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Abstract— We propose two contrasting approaches to the
scalable distributed control of a swarm of self-assembling
miniaturized robots, specifically the formation of chains of a
desired length: (1) a deterministic controller in which robots
communicate with each other in order to directly limit the
size of each chain, and (2) a probabilistic controller where the
average chain size is controlled by the probability a robot will
choose to leave its chain. We demonstrate the feasibility of both
approaches by implementing them on a real swarm of Alice
robots. Using Webots, a realistic simulator for mobile robotics,
and macroscopic models based on the Chemical Reaction
Network (CRN) framework, we investigate the limitations of
the deterministic controller and demonstrate the existence
of optimal parameters for the probabilistic controller where
exploration and exploitation are well balanced, thus favoring
the formation of larger chains.

I. INTRODUCTION

Aggregation is an ubiquitous phenomenon occurring at all

scales: atoms and molecules [1], microfabricated parts [2],

animals [3], and robotic systems, both with passive ob-

jects [4] and robots [5] as building blocks. Also, many

functional structures found in nature are generated by a

specific type of aggregation, self-assembly, which is essen-

tially stochastic, reversible and structured [6], often yielding

systems in which the stability of an aggregate depends on

the relative positioning of its building blocks.

This paper investigates and models the self-assembly of

miniaturized robots with minimal abilities in terms of sens-

ing, actuation, and control. To this end, we use a swarm

of Alice robots [7]. The Alice micro-robot is a 2cm cube,

equipped with an extremely limited capacity for sensing and

computation. In particular, the Alice has very poor odometry

and no radio communication module (in its basic configura-

tion), making deliberative motion planning an arduous and

error-prone task. Therefore, in this paper we consider the

self-assembly of Alice robots to be essentially stochastic,

i.e. the robots perform a random walk and, upon collision,

they can decide to aggregate. Local infrared communication

allows aggregated robots to exchange some bits of informa-

tion, albeit with poor reliability.

More specifically, we investigate the self-assembly of

Alice robots into chains of a target size. We consider

two approaches: (1) a deterministic approach where robots

communicate with each other in order to determine the size
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of each chain and adapt their behavior accordingly, and (2) a

probabilistic approach where chain size is controlled by the

probability that a robot will leave its current aggregate. Both

controllers are described further in Section III-D.

We perform a detailed study of each controller using

both Webots, a realistic simulator for mobile robotics, and

macroscopic models based on Chemical Reaction Networks

(CRN), a modeling framework that has been studied exten-

sively in the context of biochemical systems [8]. This level

of representation is very abstract, allowing one to capture

the system as a whole, while still enabling the construction

of exact and approximate numeric simulations of the system

using the Gillespie method and its various optimizations [9],

[10].

II. STATE OF THE ART

Recently, self-assembly and its unstructured equivalent,

aggregation, have seen increasing popularity in distributed

and modular robotics. This includes aggregation of passive

objects mediated by mobile robots [4], [11], aggregation of

Alice robots using a notably simple controller [12] and even

mixed societies of robots and insects [13]. Among recent

implementations of self-assembling robots at the macroscale,

Gross et al. demonstrated self-assembly using the Swarm-

bot, a mobile robot equipped with a gripper [5]. However,

because they rely on a full breadth of sensors, including

cameras and a computationally intensive controller, their ap-

proach is not well suited to extreme miniaturization. Klavins

et al. have demonstrated self-assembly of triangular robotic

modules that slide passively on an air table [14]. Here,

permanent magnets serve as a binding mechanism, and robots

use explicit communication to execute a common graph

grammar and determine their next course of action. Once

again, we believe that this type of controller is a strongly

limiting factor in the context of extreme miniaturization.

