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Abstract— A core challenge in probabilistic mapping is to ex-
tract meaningful uncertainty information from data registration
methods. While this has been investigated in ICP-based scan
matching methods, other registration methods have not been
analyzed. In this paper, an uncertainty analysis of a Fourier
Mellin based image registration algorithm is introduced, which
to our knowledge is the first of its kind involving spectral
registration. A covariance matrix is extracted from the result of
a Phase-Only Matched Filter, which is interpreted as a proba-
bility mass function. The method is embedded in a pose graph
implementation for Simultaneous Localization and Mapping
(SLAM) and validated with experiments in the underwater
domain.

I. INTRODUCTION

Research interest in maximum likelihood mapping has in-
creased significantly in the last years. Here, maps are usually
represented as graphs where vertices represent poses of the
robot and edges contain pairwise localization information,
generated for example by odometry or scan matching.

Several optimization algorithms for graph-based maps
exist [1], [2], [3], [4], [5], [6]. The general idea is also
used in a Visual SLAM technique called Bundle Adjustment
[7], which not only optimizes camera poses, but also their
calibration parameters at the same time.

The main challenge for meaningful probabilistic mapping
is extracting uncertainty information from measurements.
This is generally not a problem when dealing with a vehicle
motion model and odometry. However, extracting uncertainty
information from sensor data registration methods is not that
simple.

There has been some investigation into ICP-based methods
in order to compute a covariance matrix for the result [8], [9],
[10]. Other registration methods have not been investigated
in this fashion.

In the following, an uncertainty analysis of the iFMI
image registration algorithm [11], [12] developed at Jacobs
University Bremen is presented. To our knowledge, this
constitutes the first uncertainty analysis of any spectral
registration method. The process is then integrated into a
maximum likelihood mapping framework and used to build
several maps from different underwater image sequences.

II. IMAGE REGISTRATION AND UNCERTAINTY
EXTRACTION

A. The iFMI image registration algorithm

The iFMI registration algorithm [11], [12] uses a Phase-
Only Match Filter (POMF) to determine rotation/scaling and
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translation in two steps. This correlation approach makes use
of the fact that two shifted signals having the same spectrum
magnitude are carrying the shift information within its phase.

f (t − a)� F(ω)eiωa (1)

When both signals are periodically shifted the resulting
inverse Fourier transformation of the phase difference of both
spectra is an ideal Dirac pulse. This Dirac pulse indicates the
underlying shift of both signals which have to be registered.

δ(t − a)� eiωa (2)

The resulting shifted Dirac pulse deteriorates with changing
signal content of both signals. As long as the inverse trans-
formation yields a clear detectable maximum this method
can be used for matching two signals (see figure 1 for an
example).

This relation of the two signal phases is used for calculat-
ing the Fourier Mellin Invariant Descriptor (FMI). The next
step for calculating the desired rotation parameter exploits
the fact that the 2D spectrum (eq. 4) rotates exactly the same
way as the signal in the time domain itself (eq. 3):

s(x, y) = sR

[
R(α) (x, y)T

]
(3)

|S (u, v)| =
∣∣∣∣S R

[
R(α) (u, v)T

]∣∣∣∣ (4)

where α is the rotation angle, and R(α) is the corresponding
2D rotation matrix. This fact is used to decouple rotation
and translation, since the spectrum magnitudes of two shifted
(i.e. translated) signals are identical. Two consecutive camera
images do not completely fulfill this relation, but the image
contents (i.e. the signals) are expected to be similar enough
such that this assumption still holds. The following steps
to recover the rotation and scaling parameters are applied to
the spectrum magnitudes of the input images, not the images
themselves.

