
  

  

Abstract—This paper offers a real-time approach for 
simultaneously determining spacecraft motion and multiple 3D 
planar surfaces for spacecraft safe landing.  The approach 
contains three algorithms: a multiple homography alignment 
algorithm, which constructs homographies under unified epipolar 
geometry; a closed-form motion estimation algorithm; and a 
simple routine for surface slope estimation. This approach has 
three significant advantages: first, it works well for both a simple 
planar scene and more complex 3D world containing many 
smaller planar surfaces; second, it decomposes a very large 
optimization problem into much smaller sub-problems that are 
computationally less expensive. This computational advantage 
means that this approach can be exploited in real time robotic 
operations such as during time critical spacecraft landing. 
Finally, this approach is very reliable and accurate.  The 
effectiveness of this approach is determined quantitatively 
through extensive simulations and qualitatively with actual 
images 
 

I. INTRODUCTION 
For in situ space exploration, to be able to recover the local 
surface slope and avoid to land on a steep terrain is a critical 
capability for spacecraft safe landing [19][20][21]. In 
general, lander slope toleration is about 15 degrees 
[22][23][24], therefore any slope estimation methods must 
be able to measure the surface slope with precision of a few 
degrees regardless terrain types (Fig. 1) and trajectory.  
Because of its small mass, low power usage and matured 
technology, camera and associated vision algorithms, such 
as structure from motion (SFM), are very attractive options 
[24]. 
 

 
Figure 1: The potential landing site could be any of these 
places. 
 
Since first being introduced by Ullman [1], SFM problem 
has received considerable attention, and a large number of 
algorithms have been suggested. These algorithms differ in 
the type of input (point, line or plane), the number of  
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required images, and camera types (calibrated or 
uncalibrated, prospective or orthographic).   
 
The problem of recovering the structure of a scene 
composed of point features from a pair or a set of images 
were first and the most extensively studied [1][2][3][4]. 
More sophisticated algorithms, such as incremental SFM 
based on the Extended Kalman Filter (EKF) [6][7], bundle 
adjustment [8] have been introduced later to improve 
accuracy and estimation stability.   
  
A few researchers have considered the problem of 
reconstructing a scene composed entirely of straight lines 
segments. Taking advantage of their prominence in most 
man-made environment and the ease at which they can be 
extracted and tracked, researchers have reported good results 
using an objective function that minimizes reprojection error 
[9][10]. 
 
On the other hand, the SFM for plane surface has attracted 
some special attention because it presented some difficulty 
for these point based approaches [11][12][13][14][15]. Tsai 
and Huang suggested a solution of solving a sixth-order 
polynomial to determine the motion parameters [11]. Later 
they proposed a method of singular value decomposition 
(SVD) of the 3 by 3 homography matrix to recover the 
camera motion [12].  Longuet-Higgins presented a very 
elegant and simpler closed–form solution [14].  Weng & 
Huang have given a comprehensive analysis of the 
performance for plane surface reconstruction [15].  
 
These planer surface motion algorithms work well only if 
the scene contains one dominating plane.  When a scene 
contains multiple smaller planes, these algorithms become 
infeasible.  Several attempts to overcome this problem have 
been suggested. For example, Luong suggested combining 
homography with the fundamental matrix for better motion 
estimation [16].  Irani et al suggested feature motion 
differencing between a homography and the rest of the scene 
to recover the motion [17]. This approaches works well 
when a large depth variation exists. But when the scene 
contains less depth variation, it does not work well.  Bartoli 
et al [25] and Kirchhof [26] proposed to use fundamental 
matrix as consistency constrain in constructing multiple 
homographies which is  a similar idea with this paper. But 
these algorithms are much more complicated than the 
approach proposed in this paper. 
 
In addition, the methods for homography construction are 
problematic. Two standard methods are typically used in 
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constructing a homography—minimization of an image 
difference function  [18] or using the point correspondence 
between two images to directly solve a set of linear 
equations [14][15]. However, because of image noise, 
computational error, or small patch size, the constructed 
homography is often error prone and as consequence large 
motion and reconstruction error are often observed. 
 
