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Abstract— In this paper the formation stabilization problem
for a system of heterogeneous agents is considered. Agents are
characterized by different linear dynamics, and assumed to be
able to collaborate by exchanging information if they are within
their range of communication. A sufficient algebraic condition
for the stability of the formation based on a generalization of
the Gerschgorin circle theorem for block matrices is proposed.
Furthermore, conditions under which the formation remains
stable under switching topology are investigated. Simulation
results are given to corroborate the theoretical results.

I. INTRODUCTION

In the last decades systems theory has been driven toward

the study of the systems of systems, i.e complex high-order

dynamical systems arising from the interconnection of small

order dynamical systems. While in the most general case

the system of systems is an arbitrary interconnection between

dynamical systems, in the framework of multi-agent systems

the scope is restricted to the study of a set of homogenous

dynamical systems, the agents, arbitrarily interconnected

with some defined interaction rule. In such model the uncer-

tainty lies in the interconnection topology which is arbitrary

and possibly unknown. In this paper we are interested in

investigating the stability properties of linear Multi-Agent

systems dropping the assumption on the homogeneity of the

network. Such assumption increases the generality of the

results by allowing the agents to have different dynamics,

eventually coming from model uncertainties.

In the Robotics field, multi-agent systems have been

widely used by the research community as an effective

(simulation) framework to investigate formation control tech-

niques which could be applied to (real) robotics devices. In

this framework, a multi-agent robotic system is commonly

modeled with a graph, where each vertex describes the

kinematics of the related robotic agent (simply “agent” from

now on), while a link models the constrained interaction

among agents. The formation control is a fundamental issue

to properly achieve cooperation in a multi-robot system.

Indeed, the capability to acquire a formation and maintain

it over time while the multi-robot system is moving is

fundamental in order to execute a variety of tasks, e.g.,

robotic soccer, surveillance, object transportation and so

on. Moving in formation introduces several interesting ad-

vantages: higher robustness and efficiency while providing
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redundancy, as well as higher flexibility and reconfiguration

capabilities. Formation control does not restrict itself only

to ground mobile robots [1], [2]. Among the others, it has

been successfully applied to aircrafts [3], [4], in particular

unmanned aerial vehicles (UAVs) [5], underwater vehicles

[6], [7], as well as satellites [8], [9]. For a comprehensive

overview of the formation control problem the reader is

referred to [10].

In this paper, the problem of formation stabilization for

a set of heterogenous agents, i.e., the stabilization of their

relative position [11], [12], is addressed. In particular, agents

are assumed to have different linear dynamics and be able to

collaborate by exchanging information if they are within their

range of communication. A sufficient algebraic condition

for the stability of the formation is proposed. In addition,

conditions under which the formation remains stable under

switching topology are investigated. The idea is to use a re-

sult on the generalizations of the Gerschgorin circle theorem

for block matrices, which can be found in [13], to define a set

of rules which can be applied locally by each agent to build

a control law in a completely distributed way so that the

global stability of the formation is guaranteed. In the past

years, this result on the generalization of the Gerschgorin

circle theorem for block matrices has been applied in several

contexts. Among the others, in the analysis of interconnected

systems for the elimination of fixed modes [14], and for

the stabilization of large scale systems [15]. Such concept

might be useful in multi-robot coordination applications

because it allows each robot to estimate the position of the

system eigenvalues only by looking at its dynamics and its

local interconnection. This theory is developed for linear

systems but still it is of great practical relevance for the

local stabilization of equilibrium points corresponding to

the desired formation where a linear approximation of the

nonlinear vehicle dynamics is feasible.

A. Paper content:

• In Section II some basic notions of graph theory to

model the network topology of a multi-agent system

along with an overview of the Gerschgorin circle theo-

rem are given.

• In Section III a formalization of the stabilization prob-

lem for a heterogeneous multi-agent system is given.

• In Section IV conditions for the stabilization of a multi-

agent system with fixed topology are given.

• In Section V conditions for the stabilization of a multi-

agent system under switching topology are given.
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• In Section VI simulations to corroborate the theoretical

results are shown.

• Finally, in Section VII conclusions are drawn and future

work is discussed.