Previous attempts to use CRNs and biochemical modeling

in robotics have been very successful [15]–[17]. Klavins and

colleagues have used a similar framework for building a

stochastic interpretation of their graph grammars [14]. The

present paper is the first clear attempt to use the CRN

toolbox, originally designed for the study of molecular sys-

tems, to model robotic self-assembly. Indeed, deterministic

models of aggregation and flocking (which is conceptually

similar to aggregation, but involves a coordinated motion

of the aggregate) such as [18], [19] as well as graphical

models of multi-robot systems such as [20] are interesting

complements, from a system and control perspective, to our

stochastic modeling approach, but do not take explicitly into
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(a) (b)

Fig. 1. (a) The Alice mobile robot is a 2cm cube, equipped with
four infrared sensors for environment sensing and communication. (b) Our
Webots model implements an accurate representation of the robot and its
sensors.

account the intrinsic randomness of self-assembly processes,

especially at small length scales. Also, our methodologi-

cal approach to the modeling and design of a swarm of

self-assembling robots presents important similarities (e.g.,

multiple abstraction levels, assumptions about non-spatiality

and sparseness at the highest level of abstraction) with

the methodology we presented in a number of previous

contributions (see for instance [21], [22]).

III. MATERIALS AND METHODS

This section describes the experimental setup as well as

the simulation and modeling tools that we used for this case

study.

A. Experimental Setup

The Alice mobile robot has a differential wheel drive

that reaches speeds of 4cm/s, and four infrared sensors that

allow the detection of passive obstacles at ranges up to 3cm

simultaneously with 4bps bidirectional communication up to

6cm. The testing environment is a 50cm square arena.

We employ an overhead camera in conjunction with Swis-

Track, an open-source object tracking tool targeted for multi-

agent systems [23]. Due to our limited camera resolution, the

Alice’s small size and the aggregation task itself implying

continuous merging and separation of robots, markerless

tracking and corresponding software analysis is not yet suffi-

ciently reliable to use without thorough human supervision.

We are currently developing enhancements that will allow

SwisTrack to perform a more fully automated analysis under

these conditions. The analysis of real-world experiments that

follow in this paper are the result of combining SwisTrack

with heavy manual verification and correction.

B. Realistic simulation

We additionally implement the above experimental setup

and hardware in Webots, a realistic simulator that is able to

accurately model detailed characteristics of the Alice robot,

including nonlinear noisy response of the sensors and wheel

slip. Although Webots provides physics-based simulations,

many of these features (e.g., friction) have been disabled

in the simulations presented in this paper in exchange for

increased simulation speed. Webots is particularly useful

(a) (b)

Fig. 2. Two types of discrepancies between Webots simulations and real
experiments are observed: (a) in reality, a robot (encircled in red) may try
to leave a chain unsuccessfully because it is blocked by its neighbors (an
effect not observed in Webots), or (b) a robot may aggregate on the side of
a chain due to infrared reflections that are not modeled by Webots.

because it allows us to perform fast, automatic data collection

and analysis over various parameter sets. For our systematic

experiments, we used a computational cluster of 50 ma-

chines, each with an Intel Pentium 4 3.00 GHz and 1GB

RAM. Transitions between experiment states (i.e. changes

in the total number of aggregates of each size) were stored

on disk for later analysis. Our Webots simulations execute

over five times faster than real time and no manual analysis

is required as we have access to the internal state of the

robots.

There are some discrepancies between Webots simulations

and real experiments. Due to the Alice’s weak motor system,

occasionally a robot may become physically trapped by

others in the same aggregate (see Figure 2a), making dis-

aggregation impossible. This issue is not captured in Webots

as certain aspects of physical simulation have been disabled

in favor of increased simulation speed.

The second observed discrepancy is that some robots may

aggregate with the side of a chain due to infrared reflections

that are not modeled in Webots, leading in some cases

to unstructured aggregates (see Figure 2b), a phenomenon

also observed in previous aggregation experiments [11]. The

probability of occurrence of this type of aggregation is a

function of the chain size (the more robots in a chain,

the more in-chain binding sites) as well as the shape and

sensor arrangement of the robots. As a result, this effect is

very difficult to capture accurately in a realistic simulation

like Webots, and manually collecting enough experimental

data in order to obtain a statistically relevant measure of its

probability of occurrence is impossible at this time. As such,

this discrepancy is currently ignored by our models.

C. Baseline Aggregation-Only Deterministic Controller

In all of our controllers, the aggregation behavior of the

robots is the same: they perform a random walk and, upon

collision, may decide to aggregate as a function of their

relative alignment (Figure 3), which can be roughly esti-

mated using short-range proximity sensors. In this baseline

controller, we assume that the robots, once aggregated, never

disaggregate. As we will see later, this behavior invariably
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may potentially leave, thus leading to i different reactions:

Xi

k
−

i,1

⇀ Xs + Xi−1 (3)

Xi

k
−

i,2

⇀ Xs + Xs + Xi−2 (4)

Xi

k
−

i,3

⇀ Xs + X2 + Xi−3 (5)

...