Further more , because spacecraft descends at very high 
speed (> 30m/s) and the onboard computer is less powerful 
(less than one tenth of a regular desktop computer), a very 
fast SFM algorithm is needed for this time-critical operation. 
 

II. BASIC MATHEMATICS 
Consider a particular point P=(X, Y, Z) on a plane surface in 
Cartesian coordinates relative to the first camera. The plane 
patch containing P can be represented as 

1321 =++= ZnYnXnPN T                              (1) 
where N(n1, n2, n3) is the normal vector of  the plane surface. 
The distance d between the origin and the plane is d = ||N||-1 

 
After some camera motion, the position of point P in the 
new camera frame is  

)(' TPRP −=                            (2) 
where R is a 3 by 3 rigid rotation matrix from the first 
camera frame to the second camera frame, T is the 
translation of the second camera in the first camera frame.  
 
Combining (1) and (2), we obtain 

PTNIRP T )(' −=                      (3) 
 
Let the images of P in the two camera frames have the 
coordinates 
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Combining (3) and (4), we have a homography 
transformation between two images 
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Now assuming that H exists, the Longuet-Higgin algorithm 
will derive the vector T and N and the matrix R in a closed-
form solution [14]. 
 
Consider a symmetric matrix W defined as 
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W can be diagonalized by an orthogonal matrix U: 

),,( 321 dddDiagUWU T =                  (6) 
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After some manipulations, four possible solutions are 
obtained as 
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where 11 31 ±=±= ss  
 
Among the four solutions, only two of them are visible (in 
front of camera), which is equivalent to the n3 in N being 
greater than 0. Once the T and N are known, matrix R can be 
obtained as 
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III. HOMOGRAPHY ALIGNMENT  
In theory, a homography, which has 8 independent 
parameters, determines a camera motion (5 dof) and a plane 
surface normal vector (3 dof). If more than one plane (m) 
exists between two images, there will be total 8m parameters 
from m homographies to cover 5 + 3m dof, which is clearly 
an over determined system and is thus very sensitive to 
noise. If each homography is constructed independently, as 
mentioned before because of image noise, computational 
error, small size of interested area, these homographies often 
do not follow the same epipolar geometry. For example, nine 
homographies are independently constructed in a synthetic 
scene with image measurement error of 0.3 pixels (one 
sigma). In this case, the epipolar line is parallel to the x-axis. 
Any point in the first image can be projected to the second 
image by these homographies (Fig. 2a). If these 
homographies are free from any error, the projected points 
should align along a line (epipolar line). Unfortunately, these 
points do not lie along a line and this indicates inconsistence 
exists among these homographies. In this section, we offer a 
technique, homography alignment (HA), to unify all 
homographies into single epipolar geometry. 
 
  

(a) (b)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-20 -10 0 10 20

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
-20 -10 0 10 20

(a) (b)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-20 -10 0 10 20

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
-20 -10 0 10 20

 

2281



  

Figure 2: (a). Inconsistence exits when homographies are 
constructed independently. (b). Homography alignment 
unifies all homographies into single epopolar geometry. 
 
Suppose there are m plane patches in an image and their 
maps in the second images are represented as  
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Therefore, we have  
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H1 is called the base homography and the relationships 
between the base homography and the rest of homographies 
is (11).  The representation of equation (11) has several 
advantages. First, the total number of parameters has been 
reduced from original 8m to 5 + 3m, which is exactly the 
degree of freedom of the system with m planar surfaces 
(eliminating the over determination problem). Second, this 
presentation is adaptive to the targeted scene’s geometry. 
When the image scene is perfectly flat, the ∆Ni will 
degenerate to a null vector and all homographies will 
converge to single homography. Finally, this representation 
allows decomposing the homography constructions and 
motion estimation into two step processing.   
 
