
 

    
   

 

  

Abstract—Current applications of mobile robots in urban 
search and rescue (USAR) environments require a human 
operator in the loop to help guide the robot remotely.    
Although human operation can be effective, the unknown 
cluttered nature of the environments make robot navigation 
and victim identification highly challenging. Operators can 
become stressed and fatigued very quickly due to a loss of 
situational awareness, leading to the robots getting stuck and 
not being able to find victims in the scene during this time-
sensitive operation. In addition, current autonomous robots are 
not capable of traversing these complex unpredictable 
environments. To address this challenge, a balance between the 
level of autonomy of the robot and the amount of human 
control over the robot needs to be addressed. In this paper, we 
present a unique control architecture for semi-autonomous 
navigation of a robotic platform utilizing sensory information 
provided by a novel real-time 3D mapping sensor. The control 
system provides the robot with the ability to learn and make 
decisions regarding which rescue tasks should be carried out at 
a given time and whether an autonomous robot or a human 
controlled robot can perform these tasks more efficiently 
without compromising the safety of the victims, rescue workers 
and the rescue robot. Preliminary experiments were conducted 
to evaluate the performance of the proposed collaborative 
control approach for a USAR robot in an unknown cluttered 
environment.  

I. INTRODUCTION 
ITH the advancement of robotic research in recent 
years, mobile robotic systems are being developed to 
aid rescue workers in urban search and rescue 

(USAR) operations. In both human-caused and natural 
disasters, the fundamental tasks at hand are: (i) to find and 
rescue victims in the rubble or debris as efficiently and 
safely as possible, and (ii) to ensure that human rescue 
workers’ lives are not put at great risk. Generally, USAR 
environments are highly cluttered and all robots that operate 
in these environments do not have a priori information about 
landmarks in the scene. These conditions make it extremely 
difficult for robots to autonomously navigate the scenes and 
identify victims. Therefore, current applications of mobile 
robots in USAR operations require a human operator in the 
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loop to help guide a robot remotely.  
Most robots’ relationship to their environments is limited 

by sensor technologies and cost, where their location in the 
environment, the layout of the environment, and the 
presence of victims are usually extracted from a 2D video 
camera [1]. A human operator in USAR environments faces 
the important tasks of remembering, recognizing and 
diagnosing a scene and how the robot is positioned and 
oriented within the scene merely from a camera. This often 
leads to disorientation, the robot getting stuck and not being 
able to identify victims that are present in the scene. 

Studies have shown that situational awareness (SA) is 
essential to the effectiveness of the use of a mobile robot in a 
USAR operation [2]. SA is defined to be the perception of 
the objects in an environment within a volume of time and 
space, the comprehension of their meaning, and the 
projection of their status in the near future [3]. Having good 
SA is critical, in fact it has been noted that operators will 
stop everything they are doing and spend an average of 30% 
of their time trying to acquire/re-acquire SA, even when they 
are performing a time-sensitive search and rescue task [2]. 
The need for high levels of SA in USAR situations can make 
it difficult for operators to safely navigate the robot and 
identify victims. To address the challenge of SA in cluttered 
USAR environments, we have developed a novel real-time 
3D mapping sensory system capable of providing 2D and 3D 
images in real-time as well as identifying landmarks and 
performing 3D Visual Simultaneous Localization and 
Mapping (SLAM) [4,5]. The images as well as the 3D map 
of the environment can be utilized to situate the robot in 
cluttered USAR environments. The sensory system can be 
used by operators with minimal training in robotic search 
and rescue applications. However, in order to be able to 
utilize our 3D mapping sensor as effective sensory feedback 
in USAR environments, a robot control architecture for 
human in the loop operation must be developed. 