Xi

k
−

i,4

⇀ Xs + Xi−2 + Xs (6)

Xi

k
−

i,5

⇀ Xi−1 + Xs (7)

Now, it is clear that Equation 3 and Equation 7 are the

same, as are Equation 4 and Equation 6. In fact, each pair of

symmetric equations can be merged into a single equation

with a doubled rate constant. As a result, there are i/2
and (i + 1)/2 backward reactions for a chain of size i
with i even and odd, respectively (note that the reaction

corresponding to the disaggregation of a robot in the middle

of an odd-sized chain has no symmetrical counterpart).

Therefore, the number of possible reactions in a system

composed of N0 robots is O(N2

0
). For small N0, it is

possible to model the entire CRN; however, when N0 is

large, the number of reactions explodes and the system is

no longer tractable. As a result, we assume that chains

larger than a given upper bound Nmax cannot be formed,

thus limiting the number of reactions. This assumption is

perfectly valid for sufficiently large Nmax as the probability

that very large chains are formed is negligibly small. Note

that the bound Nmax can be trivially used for modeling

the aforementioned baseline controller by setting the rate

constant of the backward reactions to zero.

We take k−

i,j to be the rate of disaggregation of a chain of

size i due to the leaving of its j-th robot. As stated before, we

merge symmetric reactions into a single reaction with k′

i,j =
2 · ki,j with j = 1, . . . , i/2 if i is even and j = 1, . . . , (i −
1)/2 if i is odd. Recall that the disaggregation of a robot

in the middle of an odd-sized chain has no corresponding

symmetric reaction, and as such its rate constant remains

unchanged.

We calculate the rate constants themselves using geometric

approximations. If we assume that our system is well-mixed1

we can capture the aggregation process with a nonspatial

model. Therefore, we assume that the probability a robot

is at a given position is independent of time and uniformly

distributed over the arena space. Thus, the probability of two

specific robots encountering each other during a discrete time

interval T is given by

pc ∼
v̂ T wd

Atot

(8)

where v̂ is the average velocity of a robot, wd = 2 r is

the diameter of a robot, and Atot is the total area of the

arena [21].

1As robots form chains, the chains themselves may significantly constrain
the accessibility of different parts of the arena. We ignore this effect in our
macroscopic models, which will limit their real-world correlation if the
arena used is not sufficiently large.

αa αa

θh

B

θh

AGGREGATION NO AGGREGATION

A

B

A

B

Fig. 5. In our models, we assume that two colliding robots can assemble
only if their relative heading θh is smaller than αa/2. The blue circular
sector represents both the detection and the communication area of the
robots.

A collision does not necessarily lead to aggregation, due to

the directionality characterizing our building blocks: robots

must be aligned in order to aggregate. More formally, this

means the absolute value of the heading θh must be smaller

than αa/2, where αa is the central angle of the detection

and communication sector (see Figure 5). Because of the

non-holonomic nature of the robots, we assume that there is

always at least one robot, which we denote B, that is aligned

upon collision (B is basically the robot that runs into the

other). Furthermore, we assume that the absolute value of

the heading of B with respect to A is uniformly distributed

in [0, π]2. As a result, the probability pa that, upon collision,

two robots are properly aligned is pa ∼ αa/(2 · π). Since

each robot and each chain has two valid binding sites, the

rate constants es and ei can be written

es = ei = pc · 2 pa
∼=

v̂ T wd

Atot

·
αa

π
(9)

In our first approximation, the rate constants of the back-

ward reactions do not depend on the geometry of the robots,

but on the leaving probabilities encoded in the controller.

We consider two cases: (1) a robot has a single neighbor

and his leaving probability is pleave,1, or (2) a robot has

two neighbors and his leaving probability is pleave,2. As we

observed in real experiments, some robots may be unable

to leave because they are physically trapped between their

neighbors. This effect can be captured by decreasing the

leaving probability by a certain factor 1 − ps, where ps

corresponds to the probability that a robot remains stuck.

