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Abstract— In this paper, we discuss an optimal shape of the
grounded part of a snake robot with passive wheels for jumping.
First, we derive a relationship between constraint forces for the
wheels and necessary friction forces, and propose a constraint
force ellipse. Next, we introduce an evaluation index for the
optimal shape of the grounded part (base part) of a snake
robot using the constraint force ellipse. Finally, in order to
demonstrate the validity of the optimal shape that minimizes
the evolution index, simulations have been carried out.

I. INTRODUCTION
A real snake is a simple structure without hands and

legs, however it has various function [1]. There are many
studies about mechanism and control of the snake robot
which imitates a real snake. In these preceding studies, some
locomotions of the snake, for example undulating locomotion
[2], sinus-lifting motion [3] and winding motion [4] are
studied. The real snakes can jump, however there is few study
of jumping of the snake robots. Generally, it is said that the
real snake does not have jumping power but it is known that
adders and Jumping-pit vipers have high ability for jump. If a
snake robot can jump, it is expected that the snake robot can
expand the moving territory by adding ability of jumping. In
addition, it helps to understand the jump function of the real
snake. We consider jumping of snake robots with passive
wheels in this study.

There are many and various studies about jumping robots.
Most of these jumping robots have the legged mechanism.
For example, a one-legged hopping robot was developed by
Raibert et al. [5], jumping of a deformable soft robot is
considered in [6] and a miniature jumping robot is studied
in [7]. Ikeda et al. analyzed the jumping movements of the
kangaroo and proposed a controller for running of one-legged
robot with jumping [8]. And, Nakamura and Sugihara studied
the jumping motion of humanoid robots [9]. Snake robots are
different from these jumping robots, because of the presence
of the anisotropic of friction of its body. Snake robots have
characteristic that friction is small in the direction of its body
line and is large in the vertical direction for its body line like
the real snake. So, we need to discuss jump in consideration
of this unique friction mechanism of the snake robot.

In this study, we define three processes of jumping, taking
off, free-floating, and landing. It seems effective for jumping
that the ground part of the snake robot does not slide before
the taking off. The snake robot with passive wheels has
anisotropic friction mechanism and friction force of the
grounded part is depend on its shape.
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In this paper, we propose a constrained force ellipse as a
new evaluation index for calculating an optimal shape of the
grounded part of the snake robot. To demonstrate the validity
of the optimal shape simulations have been carried out.

II. MODEL

Fig. 1. A snake robot at the initial state and reference coordinate frame

In this paper, we consider an n-link snake robot and
assume a wheel is placed at the center of gravity of each
link. In the initial condition, the links from the 1st (head)
to the nh-th are lifted up, the links from the nh+1-th to the
n-th (tail) are grounded, and the robot does not have initial
velocity as shown in Fig.1. In this situation, lifting links that
are the links from the 1st to the nh-th are called head part
and grounded links that are the links from the nh+1-th to
the n-th are called base part. The total number of the base
part is nb = n − nh.

Let us consider the jumping motion. Before taking off at
least one link contacts to the ground. The time when all
links do not contact to the ground and the robot is free-
floating. It means that the robot takes off. After taking off,
all joints of the snake robot are fixed. Then the robot falls
down because of the gravitational force and touches the floor.
It means that the robot lands. Each joint of the head part
is a pitch rotational joint, each joint of the base part is a
yaw rotational joint and joint between the head part and the
base part is an universal joint. We define the joint between
the head part and the base part as a connecting point. The
position of the connecting point is set as the origin of the
absolute coordinate system.

The direction of jump is set as the direction of X axis.
For jumping only the head part is moved and all joints of
the base part are rocked to suppress the slip during jumping
movements. The snake robot should take an optimal shape
of the base part for the effective jumping.
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The reaction force λ = [λx, λy, λz]T at the connecting
point is generated by the movement of the head part. The
Z axial component of λ is a reaction force from the floor.
The slip motion of the robot will appear due to the force on
XY plane λxy = [λx, λy]T . We consider an optimal shape
of the base part which can diminished the slip of the body
in order to realize an efficient jumping.