Although human teleoperation can be effective, the 
unknown cluttered nature of the environments makes the 
tasks of robot navigation and victim identification highly 
challenging. Issues such as latency or a loss of 
communication can arise. Additionally, operators can 
become stressed and fatigued very quickly in USAR 
environments, causing crucial errors in control and victim 
identification [6].  Semi-autonomous control schemes have 
been proposed that allow control to be divided between a 
robot and a human operator [7,8]. In many of these schemes 
robot controllers are used to perform routine tasks so that the 
operator can focus on high level control and supervisory 
tasks. Although these schemes simplify the task of the 
human operator, the level of autonomy of the robot is fixed. 
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Alternatively, some control schemes allow the operator to 
set the level of autonomy of the robot [9,10]. This allows for 
the level of autonomy of the robot to be changed 
continuously by the operator according to need. By allowing 
the operator to set the level of autonomy, the robot is relying 
on the experience and knowledge of the human operator to 
determine when the robot can operate independently. In this 
paper, we present a unique control architecture for semi-
autonomous navigation of a robotic platform utilizing 
sensory information provided by the real-time 3D mapping 
sensor. We propose the development of a unique hierarchical 
reinforcement learning (HRL) control algorithm to allow the 
robot to learn and make decisions regarding which tasks 
should be carried out at a given time and whether the human 
or the robot should perform these tasks for optimum results. 
By giving the robot the decision making ability to decide 
when human intervention is required the human operator can 
take advantage of the robot’s ability to continuously learn 
from its surrounding environment. 

II. SYSTEM ARCHITECTURE 
The overall system architecture consists of two main 

components: (i) a real-time 3D mapping sensory system, and 
(ii) a novel control architecture that allows the robot to 
change the amount of autonomy it has during search and 
rescue operations in cluttered environments.  

A. 3D Mapping Sensory System 
The recent literature has proposed the use of a combination 

of sensory systems including variations of video and thermal 
cameras, IR sensors, range finders, time-of-flight sensors, 
gyroscopes and accelerometers to improve a robot operator’s 
SA in cluttered USAR environments [i.e., 11-13]. In 
particular, the use of stereovision, laser range finders and 
time-of-flight sensors demonstrate the need for 3D 
information to be obtained from a robot’s environment for 
the two crucial tasks of robot navigation and victim 
identification.  

Our work consists of utilizing a real-time structured light 
sensory system based on a digital fringe projection and 
phase shifting technique for 3D mapping in USAR 
environments [4,5]. The sensor can directly map rubble in 
3D and in real-time at a frame rate of up to 40 fps and at a 
resolution of 640x480 pixels. The performance of the sensor 
is independent of three main limiting factors of current 
sensors: (i) the use of a scanning mechanism, which is time-
consuming in real-time applications, (ii) slow scanning 
speed; the sensor can provide 3D mapping in real-time, and 
(iii) the illumination conditions of the environment; the 
sensor will successfully work in dim lit and dark 
environments. In addition to providing real-time 2D and 3D 
images to the human operator, sensory information is 
utilized to create a 3D virtualized map of the disaster 
environment with respect to a world frame in which victims 
can be found. In order to generate a 3D map of the 
environment, we have developed a unique and robust 3D 
Iterative Closest Point (ICP) –based SLAM  technique in 
which landmarks in the environment are identified based on 
the Scale Invariant Feature Transform (SIFT) technique. The 

novelty of the method is in the utilization of both 3D and 2D 
images. Distinguishable landmarks are determined 
effectively within the images utilizing a combination of 
SIFT invariant features, and depth and geometric clustering 
techniques. The landmarks are then matched in consecutive 
frames and utilized as inputs for 3D ICP-based SLAM. For 
more details on the sensory system, the reader is referred to 
[4,5]. In addition to the sensory hardware, an enclosure and 
vibration isolation system has been developed for the 
sensory system to protect the system as the robot traverses 
the uneven and dusty terrain of USAR scenes. We have 
integrated our sensory system into a rugged robotic platform 
capable of traversing cluttered environments, Fig. 1. 

  
 

 

B. Control Architecture 
In general, robot control architectures can be defined as 

deliberative, reactive or hybrid [14]. Deliberative control 
consists of high-level planning, whereas reactive control is 
based on directly utilizing sensory information for low-level 
commands. Traditionally, the reactive architectures have 
been considered as behavior-based control. In behavior-
based robotic control, the overall control of the robot is 
shared between a set of perception-action units known as 
behaviors [14]. Our proposed control architecture is based 
on a multi-layer hybrid behavior-based approach, Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
The robot control architecture proposed in this work 

contains the following modules:  
Robot Sensors: The inputs to the control system include 

the robot’s internal/external sensory information. In 
particular, the 3D mapping sensor is utilized herein to gather 
2D and 3D data from the environment. In addition, five 
infrared sensors distributed around the robot are also 
utilized. 