B. Assumptions:

In the rest of the paper, the following assumptions will

be taken into account for the multi-agent system:

• Each agent i has its own linear dynamics described by

the matrix Ai (the system is heterogeneous),

• A way to share a common (global) reference frame

among agents must be available, for instance using the

algorithms given in [16],

• Collaboration from agents i to j is achieved by exchang-

ing data according to the interconnection matrix Pij ,

• Collaboration does not necessarily need to be symmet-

ric, that is it can be Pij 6= Pji,

• Communication does not necessarily need to be bidi-

rectional.

II. THEORETICAL BACKGROUND

A. Concepts of Graph Theory

In the paper the notion of graph as a model of the network

topology is used. A graph G = {V,E} is a set of vertices

(or agents) V = {1, . . . , n} connected by a set of edges

(or links) E ⊆ {V × V }. A graph is said to be undirected

if (i, j) ∈ E ⇐⇒ (j, i) ∈ E. A couple of nodes i,j are

said to be connected by a path if there exists a sequence

of links that can be traveled uninterruptedly from i to j. An

undirected graph is said to be connected if there exists a path

between any couple of node i, j ∈ V . In the following we

will refer to Ni as the neighborhood of agent i, namely the

set of indices of the agents directly connected through an

edge with agent i.

In the proposed network model, an interaction between

agent i and agent j may occur only if agent i can directly

communicate with agent j and viceversa. Since each agent

is modeled with a limited sensing radius ρi, the generic

couple of agents i and j with positions pi and pj may

communicate if and only if ‖pi − pj‖2 ≤ min{ρi, ρj}. As

a result, the interaction topology is modeled by a time-

varying proximity graph. Given a set of agents positions

P = {p0, p1, . . . , pn} with pi ∈ Rd we define a time-varying

proximity graph G(t) = {V,E(t)}, where V is the set of

vertices V = {1, . . . , n} that represent the agents, and E(t)
is the time-varying set of edges that encodes the interaction

topology at time t:

E(t) =
{

(i, j) : ‖pi(t)− pj(t)‖ ≤ min{ρi, ρj},

∀ i, j ∈ V i 6= j
}

.

B. Gerschgorin circle theorem

The Gershgorin circle theorem can be used to provide a

bound for the spectrum of a square matrix [17]. Let A be a

complex n×n matrix with entries aij , and let Ri be defined

as the sum of the absolute values of the off-diagonal entries

in the i-th row, i.e., Ri =
∑

j 6=i |aij |. Let the Gershgorin

disc Di associated with the i-th row be defines as:

Di = {z ∈ C : |z − aii| ≤ Ri}

and let D =
⋃n

i=1 Di, be the union of the Gershgorin discs

Di, i = 1, . . . , n. The Gershgorin circle theorem states that

every eigenvalue of the complex matrix A lies within the

union of the Gershgorin discs Di, that is:

λi ∈ D, ∀ λi ∈ σ(A), (1)

where σ(·) is the set of eigenvalues of a matrix.

A generalizations of the Gerschgorin circle theorem for

block matrices can be found in [13]. In particular, let A be

a generic block matrix of the form:

A =



























A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

AN1 AN2 . . . ANN



























.

In particular, for such a partitioned matrix A, each eigen-

value λ of A satisfies (Th. 2 [13]):

(

‖(Aii − λIi)
−1‖

)−1
≤

N
∑

k=0,k 6=i

‖Aik‖, (2)

for at least one i, with 1 ≤ i ≤ N , where the norm ‖ · ‖ is

defined as:

‖A‖ = sup
x∈Ω,x 6=0

(

‖Ax‖

‖x‖

)

. (3)

and the quantity appearing on the right of the above inequal-

ity is defined as follows:

(

‖A−1‖
)−1

= inf
x∈Ω,x 6=0

(

‖Ax‖

‖x‖

)

, (4)

whenever A is not singular. Note that, in case the matrix

A is singular the quantity
(

‖A−1‖
)−1

can be defined by

continuity to be zero ([13]).

Now by defining the Gerschgorin set Si as the set of all

complex numbers z for which the following holds:

(

‖(Aii − zIi)
−1‖

)−1
≤

N
∑

k=0,k 6=i

‖Aik‖, (5)

it is obvious that each set Si always contains the eigenvalues

of Aii independently to the magnitude of the right side of
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the equation. Moreover, it can be defined the union of these

sets:

S =

N
⋃

i=1

Si,

and according to the condition (2) it can be stated that all the

eigenvalues of the matrix A lie on the union S previously

defined.