A. Base part model before taking off

We propose a constraint force ellipse which can evaluate
the possibility of the slip due to the reaction force λxy . Since
the base part motion is limited on XY plane by introducing
the assumption that the base part keeps contact with the
floor before taking off, the base part can be regarded as a
two dimensional nb-link snake robot with passive wheels as
shown in Fig.2.

Fig. 2. Model of base part

We define that position of the connecting point is wb =
[xb, yb]T with respect to the absolute coordinate system O−
XY , the posture of the nh+1-th link with respect to the ab-
solute coordinate system is φnh+1 , relative joint angles from
nh+2-th to n-th link is set as φ = [φnh+2, · · · , φn]T and
φb = [φnh+1 ,φ

T ]. Let us define qb = [wT
b , φnh+1,φ

T
b ]T ∈

Rnb+2 and the position of the center of the i-th link as
[xi, yi]T . We assume wb = [0, 0]T in the initial state. Let us
define the posture of the i-th link with respect to the absolute
coordinate system as θi = φnh+1+

∑i−1
j=nh+2 φj . We assume

that a passive wheel does not slide. The velocity constraint
at the passive wheels of the i-th link (i = nh + 2, · · · , n) is
expressed as,

ẋi sin θi − ẏi cos θi = 0. (1)

Substituting the geometric relations

xi = xb + 2l
i−1∑

j=nh+2

cos θj + l cos θi

yi = yb + 2l
i−1∑

j=nh+2

sin θj + l sin θi. (2)

into (1) yields

Aẇb = Bφ̇b. (3)

where

A =


sinφnh+1 − cos φnh+1

sin θnh+2 − cos θnh+2

...
...

sin θn − cos θn

 ∈ Rnb×2

B =


l 0 · · · 0

bnh+2,nh+1 l
. . .

...
...

. . . . . . 0
bn,nh+1 · · · bn,n−1 l

 ∈ Rnb×nb

bi,j = l + 2l
∑i−1

k=j cos(
∑i−1

s=k φs). We find that the matrix
B is invertible.

Next, we consider a motion equation of the base part. Let
us define the joint torque of the base part, so as to rock the
every joint in the base part, as τ b = [τnh+1, · · · , τn−1]T ,
and the reaction force in the joint space corresponding to
the constraint force λxy as f = [fnh+1, fnh+2, · · · , fn]T . A
dynamic equation of the base part is given by

M q̈b + Cq̇b + JT BT f = Eτ b + Hλxy (4)

where, M ∈ R(nb+2)×(nb+2) is an inertia matrix, C ∈
R(nb+2)×(nb+2) is a matrix related to Coriolis and centrifu-
gal force, J = [−B−1A, Inb

] ∈ Rnb×(nb+2)is a Jacobian
matrix, E = [OT

3×(nb−1), Inb−1]T ∈ R(nb+2)×(nb−1), H =
[I2, O

T
nb×2]

T ∈ Rnb×2.

B. Head part model before taking off

As we assume the base part does not move before taking
off, we can express position of the connecting point as
wb = [xb, yb, 0]T . Let φnh

be the absolute pitch posture
of the nh-th link, φi(i = 1, · · · , nh − 1) be the relative yaw
angle of the nh-th link, and τi(i = 1, · · · , nh−1) be the joint
torque of the head part as shown in Fig.3. Let us define φh =
[φnh−1, φnh−2, · · · , φ1]T , qh = [wT

b , θnh
, φnh

,φT
h ]T ∈

Rnh+3,τh = [τnh
, · · · , τ1]T . At the initial state we can

assume wb = [0, 0]T , θnh
= 0.