As a result, the rate constants for the backward reactions

can be written

ki,1 = pleave,1 (10)

ki,j = pleave,2 · (1 − ps) for j 6= 1 (11)

Since there is no simple geometrical approximation for the

probability ps, we need to measure it using real experiments.

In our case, we assume that ps is negligibly small.

2Note that because single robots are always moving forward, it is more
likely for B to encounter the front of A than its rear. We do not capture this
in our models, although including this distribution may be an interesting
enhancement in future work.
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This CRN can be easily abstracted to an ODE model using

the relation ẏ = S·p(y) where S = (sij) is the stoichiometry

matrix, with the stoichiometric coefficient sij of the j-th

species in the i-th reaction, and p(y) is the propensity vector,

which depends on the reaction rates and the population

of reactants for each reaction. This system can be solved

using conventional integration techniques. We know that in

the thermodynamic limit, i.e. when the number of robots

tends towards infinity, the ODE approximation converges

to an exact solution. However, since our system contains

only N0 = 19 robots, the ODE representation introduces

an approximation error which is in our case negligible (see

Section IV-A).

IV. RESULTS

We implemented the two types of controllers on a real

swarm of 19 Alice robots and verified the qualitative rel-

evance of our models and simulations in five real experi-

ments of 20 minutes. Using both the deterministic and the

probabilistic controllers, we observed the formation of chains

of variable length in the system. Based on these systematic

experiments, we could validate both our Webots and CRN

models (Figure 8). We also carried out non-systematic real

experiments with different initial conditions and duration that

are not reported in detail hereafter. A 16 minute excerpt from

one such experiment is provided in Figure 6 (this particular

experiment can be seen in full in the included video).

A. Macroscopic models validation

As mentioned previously, the ODE approximation is guar-

anteed to be valid in the thermodynamic limit, but not

necessarily with N0 = 19. Therefore, in order to validate our

ODE model, we compare it with stochastic simulations of the

CRN, such as the Gillespie method (exact simulation), or its

optimized counterparts (approximate simulation), provided

by the StochKit toolbox [24]. In fact, the ODE model exhibit

an excellent accuracy for N0 = 19, well within the standard

deviation of stochastic simulations (Figure 7).

In order to validate our macroscopic models, we use

realistic Webots simulation as a baseline. Figure 9 com-

pares the prediction of stochastic simulations and Webots

simulations in the case of the probabilistic controller with

pleave,1 = 10−4 and pleave,2 = 10−9. We see an excellent

fit for chains of size four, however smaller chains tend to

grow faster in stochastic simulations than in Webots due to

abstractions discuessed in Section III-E.

B. Deterministic controller simulations

We performed a series of Webots simulations (averaged

over 100 runs) and stochastic simulations (averaged over

500 runs) for the deterministic controller with varying max-

imal chain sizes from two to eight with N0 = 19 robots

(Figure 10). These results demonstrate that the controller

successfully limits the size of the chain, but, as the target

chain size increases, the distribution of chain size approaches

the one yielded by the baseline aggregation-only controller

(see Section III-C), which is depicted in Figure 11 for N0 =
19 robots .

(a) (b)

(c) (d)

(e) (f)

Fig. 6. 16 minute excerpt from a real experiment with N0 = 15 robots and
pleave,1 = pleave,2 = 10−3. (a) At t = 0, the system is in an arbitrary,
well mixed state. (b) After two minutes, some aggregates have already begun
to form. (c), (d), (e) The system continues to evolve from four minutes to
12 minutes; images captured at uniform intervals. (f) Finally, at 16 minutes,
most Alices have bonded with others to form an aggregate (only a single
robot remains disaggregated).
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Fig. 7. Comparison of the prediction of stochastic simulations (continuous
lines) and the ODE model (dashed lines) for the time evolution of the
system with N0 = 19, pleave,1 = 10−4 and pleave,2 = 10−9. These
results show that, for our case study, the ODE approximation remains valid
even for small N0.
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Fig. 8. Probabilistic controller validation (black squares are experimental
data averaged over 5 runs) of CRN models and Webots simulations using the
average number of chains of size three over the course of the experiments.
N0 = 19, pleave,1 = pleave,2 = 10−3. Large variance is observed due
to all techniques being highly stochastic in conjunction with sensor and
actuator noise in both Webots and the real robots.
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Fig. 9. Comparison of the probabilistic controller’s time evolution of the
average number of chains of size two, three and four predicted by stochastic
simulations (dashed lines) and Webots simulations (continuous lines). N0 =
19, pleave,1 = 10−4, pleave,2 = 10−9.