SLAM Module: The 2D and 3D images provided by the 
mapping sensor are utilized in the SLAM module to identify 
and match 3D distinguishable landmarks, as the robot moves 
within the scene, in order to create a 3D global map. In order 
to build the 3D map in world coordinates, the robot must be 

Projector 
Camera 

Fig. 1. USAR sensory system on a rugged robotic
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able to localize itself utilizing these landmarks. This is 
achieved by stitching consecutive 3D range information 
corresponding to the landmarks provided by the sensor via 
the ICP-based SLAM method [4,5].  

Deliberative Layer: The deliberative layer contains the 
decision making capabilities required to analyze real world 
scenarios. Real-time sensory data from the mapping sensor 
as well as the generated 3D map of the explored 
environment are utilized as inputs into the deliberative layer. 
Since the robot is designed to be semi-autonomous, it is 
within the deliberative layer where the level of autonomy is 
primarily decided. In particular, it is in this layer where the 
balance between human control and autonomous control is 
decided. If human control is prominent, then the decision 
making within this module is made by the human operator.  

HRI Interface:  The HRI interface module consists of the 
user interface for the operator. The interface allows the 
operator to obtain sensory information from the environment 
and the robot in order to control the robot’s motion.  

Reactive Layer: The reactive layer is used mainly for 
interaction situations that require an immediate response, 
i.e., the robot is in a dangerous situation that can cause it to 
be damaged.  

Priority Module: The priority module decides the final 
behavior of the robot based on the precedence of information 
regarding robot health and safety during interaction. 

Robot Actuators: The robot actuators module consists of 
the robot’s motors and motor control boards. Herein, the 
appropriate motor signals are applied based on robot 
behavior information. 

In the remainder of this paper we present the design of the 
deliberative layer since it is the main decision making 
module of the control architecture. Namely, within this 
architecture, the deliberative layer is the module responsible 
for providing the robot with the ability to learn and make 
decisions regarding which rescue tasks should be carried out 
at a given time and whether the robot or human can perform 
these tasks more quickly and efficiently without 
compromising the safety of the victims, rescue workers and 
the rescue robot. The remaining subsection presents the 
detailed design of the deliberative layer. 

1) Deliberative Layer: The deliberative layer will allow 
the level of autonomy of the robot to vary depending on the 
robot’s ability to function in the given environment. A 
learning algorithm will be used to allow the robot to make 
decisions regarding which tasks should be carried out at a 
given time and who (the robot or human) should perform 
these tasks for optimal results. For our proposed control 
architecture, a HRL algorithm is used for the robot 
intelligence and as the decision making scheme for the 
deliberative layer.  The advantages of HRL are that it does 
not require information about the environment to be 
provided a priori, and the learning process is on-line. 
Hierarchical Reinforcement Learning  

Three main HRL approaches have been explored in detail 
in the literature: (i) the Options approach [15], (ii) the 
Hierarchical Abstract Machines (HAMs) approach [16], and 
(iii) the MAXQ approach [17]. Of these three HRL 

approaches, MAXQ requires less knowledge of the system 
when designing the learning policy, which is advantageous 
when dealing with unknown USAR environments. Hence, in 
this paper, we propose a MAXQ approach to be utilized for 
semi-autonomous control of a search and rescue robot. The 
task graph for the robot is presented in Fig. 3. The MAXQ 
approach is able to support temporal abstraction, state 
abstraction, and subtask abstraction, each of which is 
important in search and rescue applications. The need for 
temporal abstraction exists in this application since actions 
may take varying amounts of time to execute depending on 
the complexity of the scene and the location of the robot 
within the scene. State abstraction is important since when 
the robot is navigating to a particular location only the target 
location is important, the reason why it is navigating to that 
location is irrelevant and should not affect the robot’s 
actions. Subtask abstraction is necessary because it allows 
subtasks to be learned only once; the solution can then be 
shared by other subtasks. For example, the Navigate subtask 
is used by both the Navigate to Unvisited Regions and the 
Victim Identification subtask, Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to construct a MAXQ decomposition for the 

semi-autonomous robot problem, we must first identify the 
individual subtasks that will be used to solve the overall 
problem of finding a victim in a cluttered unknown 
environment. The robot will also have the ability to give 
control to a human operator whenever an operator can 
perform a function more efficiently. For this application the 
following task and subtasks are defined: 
• Root – This is the overall USAR task where the goal is to 

find victims within a cluttered USAR environment.  
• Navigate to Unvisited Regions – In this subtask the goal is 

to have the robot explore unvisited regions within the 
search and rescue environments.  