First we assume H1 and K are fixed, ∆Ni and Hi can be 
determined by a simple least-squares method on each 
individual patches. We define two vectors 
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When n (n>2) correspondents in each patch are found, ∆Ni, 
which has three unknowns, can be determined by a least 
squares process. 
 
On the other hand, when ∆Ni are fixed, the base homography 
H1 and K can be updated globally by another linear least 
squares method. 
 
We define three vectors 
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We stack all correspondences from all plane patches 
together to form a linear system as,  
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The least squares solution gives an estimation of G as 
BMMMG TTT 1)(ˆ −=               (17) 

There are 11 unknowns in this system and the matrix 
computation is, therefore, quite fast. 
 
Now we have this following homography alignment 
algorithm 
 
1. Select a plane patch (largest in scene) as the base patch 

and construct its homography H1. 
2. Estimate the vector T0, N10 and rotation matrix R0 of 

this base patch by the Longuet-Higgins’ algorithm 
described in last section and compute the K0 =R0T0 . 

3. Estimate ∆Ni for each individual patch using equation 
(13). 

4. Estimate the global H1 and K using equation (17). 
5. Construct each individual homography using equation 

(11). 
6. Compute the average reprejection error e, If e is smaller 

than a tolerance, go to step 7. Otherwise go to step 3. 
7. Compute the vector T, N1 and rotation matrix R of the 

base plane patch and compute the K =RT. 
8. Update ∆Ni for each individual patch. 
 
In general, it only takes a few iterations to converge. The 
purpose of step 7 and 8 is to unify the final homographies 
precisely into single epipolar geometry. As we know two 
sets of solutions can be obtained by the Longuet-Higgins 
algorithm. In most cases, the real solution can be picked out 
by checking the relationship between the camera pointing 
and the surface normal vectors. In practice, we run the HA 
procedure twice by using each set of solutions to initialize 
and pick up the solution with smaller reprojection error. Fig 
2b. is the projected points after HA. Clearly they align along 
a single line. 
 
Once the R, T, and N1are obtained, the rest of Ni can be 
easily calculated since )( 11 ii NNsN −=Δ . 

IV.  EXPERIMENTAL RESULTS 
This section describes a series of experiments that were 
carried out on both real images and simulated data in order 
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to evaluate the effectiveness of the proposed approach. First 
we define the three matrices that characterize the accuracy of 
the reconstructed plane patch and camera translation and 
rotation. 
• Measuring camera motion error: We used the rotation 

error measurement suggested in [10]. Any rotation 
metric R can be written in the form 

)}(exp{ ωθJR = where .1ˆˆ],,0[ =∈ ωωπθ T  The 

magnitude of a rotation is then defined as θ=R .  The 

rotation error is therefore defined as tRRR Tˆ=Δ  

where R̂  is the estimated rotation matrix and Rt is the 
ground truth rotation matrix.  The translation error is 
defined as the angle between the unit vector of 
estimated translation and the true translation vector. 

• Measuring structural error: Because we are interested in 
the surface slope, the structural error at here is defined 
as the angle between the estimated normal vector and 
the true normal vector. 

4.1 SIMULATION EXPERIMENTS 
A 60 degree field of view (FOV) with 1024 by 1024 pixels 
synthetic camera is used in this simulation. The purpose of 
this study is to determine the accuracy of the algorithms 
under different settings including the amount of error in 
image measurement and spacecraft trajectory. Three 
trajectories (0o vertical descending, 45o gliding and 90o 

horizontal fly) are used in this study (Fig. 3). The distance 
between the first camera and the second camera is one fifth 
of height above ground of the first camera. The imaged area 
is evenly divided into 3 by 3 grids and in each grid resides a 
plane patch. Total 40 sets of random terrain model (40 by 9 
patches) are generated. 30 random points on each patch are 
created to simulate feature points and then they are projected 
to the first and second camera. The feature points in the 
second image are added Gaussian white noise with sigma 
from 0 to 1 pixel with 0.1 pixel increment.  Total 1320 
simulation trials were carried out. 
 