C. Probabilistic controller simulations

We performed a series of Webots simulations over the

entire parameter space (pleave,1, pleave,2) ∈ [10−9, 10−1]2

(9 × 9 logarithmic discretization, averaged over 100 runs

for each parameter set) with a simulated swarm of 19

Alice robots. Trials lasted 30 minutes of simulated time.

In a parallel effort, we simulated the CRN presented in

Section III-E using StochKit over the same time span and

parameter space, but with a finer discretization of 16 × 32
averaged over 500 runs.

The results of these searches, depicted in Figure 12,

confirm the existence of an optimal region for pleave,1 ∈

[10−4, 10−3] and pleave,2 < 10−4 where the ratio between

the number of pairs and the number of longer chains de-

creases because exploration (disaggregation) and exploitation

(aggregation) are well balanced, thus leading to a chain size

distribution different than the basic distribution.

The long term evolution of the distribution of chain size

for leaving probabilities that lie within the optimal region

(pleave,1 = 10−4 and pleave,2 = 10−9) demonstrates clearly

that one can achieve a basic control over the distribution

of chain size by setting appropriate leaving probabilities

only. More precisely, it is possible to skew the steady

state distribution towards longer chains. Higher, non-optimal

leaving probabilities enable faster convergence, but they do

not favor the formation of long chains.
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Fig. 10. Purely deterministic control does not yield desirable results
when attempting to form long chains. As we increase the maximum chain
size from two to eight with N0 = 19 robots, we show in both (a)
Webots (averaged over 100 runs) and (b) stochastic simulations of the CRN
(averaged over 500 runs) that a lack of exploration causes the system to
quickly converge to the basic distribution, in which short chains are largely
favored.
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Fig. 11. Comparison of the basic distribution for N0 = 19 robots using
Webots (dark grey) and stochastic simulations (light grey). It is clear that
setting leaving probabilities to zero does not favor the formation of long
chains, thus some amount of exploration is required.

D. Discussion

Our results have shown that one cannot favor the formation

of chains of a specific size only by limiting the maximum

chain size (deterministic controller) or by setting specific

leaving probabilities (probabilistic controller). Indeed, the

landscapes depicted in Figure 10 and Figure 12 do not

exhibit a systematic variation in the ratio of different chain

size populations that would enable a precise selection of a

particular chain length. On the one hand, the deterministic

controller, by using communication among the robots, can

achieve a proper non-linear feedback that depends on the

size of the chain, thus preventing the formation of chains

longer than a certain target size, whereas the probabilistic

controller is purely linear, i.e. the robots have the exact same

behavior regardless of the size of the chain. On the other

hand, the deterministic controller is unable to achieve long

chains because of its intrinsic lack of exploration whereas the

probabilistic controller enables, with proper leaving probabil-

ities, a balance of exploration and exploitation. One potential

solution to this problem could be to combine the determin-

istic and the probabilistic controllers into a single, hybrid

controller: indeed, by optimizing the leaving probabilities
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Fig. 12. Systematic exploration of the probability space spanned by
pleave,1 and pleave,2 (logarithmic scale) for t = 30min. (a) The existence

of an optimal region for pleave,1 ∈ [10−4, 10−3] and pleave,2 < 10−4

where exploration (disaggregation) and exploitation (aggregation) are well
balanced is confirmed by stochastic simulations. (b) The lower resolution
and the larger noise of Webots simulations make this optimal region fade
out, but the general landscape is qualitatively the same.

for the formation of arbitrarily long chains while limiting

explicitly their size to a given upper bound Nmax, one would

most likely end up favoring the formation of chains of size

Nmax. However, this hybrid approach would be less scalable

than the purely probabilistic one presented in Section III-D

or a timeout-based approach [21].