III. PROBLEM DESCRIPTION

The problem we are going to address is inspired by the

works [11], [12]. In these works the authors address the

formation stabilization problem for a team of agents with

identical dynamics. Differently in this paper the multi-agent

system is supposed to be heterogeneous. In particular, the

problem formulation can be stated as follows.

Let us consider a set of N agents described by the graph

G = {V,E} with N = |V |, whose linear dynamics are

denoted as:

ẋi = Ai xi +Bi ui, (6)

where xi ∈ Rni is the state vector of the i-th agent, while

Ai ∈ Rni×ni and Bi ∈ Rni×qi describe respectively the

dynamic matrix and the input matrix of the i-th agent. Let

us consider an interconnection for a couple of agents i, j

with (i, j) ∈ E of the form:

zij = Pij xj , (7)

where Pij ∈ Rni×nj is the interconnection matrix. We are

willing to find a distributed control law K of the form:

ui =
∑

j∈Ni

K̂ij xj +Kxi
xi, (8)

where K̂ij = kij Pij with kij ∈ R, so that the whole

formation is stabilized. Note that, according to the definition

given in [11], [12], with the term stabilization of a formation,

the stabilization of the relative position for a set of multi-

agent system is meant.

For sake of clarity, let us rewrite the whole problem

formulation in a matrix form for a system composed of three

agents:















ẋ1

ẋ2

ẋ3















=















A1 0 0

0 A2 0

0 0 A3





























x1

x2

x3















+















B1

B2

B3





























u1

u2

u3















,















u1

u2

u3















=















Kx1 K̂12 K̂13

K̂21 Kx2 K̂23

K̂31 K̂32 Kx3





























x1

x2

x3















,

where a generic K̂ij might be zero if there is no communi-

cation from robot i to robot j.

Finally, by substituting the second equation into the first

one we obtain the following matrix form:







ẋ1

ẋ2

ẋ3






=

















































A1 +B1Kx1 B1K̂12 B1K̂13

B2K̂21 A2 +B2Kx2 B2K̂23

B3K̂31 B3K̂32 A3 +B3Kx3























































x1

x2

x3






.

(9)

IV. MULTI-AGENT SYSTEM WITH STATIC TOPOLOGY

For such a scenario described in Section III, it might be

of interest to investigate conditions under which the overall

formation is stable. To this end, let us assume that the

interconnection matrices Pijs are given and they cannot be

modified. This assumption might reflect the fact that this

kind of interaction is generally constrained by the sensing

capabilities of the agents. According to this scenario, let us

formulate the problem as follows.

Problem Statement (I): “Given the system described

in (9) with the assumptions given in (I-B), we want to

determine a set of rules which can be applied locally by

each single agent in order to guarantee the overall stability

of the formation”.

A possible way to solve this problem in a decentralized

fashion is to let each agent implement the following algo-

rithm.

Algorithm 1:

Let us consider a generic agent i, the following steps

must be performed:

1) Neighboring discovery in order to identify Ni,

2) Construnction of a control law K so that:

a) The dynamics Ai + BiKxi
is asymptotically

stable,

b) minλi∈σ(Ai+BiKxi
) {|λi |} ≥

∑

j∈Ni
‖BiKij‖

3) Notify to the neighborhood Ni the status “ready to go”.

In the following a theorem by which the stability of the

formation can be proved when each single agent implements
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algorithm 1 is given.

Theorem 1: A sufficient condition for the stabilization of

the formation is that each agent i locally applies a control law

K of the form given in (8) such that the dynamics Ai+BiKxi

is asymptotically stable and:

min
λi∈σ(Ai+BiKxi

)
{|λi |} ≥

∑

j∈Ni

‖BiKij‖. (10)

Proof: In order to prove the theorem, the generalization

of the Gerschgorin disk theorem for block matrices given in

Section II-B is exploited. In particular, since for any given

block-matrix A all the eigenvalues lie within the set S, a

sufficient condition for the stabilization of the formation

given in (9) is that each Gerschgorin set Si must be located

on the left-half of the Gauss plane ( Si ∈ C−). Indeed, by

noticing that the quantity defined on the right hand of the (5)

can be computed (as suggested in by exploiting the Euclidean

vector norm
∥

∥x
∥

∥

2
= (

∑

i |xi|
2)

1
2 as [13]:

(

‖(Aii − zIi)
−1‖

)−1
= min

λj∈σ(Aii)
{|λj − z|},

it follows that Si ∈ C− is achieved by guaranteeing :

min
λi∈σ(Ai+BiKxi

)
{|λi |} ≥

∑

j∈Ni

‖BiKij‖,

with Re{λ} < 0 thus proving the theorem.