• Victim Identification – In this subtask the goal is to scan 
the viewable scene to identify victims in the environment. 

• Human Control – In this subtask the goal is to pass control 
over to a human operator if the robot cannot complete the 
tasks at hand while in the environment. 

• Navigate – The goal of this subtask is to move the robot 
from its current location to a target location while also 
performing obstacle avoidance.  
In addition to subtasks, a number of primitive actions can 

Fig. 3.  Task graph for the USAR semi-autonomous robot platform.
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Fig. 4.  USAR-like scene. 

be implemented. These primitive actions include θ , F and 
B, which are used by the Navigate subtask to move the robot 
around the environment by rotating the robot by angle θ  
and moving the robot forward (F) or backward (B). The 
Victim Identification subtask uses the Tag action to mark a 
victim that is found in the USAR scene for future reference. 
The action Exit USAR Scene is used by the Navigate to 
Unvisited Regions subtask to guide the robot out of the 
USAR scene once it is determined that the environment has 
been fully explored. All tasks, subtasks and primitives are 
summarized in the task graph in Fig. 3. 
MAXQ State Definitions 

A set of states, S , have been determined for the 
aforementioned tasks and subtasks to be utilized within the 
MAXQ framework. In particular, the state functions for the 
robot’s overall task and each of the robot’s subtasks are 
defined as follows: (i) Root: S(V, LR, Mxyz), (ii) Navigate to 
Unvisited Regions: S(LR,Mxy), (iii) Victim Identification: 
S(LV/R,Mxy), and (iv) Navigate: S(Ci). V represents a potential 
victim. To help identify victims that are trapped within the 
rubble, image processing techniques using human features 
and shape analysis can be applied directly to the 2D images 
provided by the 3D mapping sensor and/or an additional 
thermal camera can be utilized. LR represents the robot’s 
location with respect to a global coordinate frame 
(determined from the SLAM module in the control 
architecture) and LV/R. represents the location of a potential 
victim relative to the robot as determined by the 3D mapping 
sensor. Mxyz represents the 3D map created by the SLAM 
module and Mxy represents the 2D grid map of the robot’s 
explored environment at a certain time. Ci , where i=1 to n, 
represents the information of the  n neighboring cells of a 2D 
grid map of the environment surrounding the robot at a 
particular location. The significance of the 2D grid map is 
that it allows for a simple representation of the environment 
that the robot can utilize effectively for decision making. 
The grid is composed of an array of cells. Each cell in the 
grid defines the status of an area (i.e., in front, behind or to 
the sides of the robot) in the real environment. The size of 
the cells is defined by the range of the 3D mapping sensor. 
Ci represents the status of cell i in the grid and can be 
defined as follows with respect to cell information: an 
obstacle is present in the cell as detected by the robot’s 
sensors, the cell has been visited before by the robot, the cell 
is unvisited by the robot but has been detected as an 
obstacle-free cell, and the cell information is unknown in 
which case the cell has not been explored and there is no 
sensory information available. As the robot explores the 
scene unknown cells are updated into either obstacle, visited, 
or unvisited cells in the grid. The information regarding the 
status of each cell is simply obtained from the depth 
information from the 3D map and the infrared sensors 
around the robot. Note that in the state definition of Navigate 
only the surrounding cells of the robot are used, not the 
entire 2D map. Based on the status of the robot’s 
surrounding cells, Q-learning determines the optimal 
primitive action to take during navigation. The rewarding 
function rewards desirable behavior such as obstacle 

avoidance and global exploration of the scene with positive 
rewards and discourages undesirable behavior such as 
revisiting previously explored regions and colliding with 
obstacles with negative rewards.  