For turning the rotation into a signal shift the magnitude
of the signal spectrum is simply re-sampled into polar
coordinates. For turning a signal scaling into a signal shift
several steps are necessary. The following Fourier theorem
shows the relations between a signal scaling and its spectrum.

f (
t
a

)� |a|F(aω) (5)

This relation can be utilized in combination with another
transform called Mellin transform which is generally used
for the calculation of moments:

V M( f ) =

∫ ∞

0
v(z)zi2π f−1dz (6)
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Fig. 1. An example parameter space showing a clear maximum correspond-
ing to the registration result. The peak is not very pronounced because of
ambiguous structures in the registered data.

With two functions v1(z) and v2(z) = v1(az) differing only
by a dilation, the resulting Mellin transform with substitution
az = τ is:

V M
2 ( f ) =

∫ ∞

0
v1(az)zi2π f−1dz

=

∫ ∞

0
v1(τ)(

τ

a
)i2π f−1 1

a
dτ

= a−i2π f V M
1 ( f ) (7)

The factor a−i2π f = e−i2π f ln(a) is complex which means that
with the following substitutions

z = e−t, ln(z) = −t, dz = −e−tdt,

z→ 0⇒ t → ∞, z→ ∞⇒ t → −∞ (8)

the Mellin transform can be calculated by the Fourier trans-
form with logarithmically deformed time axis:

V M( f ) =

∫ −∞

∞

v(e−t)e−t(i2π f−1)(−e−t)dt

=

∫ ∞

−∞

v(e−t)e−i2π f tdt (9)

Now the scaling of a signal using a logarithmically deformed
axis can be transfered into a shift of its spectrum. Finally,
the spectrum’s magnitude is logarithmically re-sampled on
its radial axis and concurrently the spectrum is arranged in
polar coordinates exploiting the rotational properties of a 2D
Fourier transform as described before. Scaling and rotation
of an image frame are then transformed into a 2D signal shift
where the 2D signal is actually the corresponding spectrum
magnitude of the image frame. This intermediate step is
called the FMI descriptor.

The following is a sketch of the overall algorithm. The
POMF is calculated as follows:

1) calculate the spectra of two corresponding image
frames

2) calculate the phase difference of both spectra
3) apply an inverse Fourier transform of this phase dif-

ference

The following steps are taken for a full determination of
the rotation, scaling and translation parameters:

1) calculate the spectra of two corresponding image
frames

2) calculate the magnitude of the complex spectral data
3) resample the spectra to polar coordinates
4) resample the radial axes of the spectra logarithmically
5) calculate a POMF on the resampled magnitude spectra
6) determine the corresponding rotation/scaling parame-

ters from the Dirac pulse
7) re-size and re-rotate the corresponding image frame to

its reference counterpart
8) calculate a POMF between the reference and re-

rotated/scaled replica image
9) determine the corresponding x,y translation parameters

from the Dirac pulse

B. Uncertainty information from registration results

Fig. 2. Values of PNR (eq. 13) as translation difference between two
registered images increases.

Ambiguities within matched structures will have corre-
sponding indications in the parameter space. The result can
be a smeared peak, up to multiple peaks for certain repeating
structures (see figure 1). In this work, it is assumed that the
globally maximum peak is the correct one. While other peaks
may exist, they are considered irrelevant. More complex
multi-modal distributions are not usually employed in SLAM
research, and are thus neglected here.

To express the matching uncertainty, a 2x2 covariance
matrix is fitted to a neighborhood of size K around the
registration result (x∗, y∗).

Cxy =

x∗+K/2∑
x=x∗−K/2

y∗+K/2∑
y=y∗−K/2

dirac(x, y)[x y]T [x y] (10)

where dirac(x, y) is the intensity in the parameter space for
the translation (x, y).

It is assumed that the parameter space has been normalized
and thus can be treated as a discrete probability mass
function. Since covariance is defined as the expected value
of the squared distance to the mean, a heuristic in eq. 10
weights the squared distance in the parameter space by the
normalized intensity.
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A covariance for the scaling and rotation parameters
is computed analogously. The only difference is that this
covariance has to be scaled according to the rotation and
scaling resolution of the iFMI descriptor.