Remark 1: Theorem 1 provides a policy by which each

agent i can locally tune the effect of the interaction with the

neighboring agents with respect to its own dynamics Ai so

that at least from its point of view the formation is stable.

Indeed, each agent i with its action can only influence the

i-th Gerschgorin Set Si, and therefore it has only a local

view of the possible location of the eigenvalues related to

the formation dynamics. Note that, this approach if fully

decentralized as only local information, i.e., interconnection

matrices Pijs, is required to satisfy the condition (10).

Moreover, it turns out to be a robust approach as the lost of

an interconnection does not bring instability, i.e., the quantity

on the right side of the inequality (10) does not increase.

Remark 2: Theorem 1 can be equivalently stated by

taking into account the concept of diagonal dominance of

a block-matrix as in [15]. In particular, the formation is

stable if each agent i locally applies a control law K of

the form given in (8) such that the dynamics Ai + BiKxi

is asymptotically stable and the overall matrix A is block

diagonally dominant, that is:

(

‖A−1
ii ‖

)−1
≥

N
∑

k=0,k 6=i

‖Aik‖.

This allows to point out the analogy with the case of a scalar

matrix, i.e., agents with a scalar dynamics, for which by

exploiting the Gerschgorin circle theorem, the stability is

guaranteed by the diagonal dominance and negative definite-

ness.

V. MULTI-AGENT SYSTEM WITH SWITCHING TOPOLOGY

In Section IV a sufficient condition for the stabilization

of the formation under the assumption of having

interconnection matrices Pijs that do not vary over

time has been given. In the following, an enhanced scenario

in which the interconnection among two agents might be

temporarily available or not over time is investigated.

In particular, let us assume that the topology is switching

but any time an interconnection from agent i to agent j is

available it is always described by the same interconnection

matrix Pij . Indeed, this seems a reasonable assumptions,

as these matrices usually describe sensing capability of

the agents which normally do not vary over time, apart

from malfunctioning or re-calibration issues which are not

considered in this scenario. This leads to the following

definition for the interconnection matrices for this enhanced

scenario:

Pij(t) =

{

Pij for some t

0 otherwise
, (11)

where 0 is obviously a matrix of appropriate dimensions.

This leads to a new slightly different formulation for this

enhanced scenario as follows.

Problem Statement (II): “Given the system described in

(9) with the assumptions given in (I-B) under switching

topology where an interconnection matrix is defined as given

in (11), we want to determine a set of rules which can be

applied locally by each single agent in order to guarantee the

overall stability of the formation under switching topology”.

Theorem 2: A sufficient condition for the stabilization of

the formation under switching topology is that each agent

i locally applies a switching control law K of the form

given in (8) such that for a given topology G(t) the dynamics

AG(t),i = Ai +BiK
G(t)
xi is negative definite and:

min
λi∈σ

(

A
+
G(t),i

)

{|λi |} >
1

2

∑

j∈Ni

(

‖BiK
G(t)
ij ‖+ ‖BjK

G(t)
ji ‖

)

,

(12)

where A+
G(t),i is the symmetric part of the dynamics AG(t),i.

Proof: In order to prove the theorem, it is sufficient to

show that for any topology G(t) by applying a control law

of the form given in (12), the matrix AG(t) describing the

formation dynamics under topology G(t) is negative definite.

Therefore, by exploiting a well-known result coming from

the switching control theory we can use the identity matrix

to build a common quadratic Lyapunov function (CQLF) to

prove the stability of the formation under switching topology

[18].
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In order to prove the negative definiteness, we use a

similar argument as in Theorem (1). In particular, for any

non-hermitian matrix A with real coefficients we have that

A is negative definite if and only if its symmetric part

A+ =
(

A+AT

2

)

is negative definite. Moreover, according

to the generalization of the Gerschgorin circle theorem for

block matrices given before, this can be obtained by forcing

any Gerschgorin set Si to be located on the left-half of the

Gauss plane ( Si ∈ C−). Indeed, this can be achieved by

guaranteeing that:

min
λi∈σ

(

A
+
G(t),i

)

{|λi |} >
1

2

∑

j∈Ni

(

‖BiK
G(t)
ij ‖+ ‖BjK

G(t)
ji ‖

)

,

(13)

with Re{λ} < 0 thus proving the theorem.