Figure 4 shows how the accuracy of the camera motion as a 
function of the measurement error. As expected, the 
reconstruction error increases as measurement error 
increases. Among the three trajectories, the vertical descent 
one has the least accuracy. However, it is very interesting 
that the 45 degree gliding trajectory has the best accuracy. 
Under normal circumstance, in which the measurement error 
is less than 0.3 pixel one sigma, the rotation error for all 
three trajectories is less than 0.1 degree.  The second figure 
is the translation error which has clear very strong 
correlation with the rotation error. Under the 0.3 pixel 
random measurement error assumption, the vertical 
descending trajectory has the largest error, which is roughly 
0.5% of the true translation. For other two trajectories, the 
translation error is less than 0.25%. Suppose the maximum 
spacecraft horizontal velocity is 30m/s, the translation error 
of 0.25% is equivalent to ~8cm/s horizontal velocity error. 
 

For a comparison with others, statistics of Longuet-Higgins 
motion was also obtained. We used average motions of nine 
independent motions by Longuet-Higgine method to 
calculate its statistics (dash lines in Fig 4).  This study shows 
that the homography alignment method is at least two fold 
more accurate than the Longuet-Higgine method. 
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Figure 3: The simulated camera and surface configuration.  
The number in each grid is the window index. 
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Figure 4: A comparison between the homography alignment 
and Longuet-Higgine method.  Solid lines are from HA and 
dash lines are from Longuet-Higgine 
 
Although there are 9 plane patches in this simulation, for the 
sake of saving space, we select window 3, 4, 5 as 
representatives of the best, the worst and average cases. 
Among these three windows, window 3 is farthest from the 
focal expansion and therefore the best case. The slope error 
is less than 0.5 degrees for all of these three trajectories if 
the measurement error is less than 0.3 pixels. The focal 
expansion is within the window 4 for the vertical 
descending, so it exhibits the worst slope accuracy. Window 
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5 represents roughly the average slope error of rest of 
windows.  Under a normal circumstance, the slope error is 
less than 1o, which is well within the 15o slope tolerance of a 
lander[19][20][21].  
 
In general, the proposed method only takes a few iterations 
to converge. Because the motion problem is decomposed 
into a base homography and a set of ∆N computations, the 
computation complexity is almost linear to the number of 
windows involved.  Figure 6 shows its speed vs. the number 
of windows. 
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Figure 5: Average slope error as a function of the magnitude 
of the random errors in the point features. The top figure is 
for window 3, the middle figure is for window 4 and the 
bottom figure is for the window 5. 
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Figure 6: The average speed vs. the number of windows. 
The number of features in each window is 30 and this test 
was done on a Mac Pro with 2.8 GHz Intel Core processor. 

4.2 REAL DATA EXPERIMENTS 
Experiment 1: This experiment was carried out on the 
“descent” imagery collected at JPL Mars Yard.  In order to 
validate the performance, a Point Grey Scorpion stereo 
image pair with 1 meter baseline was used in this data 
collection (Fig. 7). The camera FOV is 70 and 60 degrees 
horizontal and vertical respectively. The stereo pair is used 
to validate the performance. The first stereo image pair is 
about 13 meters above the ground and the second image pair 
is about 11 meters above the ground. We used the left 
images to emulate a descent image pair. 
 
In the overlapped area between two descent images, nine 
151 by 151 pixel windows, which are free from “craters” 
and “rocks”, are selected (Fig. 7). In each patch, 60 point 
features are selected using the Forstner corner detection. 
They are matched in the second image using correlation 
method. In order to remove any outliers, we run RANSAC 
homography in each patch and all points surviving this 
procedure are then used in the motion estimation. 
 