An important piece of information (e.g. for loop detection)
is whether the registration was successful or not. Here the ra-
tio between the intensity of the maximum, which is supposed
to be the dirac peak indicating the correct parameter, and the
surrounding range is taken as a measurement whether the
registration was successful. After a normalization (eq. 11),
the maximum search yields the intensity sdirac in the param-
eter space signifying the registration result (eq. 12). A peak
to noise ratio PNR (eq. 13) is defined, which is similar to
the signal to noise ratio.

diracnorm(x, y) =
dirac(x, y)∑X

x=0
∑Y

y=0 dirac(x, y)
(11)

sdirac = max
x,y

(diracnorm(x, y)) (12)

PNR =
sdirac

1 − sdirac
(13)

Figure 2 shows the ratio for different translations of two
image frames. For two identical images this ratio would
be infinity since the peak (eq. 12) would be one. As the
image pair drifts apart from each other, interfering structures
generate noise outside the peak and the peak itself decreases
in amplitude. The specific example presented in the graph
shows a continuous exponential decrease of this ratio up to
a translation of 86 pixels. At this point the registration failed,
which results in a significant drop in the ratio. This behavior
is typical and leads to a general threshold for PNR of 0.2.
Using this threshold, the ratio PNR yields a clear indication
that the registration was successful or not.

III. POSE GRAPH MAPPING

A. Data Structure

The pose graph is a very popular map representation in
maximum likelihood mapping. Such a graph based map has
been used extensively in the recent literature [13], [14], [15],
[1], [2], [3], [4], [5], [6], [16].

The basic idea behind the pose graph is that it is possible
to represent a map as localized sensor data. Each vertex
in the graph represents a pose where the robot collected
mapping data, and consequently contains data which needs
to be situated in a global coordinate system in order to build
a map. This can be either laser scans (2D [16], [13] or
3D [15]), other range data such as stereo camera images,
landmark observations, surface models (e.g. planes [17]),
metric sub-maps in a hierarchical mapping approach (e.g.
occupancy grids [18]), or in the case of this paper, overhead
monocular camera images.

Each edge contains constraints that relate two (or possibly
more in case of a hypergraph) poses. In the literature, these
constraints are usually full pose constraints, even though
more general constraints are feasible as well. Full pose con-
straints usually originate from odometry or data registration

techniques, such as scan matching or, as in this paper, image
registration. It is important that each constraint contains
confidence information in the form of a covariance matrix.
Other forms of confidence information are also possible,
however optimization algorithms for them do not exist yet.

Most pose graph optimization algorithms use the Maha-
lanobis distance as the objective function [3], [15], [16].∑

c

fc(X)T C−1
c fc(X)

where X is the vector of global poses, fc(X) is the function
for constraint c, and Cc is its covariance matrix. In the
following discussion of mapping results, this metric will be
used to show that the error in the graph decreased.

B. Framework and Integration

The maps in the following section were generated with a
mapping framework developed at Jacobs University Bremen,
which implements the general pose graph map representa-
tion.

This framework was designed to be sensor data agnos-
tic in a way that abstracts how data is registered, stored
within a serializable data structure, and finally rendered into
a composite map. It is therefore straightforward to reuse
several graph map optimization and generic loop closing
algorithms with a new kind of sensor data. The framework
only requires interface implementations that can reliably
register and render that new kind of data. By exactly this
extension paradigm, it was possible to generate complete
maps from overhead camera data quickly.

The optimization of a pose graph depends only on the
constraints present in the graph and is thus almost uni-
versally applicable, no matter what algorithm or sensor
generated the constraints or what kind of data is present
at the vertices. However, loop closing is another matter, it
heavily depends on the data used for mapping. In terms
of mapping framework integration of the iFMI registration
described above, the sdirac

ndirac
ratio is used to this end. This

ratio can be computed for the rotation/scaling parameters for
no significant additional cost from the pre-computed fourier
transforms and a suitable threshold is easily found as shown
above. Thus, it is possible to check potential registration pairs
that lie within a neighborhood of each other quickly.