III. EXPERIMENTS 
Preliminary proof-of-concept experiments were conducted 

to evaluate the performance of the proposed HRL control 
approach for our rugged USAR robot (55cm by 65cm) in an 
unknown cluttered environment. A cluttered 12m2 USAR-
like scene was developed consisting of different types of 
objects that may be found in a disaster scene, Fig. 4. The 
objects included wood, metal, plastic, brick, ceramic, 
concrete, paper, cardboard, plaster, rubber-like polymers and 
rocks. In addition, the environment consisted of 8 victims 
represented by dolls and mannequins that were distributed 
within the scene. Rubble in the scene was strategically 
placed such that the robot would have to explore around 
corners and barriers to search for victims. A number of the 
victims were partially obstructed in which case only a 
portion of their body was visible, i.e., limbs or head. Five 
operators ranging in age from 18-35 years participated in the 
experiments. None of the operators had any experience in 
remote navigation or exploration.  

 
 
 
 
 
 
 

A. Sensory System 
The structured light sensory system utilized in these 

experiments consists of a DLP projector with a native 
resolution of 800x600 pixels and a Prosilica GE680C CCD 
camera with a resolution of 640x480 pixels and a frame rate 
of 200Hz. The effective measurement range of the sensory 
system is 0.2–1.6 m and the current viewing angle for our 
experiments is approximately 11o. The accuracy of the 
system is 0.1 mm. The sensory system was able to obtain 
corresponding 2D texture and 3D depth images at 40 fps.  
We also placed a 2D video camera at the front of the robot 
that provided the operator with continuous 2D video feed of 
the scene for human teleoperation. For the purpose of these 
experiments, a simple skin-color blob tracking technique 
was sufficient to test the semi-autonomous control 
architecture. We are currently developing more robust 
techniques for victim detection to incorporate within the 
architecture as a part of our future work. The robot was also 
equipped with five infrared sensors distributed along the 
sides and back of the robot (i.e. two sensors on each side and 
one in the back) with a range of 0.1 to 0.8 m. Sensory 
information is communicated to the robot’s deliberative 
layer utilizing Bluetooth communication via an ATMEL 
microcontroller. The microcontroller is also utilized to send 
control commands to the robot actuators.   
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B. Robot Control  
The operators were asked to navigate the robot within the 

scene in two different trial sets: (i) having full teleoperated 
control over the robot, and (ii) while the robot was in semi-
autonomous mode, in which case the human and the robot 
shared decision making tasks as needed.  For the latter trials, 
the MAXQ algorithm and task graph presented in Section II 
were utilized. An initial training stage for the MAXQ was 
implemented outside of the scene. For each set of 
experiments, the level of difficulty traversing the scene 
remained the same; however, the objects and the victims 
were placed in different locations to minimize human expert 
knowledge of the scene.  

C. HRI User Interface 
During human operation of the robot, the interface 

presented in Fig. 5 was utilized. The control of the robot is 
achieved via a gamepad with two mini joysticks and a set of 
buttons. The 3D map is always available to the operator to 
allow for situations where control is passed from the robot to 
the operator.  

 
 
 
 

 
 
 
 

 

Experimental Results and Discussions 
Figs. 6, 7 and 8 present the performance comparisons of 

teleoperated control versus semi-autonomous control of the 
search and rescue robot. It is evident from the results shown 
in Fig. 6 that the total number of collisions was significantly 
reduced in the semi-autonomous search and rescue operation 
for the majority of the trials. These results suggest that the 
autonomous navigation can be more effective in using the 
sensory information for controlling the robot in cluttered 
scenes. It is important to note that the collisions that were 
detected in the semi-autonomous mode occurred on rare 
occasions where the robot was navigating through obstacle 
free sections of the map and colliding with parts of the 
rubble that were not within the field of view of the sensory 
system: Namely, the wheels of the robot were hitting small 
objects that were below the line of sight of the infrared 
sensors. On the other hand, during human teleoperation, 
even though these types of collisions occurred as well, the 
majority of collisions took place while the sensory system 
had detected the obstacles. In particular, many of these 
collisions occurred in parts of the scene where the robot was 
navigating through small openings in rubble piles or trying 
to make a sharp turn within a rubble filled area. In many 
cases for the teleoperated trials, the operators used a brute 
force approach to try to fit within narrow passages. In one 
trial, the robot became stuck in the scene for approximately 
120 seconds during teleoperation before the robot could 

continue navigating again. It is also interesting to note that in 
addition to object-based collisions, three out of the five 
operators accidentally collided with a victim during 
teleoperation.  
    On average approximately 5 victims were found in the 
teleoperated robot mode within the trials versus 7 in the 
semi-autonomous robot mode, Fig. 7. False victim 
identification was also made by one operator during 
teleoperation who defined a small red cushion to be a victim. 