Fig. 3. Model of head part

A dynamic equation of the head part is expressed as

Mhq̈h + Ch = Ehτh (5)

where, Mh ∈ R(nh+3)×(nh+3) is an inertia matrix, Ch ∈
R(nh+3) is a vector related to Coriolis, centrifugal force and
gravity force, Eh = [OT

3×nh
, Inh

]T ∈ R(nh+3)×nh .
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III. CONSTRAINT FORCE ELLIPSE AND JUMPING
MOTION CONTROL

In this paper, we propose a constraint force ellipse and
derive a control law of jump by introducing the assumption
that the base part of the robot does not move before taking
off. Thus position of the connect point wb = [0, 0, 0]T and
the absolute yaw angle of the nh-th link θnh

= 0 are satisfied
before taking off, and the motion of the head part is limited
in XZ plane.

A. Constraint force ellipse
We assume that the base part does not slip and all joints

of the base part are fixed, then we obtain q̈b, q̇b = 0 and the
motion equation of the base part is expressed as

JT BT f = Eτ b + Hλxy. (6)

Multiplying [I2, (B−1A)T ] to the both side of (6) gives

λxy = −[I2, (B−1A)T ]Eτ b. (7)

Substituting (7) into (6) yields

JT BT f = [Onb×2,J
T ]Eτ b

and τ b = ([Onb×2, B
−T ]E)†f (8)

where Q† implies a pseudo-inverse matrix of the matrix Q.
By substituting (8) into (7) we obtain

λxy = −[I2, (B−1A)T ]E([Onb×2, B
−T ]E)†f . (9)

The constraint force f is limited by maximum friction force
between a wheel and an environment. By defining maximum
sidling friction force of the i-th link as fimax and λxy is
rewritten as the following form

λxy = PN f̂ (10)

where

P = −[I2, (B−1A)T ]E([Onb×2, B
−T ]E)†

N = diag(fnh+1max, fnh+2max, · · · , fnmax, )

f̂ =
f

||f ||
, (‖ f̂ ‖= 1).

Based on the singular value decomposition of PN , we
obtain an ellipse in XY plane as shown in Fig.4. Let us
define singular values σl, σs and an orthonormal matrix
U = [ul,us]. Main axes of the ellipse are σlul and σsus.
σlul expresses a long axis of the ellipse and σsus expresses
a short axis of the ellipse. In addition, the direction of ul of
the ellipse implies the direction that the robot can reinforce
the largest disturbance force at the connecting point. The
ellipse is called the constraint force ellipse. In this study, we
decide the posture of the robot φnh+1 in such a way as to
conform the direction of jumping, namely the long axis of
the constraint force ellipse is set as the same direction as X
axis by adjusting the posture of the robot as shown in Fig.5.
Additionally, let us define the angle Θr between the vector
of the long axis of the ellipse and the line connecting the
center of gravity of the base part and the connecting point
as shown in Fig.6. If Θr is large, the robot easily slipes and
a rotational motion will be generated by the constraint force
λxy .

B. Cost function

We calculate σl and Θr for each considering base part
shape and the maximum values σlmax and Θrmax. Let
us define the following formula as an evaluation index of
slipping of the robot.

V = a(1 − σl

σlmax
) + b

Θr

Θrmax
. (11)

where a and b are positive constants. The first term and the
second term of the right hand side of (11) are related to
the translational slip and the rotational slip, respectively. We
derive an optimal shape of the base part of the robot so as
to minimize the cost function V .