Figure 8 shows the 3D view of the spacecraft positions and 
nine recovered patches (red). The white point cloud under 
the each patch is from the stereo matching of upper stereo 
image pair. The gaps between recovered patches and point 
cloud are due the scale uncertainty of SMF. We fitted the 
point cloud under each patch to a plane and then calculated 
the angle of between these two normal vectors.  
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Figure 7: “Descent imagery” at JPL Mars Yard is used in 
this experiment. The top stereo pair is used to construct 
dense 3D model. The left pair is used in holography test. 
Nine patches (upper-left image) are selected as potential 
landing site candidates. The number in each box is the 
window index. 
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Figure 8: The 3D view of the spacecraft positions (upper left 
corner) and recovered surface patches (red).  The white point 
cloud under each patch is from stereo matching of upper 
image pair. 

 
 

 
Figure 9: The slope difference between the proposed method 
and stereo matching. 
 
Figure 9 shows the surface slope differences between this 
proposed method and stereo matching method.  We can find 
that slope difference between two methods is within 3 
degrees. 
 
Experiment 2: Since urban scenes contain many planar 
surfaces, this proposed approach is suitable urban robotic 
operations. Figure 10 shows two “aerial” images over a 
manmade structure. Features in the first image are selected 
by using Forstner corner detection and then they are matched 
in the second image. We run RANSAC homography on the 
matched features and two planar patched are found (Fig 10). 
Then these two point sets are used in HA. Figure 11 shows 
the 3D point clouds of the two planes (left) and side of view 
of this structure (right). Visually, the reconstructed surfaces 
are consistent with the side view image.  
    

 
Figure 10: The “aerial” images over a manmade structure. 
The red arrows are features on the top of the platform and 
the green arrows are features on the ground. 
 

 
Figure 11: Left figure is the 3D view of the reconstructed 3D 
point clouds and right figure is a side view of this structure 
at similar view angle.    
 
Experiment 3: For more complicated urban scenes, a simple 
feature RANSAC method may not work well.  In this case, 
an image segmentation algorithm can be used in finding 
planer surfaces.  
 
The procedure of the method is as following  
1.    Compute an image gradient magnitude image of the first 

image. 
2.    Threshold the gradient magnitude image and keep pixels 

with lower gradients and they are considered as interior 
of planer surfaces. 

3.    Run component labeling algorithm to obtain connected 
regions (Lower-left image of Fig. 12). 

4.    Pick the largest region and select and track features to 
the second image. 

5.    Construct a homography of the region using RANSAC. 
6.    Test the neighboring regions: If a neighboring region 

can be transferred to second image precisely, this 
neighboring will be merged to the mother region. 

7.    Execute step 4 to 6 for few times until no more regions 
can be merged any more (Lower–right image of Fig. 12) 

8.    Run homography alignment on the detected planer 
surfaces. 

9.   Generate planer surfaces 3D models (Fig. 13).  
 

 
Figure 12: An example of more complicated urban scene 
reconstruction. Top two images are motion pair. Lower-left 
image is a segmentation result of the first image. Lower-
right image shows three dominating planes were found and 
features inside of them were tracked to second image.  
 
Figure 13 shows multiple views of the reconstructed 3D 
model of the building and ground surfaces. 
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Figure 13: The 3D views of the reconstructed urban scene. 

V.  CONCLUSIONS 
This paper presented a novel approach for recovering the 
surface structure and camera motion. The key idea is an ultra 
simple homography alignment algorithm that reduces the 
degrees of freedom from original 8m to 5+3m and makes the 
system very stable. After the HA, the motion estimation 
becomes a single plane motion estimation, which has a 
closed-form solution and the surface recovering becomes a 
simple linear manipulations.  
 
Thousand of simulation experiments were carried out. All 
experiments produce valid results and no single test has 
failed, which indicates the system is very stable and reliable. 
The real data experiments show compatible result between 
the proposed method and stereo matching method. Under 
normal circumstances, the slope error is within a few 
degrees, which meets the future lander mission requirement.  
 
In addition to space exploration, this approach is likely to 
perform well in places where many planar surfaces may be 
found, such as robotic navigation or 3D mapping indoors or 
in urban settings.   
 
Further more HA can be extended to multiple image 
sequence motion estimation and structure modeling. In this 
case, a surface normal across multiple images is fixed, which 
will reduce the degrees of freedom even more.  
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