In this paper, we use both the inspection of the specific
registration result as well as manual loop detection using a
special purpose GUI. This application also allows real time
visualization of the mapping result during video capture. The
pose graph maps in the following section are optimized with
the open source TORO optimizer [2].

IV. EXPERIMENTS AND RESULTS

A. Cold Corals

The first data set discussed here was recorded off the
coast of Sweden. It was collected by a remote operated
vehicle (ROV) and contains a video stream showing cold
water corals.
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Fig. 3. Complete image map generated from the testing pool data set, before (left) and after (right) graph optimization. Note the blurred lower left part
of the map before optimization and the misalignment of two rocks (arrows). After optimization, the map is visibly improved and the rocks are aligned
properly.

Fig. 4. Short sequence of three images from the cold water corals data set.
The detail on the bottom shows the merged image before optimization,
and the one above shows the much clearer structures of the optimized
image map. The corresponding pose graph with a slightly misaligned top is
shown on the right. Note the global covariance matrices plotted as ellipses
in magenta.

The data is quite challenging for an image registration
algorithm as fish, plankton, and the ground itself all give
rise to different flow patterns. Our results show that the iFMI
registration algorithm is both robust against such noise and
generates covariance matrices usable for maximum likeli-
hood mapping with the pose graph.

Figure 4 shows a set of three images which were mutually
registered. All three images are rendered transparently on top
of each other using a gaussian kernel. This is clearly shown
in the resulting pose graph shown on the right. Each of the
three vertices is connected to the two other vertices. The
global covariances of the poses are plotted in magenta. Note
that the first node (here shown in green) does not have any
positional uncertainty as it is defined as the origin of the

global map coordinate frame.
The final result after pose graph optimization is shown on

the left of figure 4. Even before optimization, the error is
only minimal, as seen in the close up (bottom center) and
in the pose graph on the right. The top vertex in the graph
is actually projected to two different poses, depending on
the path taken to accumulate the registration results. Such
conflicts are visualized in red.

The detail view in the middle of figure 4 shows how the
slight error that is accumulated even over two steps can
be mitigated by maximum likelihood mapping. Before op-
timization, distinguishing features are blurred and smudged
in the composite image, shown in the bottom center image.
Once the underlying pose graph is optimized, the highlighted
features are much crisper since the images are aligned better.

In addition, the significant drop in the objective function
used during optimization shows quantitively that the map
improved. The squared Mahalanobis distance over all edges
before optimization is 0.611929. After optimization, it is
reduced to 3.05721 · 10−32. This demonstrates that all three
constraints are satisfied simultaneously. The computation
time of the pose graph optimization with three vertices and
three edges is negligible, less than 0.2 ms on an Intel Core
i7 2.67 GHz without parallelization.

Figure 7 shows a full map constructed from the complete
data set, consisting of more than 2000 images overall.
Unfortunately, the ROV did not loop back to the beginning
of the path, and no larger loops could be closed.

B. Rocky Testing Pool

The following data has been recorded in a small pool
used for testing landers and crawlers at Jacobs University
Bremen’s Ocean Lab. The bottom of the pool was covered
with sand and several differently sized rocks. Conditions in
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Fig. 5. Detail of the first and last frame of the testing pool image map,
before and after pose graph optimization.

Fig. 6. Pose graph that represents the map shown in Figure 3, before (top)
and after (bottom) optimization. It consists of 35 vertices and 57 edges. The
starting pose is green, constraint edges from registration are blue, vertices
that are projected to multiple poses because of accumulated errors in a loop
are shown in red. Note that these conflicts are resolved after optimization.

the pool were not favorable as it was mostly taken over
by algae and the ground was barely visible through the
green tinted water. However, since it was a very controlled
environment, we were able to collect data that contains many
loops and is thus very suitable for mapping.