Fig. 4. A constraint ellipse

Fig. 5. Determination of attitude of base part considering jumping direction

Fig. 6. Definition of Θr
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C. Jumping motion of head part

As we assume that the base part of the robot does not slip,
the head part of the robot is regarded as a serial link robot
that is fixed at the ground [10]. Let us define a subvector of
qh as qhl = [φnh

,φT
h ]T ∈ Rnh . The related motion equation

of the head part (5) is obtained by

Mhlq̈hl + Chl = τh (12)

where Mhl = ET
h MhEh, Chl = ET

h Ch. In this study, we
derive a control law of the head part for the jumping motion
on the basis of this model. In the free-floating period the
robot rocks all joints of it. The jumping mechanism in this
paper is as follows. At the initial condition at to the robot
does not have an initial velocity. The Z axis velocity of the
center of gravity of the head part increases by the motion of
the head part. And the joints of the head part are controlled
to decrease the velocity to 0 at te. The velocity of the robot
becomes 0, however it has a linear momentum. Then the
robot starts to take off. To realize this jumping motion we
need to control the velocity of the center of gravity of the
head part as desired value. We design an controller based
on the model of the head part and a trajectory tracking
controller. We define r = [xg, zg]T is the position of the
center of gravity, rd = [xgd, zgd]T is the desired position of
r, Jr(qhl) is a Jacobi matrix, J∗

r (qhl) = JT
r (JrJ

T
r )−1 is

a pseudo-inverse matrix of the Jacobi matrix Jr. We set an
input torque as

τh = Chl + MhlJ
∗
r (−J̇rq̇hl + r̈d − Kdė − Kpe) (13)

so as to acheive the convergence of the acceleration of
the center of gravity to the desired value, where e =
r − rd is an error vector, Kd = diag (Kd1,Kd2) ,Kp =
diag (Kp1,Kp2).

We explain a condition of the take off to design an desired
accelerate trajectory. We define that the total mass of the head
part is mh, acceleration of the center of gravity [ẍg, z̈g]T , and
the ground reaction force λz(t). As the base part does not
move, the robot’s momentum at the take off time t = te is
[mhẋg(te),mhżg(te)]T and we obtain the motion

λz(t) = mhz̈g + mhg. (14)

As z̈g = 0 at the take off time t = te , from (14) we obtain

λz(te) = mhg. (15)

The force acting on the robot at t = te conforms with its
initial state and it has a momentum mh[ẋg(te), żg(te)]. The
direction of the robot at the take off is equivalent to the
direction of the momentum vector. The elevation angle θe of
the jumping is given as

θe = tan−1 żg(te)
ẋg(te)

. (16)

For example, if ẋg(te) = 0 the robot jumps vertically and
if ẋg(te) = żg(te) the robot jumps to the direction with
the elevation angle 45[deg]. In this study, we define r̈d =
[a1 sin(πt/te), a2 sin(πt/te)]T so as to satisfy θe = 45[deg].

IV. SIMULATION

We consider an optimal shape of the base part of the
robot for jump by minimizing evaluation function (11) and
demonstrate the validity of it by simulations.

A. Derivation of optimal shape of the base part

In this simulation, we consider a 16-link snake robot where
nh = 8, nb = 8 for calculating an optimal shape of the
robot. We set the link mass m = 0.5[kg], the link length
2l = 0.15[m], the coefficient of the static friction between
wheels and ground as µ = 0.5. We assume that reaction force
λz at the connecting point concentrates to the nh +1-th link
and the shape of the base part is set as a discretized serpenoid
curve. Serpenoid curve is snake’s winding curve. If the length
of the link and number of links are known, the serpenoid
curve is determined by the winding angle α and the cycle T
as shown in Fig.7. When we change α and T in 1 ≤ α ≤
90[deg],0.5 ≤ T ≤ 2.5, the obtained σl,Θr are shown in
Fig.8(a) and (b). In the case a = b = 1, we find that the shape
corresponding to α = 90, T = 0.79 is optimal for jumping.
To demonstrate the validity of the optimal shape dynamic
simulations are carried out. We compare the motions of the
center of gravity pg of the base part of the robot for the
optimal base part shape (A) and the worst base part shape (B)
α = 1, T = 2.48, in the case of a = b = 1. We also detain
sub optimal shapes for the case (C) where a = 0, b = 1
and the case (D) where a = 1, b = 0. We also compare
the motions of the optimal shape, the sub optimal shape (C)
α = 81, T = 0.96 and the other side optimal shape (D)
α = 81, T = 0.69. In addition, we define OG − XGYB as a
coordinate system translated O − XY to the initial position
OG of the center of gravity of the base part pg at t = 0
(Fig.9).

