radius – grey area) 

 

Without perturbation through sensor error and with 
perfect forwards kinematics, all tasks were completed 
successfully with solution paths conforming to their 
theoretical expectations.  These were: locally minimal 
curvature in free space and tight circumnavigation of 
obstacles without any unnecessary undulation, kinks or 
loops in the path.  Accepting that a system with no global 
map may turn right or left somewhat arbitrarily upon initial 
sensing of an obstruction, no unnecessary circumnavigation 
of obstacles was observed, i.e the paths were tightly focused 
towards the goal.  In the tests, an (x,y) spline for the leave 
path was used and the arc-based alternative was unused. 

Perturbation was then put into effect. Table II shows the 
range of error artificially introduced to sensors and actuators 
and the limits at which the tests depicted in Figs. 4&5 
suffered collision or connection failure.  All % errors were 
started at 0% and incremented by 10% for each subsequent 
test.  The radian increments were 0.04. 

As perturbation is increased, although sensor error may be 
averaged out to a large extent, significant drift occurs.  The 
drift makes travel go inside the intended obstacle potential 
contour, solution passages become unnecessarily passed by, 
and the robot steers away from the goal direction. It 
nevertheless takes substantial perturbation to prevent 
replanning from maintaining goal connection without 
collision as Table II shows. 

 

TABLE II. 
PERTURBATION AND SUCCESS LIMITS FOR FIGS. 4&5 

Error Application Range Tested Limit Fig 4 Limit Fig 5 
Goal distance sensor  -50% to 50% ±40% ±40% 
Goal angle sensor  -1 to 1 radian ±0.12 radians ±0.8 radians 
Obstacle sensors -50% to 50% ±40% ±20% 
Actuator sensors  -50% to 50% ±40% ±30% 
Control executions  -60% to 60% ±50% ±40% 

 

TABLE III. 
COMPUTATIONAL PERFORMANCE 

Operation Time Taken 
M-step re-plan < 1 second 
1-step re-plan < 50ms 

 

The algorithms are coded in Java 5, computational 
performance running on Mac OS 10.5 with a 2Ghz Intel core 
2 duo processor with 2GB of ram is shown in Table III.  

These times have been found to be the same when testing 
both differential drive and car-like robots, suggesting that 
they will not change significantly for other robots with 2 
controls and 3 configuration variables. 

IV. CONCLUSION 
In order to provide high quality paths for nonholonomic 

obstacle navigation, a generic path planner with smooth low 
curvature solutions has been presented based on coordinated 
dynamic potential fields. 

The methodology is designed so that obstacles may be 
navigated without global maps or positioning systems.  It is 
also designed to provide complete goal connection in the 
driftless case, and resist being broken when there is drift 
through quick replanning based on search with the low costs 
of local gradient descent.   

The system has been tested on simulated differential drive 
and car-like robots with various limited turning circles and 
widths.  Various simulated environments have been 
successfully navigated without and with various forms of 
substantial perturbation. 

Future work is intended to test other approaches on the 
same obstacle courses and examine further generic 
coordinated organisation of dynamic potential fields.  
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