 Fig. 8 presents the percentage of the overall search and 
rescue scene that was traversed by the robot in all five trials. 
Only one operator traversed the full scene during 
teleoperation, whereas utilizing the semi-autonomous mode, 
the robot was able to traverse the total area of the overall 
scene for each of the five trials utilizing the MAXQ 
approach. The total time for each trial is presented in Table I 
and is defined herein as the time it took to identify victims 
and exit the scene. The average total time for completion of 
each trial was determined to be: 337 seconds for teleoperated 
mode and 167 seconds for semi-autonomous mode. Hence, 
the total operation time was decreased on average by 50% 
while the robot was in semi-autonomous mode.  

In general, semi-autonomous control of the robot 
appeared to have better performance results. In addition to 
the experiments, the human operators were also asked to 
complete a survey reflecting their experiences. Within the 
survey, they were asked questions regarding their stress level 
during robot operation and in their opinion the impact semi-
autonomous control had on their decision making abilities. 
In regards to stress levels, all 5 participants mentioned that 
they felt stress during full teleoperation of the robot. These 
stress levels varied from 3 participants feeling little stress to 
2 participants (Participants 2 and 3) feeling a lot of stress. 
For semi-autonomous control, 4 participants stated they felt 
no stress and 1 participant (Participant 2) mentioned that he 
felt a lot of stress. Since Participant 2 felt high levels of 
stress in both scenarios, he clarified that in comparison, he 
was more stressed during robot teleoperation. All 5 
participants agreed that they found that the robot having 
autonomous capabilities improved their own decision 
making abilities in the scene due to the fact that they did not 
have to continuously multi-task and it was easier for them to 
understand the overall scene better. A number of them 
mentioned that they also did not worry as much about the 
robot getting stuck or hitting obstacles which seemed to be 
one of their main concerns. The preliminary experimental 
and survey results validate that a semi-autonomous control 
architecture utilizing a MAXQ approach for rescue robots 
has the potential of improving the success rate of a search 
and rescue mission. 

IV. CONCLUSION 
In this paper, we propose a unique control architecture for 

semi-autonomous navigation of a robotic platform. The 
control architecture utilizes a HRL algorithm to provide the 
robot with the ability to learn and make decisions regarding 
which rescue tasks should be carried out at a given time and 
whether autonomous control or human control should be 
utilized to perform these tasks more quickly and efficiently 

Fig. 5. (a) 2D image, 3D map, robot status (green indicates the wheels of 
the robot are moving) and control menu display, (b) robot status when 
wheels are not moving, and (c) alert window using sensory information 
from infrared sensors to warn the operator if the robot is in danger. 

(a) (c) (b) 
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without compromising the safety of the victims, rescue 
workers and the rescue robot. The preliminary experiments 
show the potential of further exploring the integration of a 
HRL based approach for semi-autonomous robotic control in 
unknown cluttered environments. Future work will consist 
of performing extensive experiments with a larger pool of 
participants and USAR scenes. Furthermore, we will look 
into the design of guidelines to help balance the delicate 
partnership between human and robot control in these 
complex environments. We envision that this approach will 
allow the robot to learn from different situations and 
scenarios it will be placed in and assist the human operator 
in a number of tasks that need to be completed during search 
and rescue. Thus, minimizing the stress and burden placed 
on the operator to solely complete the tasks.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

TABLE I: SUMMARY OF TRIAL TIMES. 
Participant 1 2 3 4 5 
Teleoperated Trial 
Times (s) 

418 159 505 271 334 

Semi-Autonomous 
Trial Times (s) 

215 148 194 130 148 
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Fig. 6. Number of collisions. 

         Fig. 7. Number of victims identified. 

Fig. 8. Percentage of scene explored. 

Participant 

Participant 

Participant 

2863