Fig. 7. Definition of α and T

(a) σl (b) Θr

Fig. 8. Plots of σl(T, α) and Θr(T, α)
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Fig. 9. Shapes of base part

B. Jumping simulation

In this simulation we demonstrate the validity of the
obtained optimal shape of the snake robot in the pre-
vious section by dynamic simulations. The initial con-
dition of the head part is set as qh = [0.524,
0.0, 1.57,−1.22,−1.57, 1.57, 1.22,−1.57]T and the target
trajectory is given as r̈d = [a1 sin(πt/te), a2 sin(πt/te)]T ,
where a1 = a2 = 20[m/s2],te = 0.12[sec] as shown in
Fig.10.

Fig.11 shows the input torque τh of the head part. Fig.12
shows reaction force |λxy|, λz and generated friction force
µλz of the nh + 1-th link. From Fig.12 we find that the
friction force µλz of the nh+1-th link is smaller than |λxy|
from t = 0.02[s] to t = 0.1[s] (µλz ≤ |λxy|, 0.02 ≤ t ≤
0.1). In this period the friction forces which are generated
by the passive wheels contribute not to slip the robot body.

Fig. 10. Desired trajectory of acceleration of r

The trajectories of the center of gravity pg of the base
part of the robot for the cases (A), (B), (C), (D) are shown
in Fig.13. Fig.14 shows an enlargement of Fig.13 at the
neighborhood of the origin OG. In Fig.13, the blue circle and
the green circle represent th positions of pg at the taking off
and the landing, respectively. In Fig.13, the blue solid line
and the red solid line represent the trajectory of pg from the

Fig. 11. Input torque of head part

Fig. 12. Floor reaction force and frictional force

initial time to the taking off time and the trajectory of pg

from the taking off time to the landing time, respectively. The
blue solid line implies the slipping trajectory. Let us define
dx as the jumping distance and θx as the angle between
XG axis and the position vector of the landing point PL

as shown in Fig.15. TableI shows values of dx and θx of
the simulation results in the cases (A)-(D). In (B), the robot
jumps backward. In (C), the slip distance is large and the
jumping trajectory does not fit the jumping direction. And
in (D), the slip distance not so large, while the jumping
trajectory does not fit the jumping direction. In (A), the slip
distance and the error of jumping direction are small and dx

is maximum in comparison with the others. Therefore, we
can show the validity of the optimal shape of the base part
of the wheeled snake robot for jumping and the evaluation
function based on the proposed constraint force ellipse.

V. CONCLUDING REMARKS

In this paper we consider the optimal shape of the snake
robot with passive wheels for the effective jumping. First,
we propose the constraint force ellipse for evaluating the
possibility of the slip considering the anisotropic friction
mechanism of the snake robot. Next, we derive the optimal
shape of the base part of the sake robot by minimizing the
cost function based on the constraint force ellipse. Finally,

701



TABLE I
SIMULATION RESULT OF dx AND θx

(A) (B) (C) (D)
dx[mm] 112.3 -63.8 92.0 98.39
θx[deg] 1.546 168.5 -7.609 -5.256

Fig. 13. Simulation results

to demonstrate of the validity of the obtained optimal shape
and the proposed cost function simulations are carried out.

In this paper the head part motion of the snake robot is
given, then we consider the optimal shape of the base part.
And the base part shape is determined based on the serpenoid
curve. We introduce the assumption that the base part does
not move before taking off. We should consider an optimal
motion of the head part of the snake robot and an active
motion of the base part for jumping.
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