Figure 3 shows a map of the pool ground and rocks before
and after optimization. Before optimization, as shown on
the left of the figure, the map uses only the cumulative
transformations calculated by sequential image registration.
It is quite obvious that the lower part of the map is blurred
beyond recognition. Two rocks, which seem to be properly
localized in the upper portion of the map are actually visible

twice, as pointed out by the arrows. Due to translational
errors in the right part of the map, two rocks (the triangular
one and its left neighbor) seem properly sized, but are
localized incorrectly relative to each other.

After optimization, the map shows much crisper and more
visible features and is shown on the right of figure 3. The
bottom left of the map is clearer. The two rocks indicated
by the arrows are localized properly.

The optimization of the pose graph was finished after
5.25 ms on an Intel Core i7 2.67 GHz. No parallelization
of the optimization algorithm was performed. The small
computation time is due to the relatively small size of the
graph. This map contains only 35 vertices and 57 edges,
as shown in figure 6. Please refer to [1], [2] for a detailed
investigation and performance analysis of the optimization
algorithm.

An interesting detail is revealed by looking only at the
first and last picture of the sequence. Figure 5 shows how
far apart the two pictures are localized before optimization.
This specific artifact is the same as indicated by arrows in the
complete map (figure 3). After optimization, the two images
overlap properly. This is especially visible when looking at
the diamond shaped rock. In the picture before optimization,
it is present twice, afterwards, both images show the rock at
the same location.

Figure 6 shows the underlying pose graph data structure.
The arrow heads represent the potential global poses of the
vertices. Blue lines show edges between vertices. Conflicts
in the pose graph where the same vertex is projected to two
or more different poses due to loops are highlighted in red.
A similar distribution of errors is visible in this visualization.
Vertices on the lower left loop of the graph are not very well
localized before optimization. One of the vertices projects
to significantly different poses, shown here in red with lines
connecting them to the most likely pose drawn in black. After
optimization, all constraints were satisfied and no conflicts
remain.

This fact is also demonstrated by the significant decrease
in the Mahalanobis distance. Before optimization, the value
is 367.478. Afterwards the value drops to 9.527 ·10−4. These
values quantify the error in the map described above and
show that the optimization algorithm was able to use the
generated uncertainty information in a meaningful way.

C. Performance

The performance of the registration is dominated by the
underlying FFT implementation. In the following experi-
ments, the FFT implementation of the Gnu Scientific Library
is used. Preliminary tests have shown that more optimized
FFT implementations may increase performance by 30%.

On an Intel Core i7 2.67 GHz with 6GB RAM, registration
of two images takes on average 0.055 seconds (σ = 0.0071).
Please note that the program was not multi-threaded and thus
did not use the processor to the fullest extend. Performance
can be improved if the images are sequential, which means
that some of the previous FFT computations can be reused.
The registration then only takes 0.028 seconds on average
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Fig. 7. Complete map generated from the Cold Corals data set, contains more than 2000 images.

(σ = 0.0058) for each sequential registration after the first
one. These numbers include the time needed to extract the
described uncertainty information.

Generating the map shown in figure 3 took 1.9 seconds,
figure 7 took 133.7 seconds, both excluding file IO to read
the images from the disk.

V. CONCLUSION

The improved Fourier Mellin Invariant (iFMI) method is
a spectral approach to image registration, which is suited
to generate robot maps by estimating the transformations
between consecutively acquired image frames. For proper
Simultaneous Localization and Mapping (SLAM) uncer-
tainty measures are required, which have not received any
attention in the context of spectral registration approaches.
Here, iFMI registration is augmented by an uncertainty
analysis. Concretely, it was shown how the dirac domain
of the spectral image registration algorithm can be analyzed
to generate uncertainty information about the registration
result. This uncertainty is then used in a maximum likelihood
mapping algorithm. The approach is tested with data from the
underwater domain where qualitative as well as quantitative
improvements can be observed by using SLAM with the
uncertainty measure.
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