An interesting insight provided by our results is that

the self-assembly process takes a great amount of time to

stabilize, in particular when leaving probabilities are low,

as depicted by Figure 13. These results demonstrate clearly

that, for small leaving probabilities, the time scale of the self-

assembly process is much larger than that of the experiments

presented in this paper. As a result, the influence of the

basic distribution is very important in the beginning, as it

is essentially the underlying distribution of any short term

experiments, and it decreases with time. This apparent flaw
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Fig. 13. Long term prediction of the chain size distribution up to
tf = 5 · 104s (about 14 hours) for two different parameter sets (stochastic

simulations). For small probabilities (pleave,1 = 10−4 and pleave,2 =
10−9), it is clear that the convergence is very slow and the time required
to reach the steady state is at least one order of magnitude higher than the
duration of our experiments. For larger probabilities (pleave,1 = 10−3 and

pleave,2 = 10−3), the convergence is much faster and on the same time
scale as the duration of our experiments (about 30 minutes).

of the approach is actually a great opportunity: by choosing a

proper duration of the process, one can actually control how

close to the basic distribution the system will be. Of course,

this approach is possible only if the leaving probabilities

depend on the time (in a very basic fashion, since they will

simply be set to zero after a time tf )3. Therefore, the control

parameters of the system are not only pleave,1 and pleave,2,

but also the final time tf , yielding a 3-dimensional pa-

rameter space. It is clear that a fine-grained systematic

search over this entire space is prohibitively expensive from

a computational standpoint. It is intractable with Webots

simulations, and perhaps even with macroscopic models, if

solved exactly with their stochastic interpretation, a high-

performance computational cluster would be required, both

for simulation and data analysis. Instead, we plan to use

standard nonlinear optimization techniques based on either

the deterministic formulation of the system (ODE) in its

desired steady state or a reduced linearized formulation of

the CRN [25]. We will explore these solutions in future work.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed two approaches to the control of

a swarm of self-assembling miniaturized robots: (1) a deter-

ministic controller, non-linear in the robot cluster size, where

robots communicate with each other in order to determine

the size of the chain and adapt their behavior accordingly,

3Note that this requirement does not jeopardize the scalability of our
approach since one could imagine to use an external observer to broadcast
a predetermined message or to modify an environmental parameter of the
system (e.g., illumination, temperature, pH) at tf in order to signal the
termination of the self-assembly process.
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and (2) a probabilistic controller, linear in the robot cluster

size, where the distribution of chain size is controlled by

the leaving probabilities of the robots. We demonstrated the

feasibility of both approaches by implementing them on a

real swarm of 19 Alice mobile robots. Using a realistic

robotics simulator in parallel with macroscopic models based

on the Chemical Reaction Network (CRN) framework, we

performed systematic searches of the parameter space that

demonstrated (1) the inability of the deterministic controller

to achieve long chains because of its lack of exploration and

(2) the existence of optimal regions within the parameter

space of the probabilistic controller where exploration and

exploitation are well balanced, thus favoring the formation

of larger chains. However, the linearity in robot cluster

size of the probabilistic controller prevents any positive

feedback that would favor specifically a given target chain

size. A potential solution to this problem is to develop a

hybrid controller with optimized leaving probabilities for the

formation of arbitrarily long chains while explicitly limiting

their size to a given target size Nmax.

As mentioned before, one of the long term objectives of

our work is the development of scalable control methodolo-

gies for large swarm of miniaturized robots. In this paper,

we achieve a first step towards this goal by proposing a

probabilistic controller that has the potential to scale down in

terms of size of the robot, since it is fully reactive and mem-

oryless, while being intrinsically scalable in terms of size of

the swarm, since it is completely decentralized. We plan to

pursue this research by applying the methodological frame-

work presented in this paper to the fluidic self-assembly of

Micro-Electro-Mechanical Devices (MEMS) building blocks,

which we believe are the precursor to actual micro-robots

endowed with basic sensory, actuating, and computational

capabilities. However, two major obstacles lie on the route to

this objective: (1) we must be able to better capture spatiality,

embodiment and suboptimal mixing of the targeted systems

at the macroscopic level, and (2) we need to update our

experimental setup in order to enable automated analysis of

our experiments, at all scales. Solving these problems are

major research efforts that we are currently pursuing.
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