Remark 3: Theorem 2 represents a natural extension to

the switching scenario of the result given by Theorem 1.

However, the requirement of negative definiteness of the for-

mation dynamics AG(t) for any given topology G(t) demands

for a bigger effort compared to the static scenario, that is the

negative definiteness of each single agent dynamic AG(t),i

and a stronger interaction among the agents to fulfill the

constraint (12). Note that, from a computational perspective

a distributed collaborative technique must be developed to

fulfill the constraint (12). Indeed, such a negotiation process

might be significantly limited by the scale of the system.

A simple condition to guarantee the overall stability of the

switching formation in a distributed fashion is provided by

the following corollary.

Corollary 1: The condition (12) is fulfilled if the follow-

ing holds:

kij ≤ k̄ <

min
λi∈σ

(

A
+
G(t),i

) {|λi |}

n maxi,j ‖Bi Pij‖
, ∀i, j ∈ V (14)

Note that, corollary 1 provides a conservative but de-

centralized solution to satisfy the sufficient condition given

in Theorem 2. It requires each agent to reach consensus

on a lower bound of their smallest eigenvalue along with

a consensus on an upper bound on their interconnection

matrices norms. Then if all the agents know the total number

of interconnected agents n, the condition on Theorem 2 is

satisfied.

VI. SIMULATION RESULTS

In the following, simulations concerning the formation ac-

quisition for a multi-agent system are presented. Each agent

has a dynamics characterized by the following differential

equation.

ẋi = Ai xi +Bi ui,

and the following inter-agent sensing model:

zij = Pij(xi − xj),

where zij is the distance among agents i and j respectively.

For sake of simplicity the identity matrix will be chosen

as interconnection matrix Pij . The local controller for each

1 1.5 2 2.5 3 3.5 4 4.5 5

1.5

2

2.5

3

3.5

4

4.5

[x]

[y
]

Fig. 1. Formation acquisition: agents’ trajectories.

agent is defined as follows:

ui =
∑

j∈Ni

Kijzij ,

=
∑

j∈Ni

KijPij(xi − xj + δij).

Two different scenarios are considered; in the first one the

goal of the multi-agent system is to acquire a formation with

the shape of a hexagon, while in the second one the goal is

to acquire a formation with the shape of a regular lattice.

Note that, a control law built according to the condition (10)

given in Theorem 1 simply drives the state of the agents to

a common value. According to [11], [12], in order to reach

a formation with a desired shape, a proper offset must be

added to the inter-agent distance zij for each pair of agents

i, j, namely the term δij . A simple way to achieve it is to

define a proper vector of offsets δ =
[

δ10, · · · , δi0, · · · , δN0

]

that will act as an input for the dynamical system.

Regarding the first scenario, Fig. 1 shows the trajectories

for the six agents team: agents start from random positions

and move till the hexagon shaped formation is reached, while

Fig. 2 shows the state evolution of the six agents dynamics.

In the same way, regarding the second scenario, Fig. 3

shows the trajectories for the nine agents team: agents start

from random positions and move till the regular lattice

shaped formation is reached, while Fig. 2 shows the state

evolution of the nine agents dynamics.

Note that, in order to reach such a formation behavior, in

both cases an inner control loop to provide an integral action

has been designed for each agent. This can be explained by

the fact, that the problem of formation acquisition can be

thought as a regulation problem for which the presence of

an integrator is required in order to drive the dynamics of

the error with respect to a constant reference to zero.
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Fig. 2. Formation acquisition: agents’ state evolution.
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Fig. 3. Formation acquisition: agents’ trajectories.
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Fig. 4. Formation acquisition: agents’ state evolution.

VII. CONCLUSION

In this paper the formation stabilization problem for a

system of heterogeneous agents has been addressed. In the

proposed scenario, agents are characterized by different dy-

namics and assumed to be able to collaborate by exchanging

information according to their range of communication. A

sufficient algebraic condition for the stabilization of the

formation in the case of static topology has been provided.

Furthermore, conditions under which the formation remains

stable under switching topology have been investigated. The

key idea is to use a well-known result on the generalization of

the Gerschgorin circle theorem for block matrices to define

a set of rules which can be applied locally by each agent

to build a control law in a complete distributed fashion

so that the global stability of the formation is guaranteed.

Simulation results have been proposed to corroborate the

theoretical results. Future work, will be mainly focused on

the investigation of additional, hopefully simpler condition

for the stability of the formation under switching topology.
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