
Combining Planning Techniques for Manipulation
Using Realtime Perception

Ioan A. Şucan1 Mrinal Kalakrishnan2 Sachin Chitta3

Abstract— We present a novel combination of motion plan-
ning techniques to compute motion plans for robotic arms. We
compute plans that move the arm as close as possible to the
goal region using sampling-based planning and then switch to
a trajectory optimization technique for the last few centimeters
necessary to reach the goal region. This combination allows fast
computation and safe execution of motion plans even when
the goals are very close to objects in the environment. The
system incorporates realtime sensory inputs and correctly deals
with occlusions that can occur when robot body parts block
the sensor view of the environment. The system is tested on
a 7 degree-of-freedom robot arm with sensory input from a
tilting laser scanner that provides 3D information about the
environment.

I. INTRODUCTION

Motion planning for manipulation has gained a great deal
of attention recently [1]–[7]. Most of this work presents in-
tegrated systems intended for manipulating household items
in indoor environments, under varying levels of assumptions.
These assumptions usually relate to the way the environment
around the manipulation platform is specified. The environ-
ments are usually generated from CAD representations or
known information about the obstacles. For instance, a higher
level representation of the environment can be constructed by
identifying known types of objects in the environment using
sensed data from a camera on the ceiling [7]. While this
approach has its merits, it is limited to objects that are known
and can be identified from partial view data. Previous work
on planning with real sensor data exists as well, but mostly
for outdoor mobile platforms with no manipulators [8]–[10].

The problem of constructing the environment in realtime
from noisy sensor data while planning for robot arms has not
gained as much attention. Recent work [1] explored quick
replanning using sampling-based planners [11], [12] with an
environment generated from real laser-scanned sensor data,
in the presence of moving obstacles. However, the problem
of planning to goals that are close to or touching perceived
obstacles has not been explored in detail. This is a difficult
problem in manipulation since the planner needs to balance
the need to get to the goal while staying away from obstacles.

The problem we are dealing with is exemplified in Fig-
ure 1. Due to noise in sensor data and approximations we
are forced to make for safety reasons (adding padding to the
environment data based on the error margin in the sensor

1 I. A. Şucan is with Rice University, Houston, TX 77005
isucan@rice.edu

2 Mrinal Kalakrishnan is with University of Southern California, Los
Angeles, CA 90089 kalakris@usc.edu

3 Sachin Chitta is with Willow Garage, Inc., Menlo Park, CA 94025
sachinc@willowgarage.com

Fig. 1. Stylized representation of the configuration space of a possible
motion planning task.

specification), states that are close to objects can seem to be
in collision. We may need to move a manipulator to such
states, for instance, when we try to grasp an object. In some
cases, depending on the object we intend to grasp, we may
even accept touching of the object, so the goal state would
not only seem to be in collision, but actually be in collision.

In this paper, we present an integrated system to address
these problems in manipulation planning. Our focus is on
developing planners that can function well in cluttered indoor
environments while handling dynamic obstacles. We use a
combination of planners, based on the task to be executed.
We use fast sampling-based planners [11], [12] for non-
contact tasks, including getting close to the goal region, when
trying to grasp an object. Once close to the goal, we continue
with an optimization-based approach called CHOMP [2] to
complete the motion plan. CHOMP allows us to move to the
goal pose while minimizing contacts with the environment.
When the starting state is perceived to be in collision, CHOMP
is also used to move to a nearby state where there are no
collisions.

The system we developed is modular and implemented
using the ROS1 framework. It can take inputs from a variety
of sensing devices and output generic plans that can be
tailored to serve as input to the specific controllers for a
robotic platform. It has been interfaced to three different
planners demonstrating its versatility in using different im-
plementations of planners.

We demonstrate the application of this system on the PR2
– a service robot designed to function in human environments

1http://www.ros.org

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2895

[1]. This robot has an extensive sensor suite that provides
realtime updates about changes in the environment. We use
this information to build a realtime representation of the
world that deals with sensor noise and occlusions. Using
this representation, we are able to create and execute plans
while being aware of dynamic changes in the environment.

The contribution of this work is two-fold: (a) in combining
planners to address the problem of performing manipulation
tasks in cluttered environments using sensed data and (b)
in handling occlusion and noisy sensor data correctly. The
system correctly handles occlusions in realtime by explicitly
detecting and labeling occluded parts of the environment.
The system can also deal with noisy laser scanner data and
remove shadowing or veiling effects that are a characteristic
of such scanners, especially in indoor environments. The
system has been integrated into a wide variety of high-level
tasks, some of which are presented in Section VI.

This paper is structured as follows: in Section II we
describe in detail the intended capability of the system we
present. We then continue to present the perception and
planning pipelines employed by the system, in sections III
and IV. We present several applications of our approach
including planning for grasping and planning with a large
object grasped in the hand in Section VI. Conclusions follow
in Section VII.

Fig. 2. The PR2 Robotic Platform.

II. SYSTEM ARCHITECTURE

We aim to build a planning and execution system that is
general, robust and easy to use. This requires the design of
a flexible architecture. In particular, it is important to define
interfaces to the different components of the system that are
generic enough to deal with a wide variety of robots. There
are a minimum set of requirements that any motion planning
system for manipulation must implement. These include the
following:

1) A standard description of the robot that can be used to
build kinematic and collision models for the robot

2) Interfaces to lower-level controllers that can execute
the plans specified by the planner

3) Generic sensing interfaces that serve as virtual sensors
that are independent of the hardware implementation
of the sensors

4) Kinematic models that can return forward, inverse and
differential kinematic solutions

5) A standard interface to the current robot state specify-
ing positions of all joints in the robot

6) Interfaces to call planners with a desired goal for a
subset of joints or links on the robot

Our system implements these interfaces using the ROS
framework. A robot description provides complete kine-
matic, collision and visual information for the robot. This
information is used to build kinematic, planning and collision
models.

Since we are interested in tasks where constrained goals
may be specified for the arm, the interface for specifying
goals allows them to be specified as kinematic constraints.
These constraints can be of two types:

• Joint constraints. These constraints simply specify lower
and upper bounds for a particular joint. Having the
lower and upper bounds equal essentially specifies we
are interested in reaching a specific joint value, which
would be the case if we know the goal state exactly.

• Cartesian pose constraints. These constraints specify
limits for the pose of a particular link. The user specifies
which degrees of freedom are to be constrained (X, Y,
Z, roll, pitch, yaw) and bounds for these degrees of
freedom. Such a constraint is useful if we need to move
to a grasping pose.

Any non-empty set of constraints (there can be multiple
pose and/or joint constraints) defines a goal. If the constraints
are contradictory and the contradiction can be detected, the
code that interprets them warns the user.

In certain cases it may be useful to impose constraints on
the entire motion of the robot, at every state it passes through:
for instance, moving the arm while holding an open container
requires little variation in the roll of the end-effector link. To
allow this, the same set of constraints used for goals is used
to optionally impose constraints on the complete path.

By default, the system will not allow any contact with
the environment. When grasping however, contact with the
environment may be needed. For this reason, the user has
the option to specify regions in space (bounded by boxes,
spheres, cylinders or meshes) where contacts are allowed for
a specified set of links, up to a maximal penetration depth.

We will now present in detail the perception and motion
planning pipelines used in this system.

III. PERCEPTION PIPELINE

A perception pipeline for fast replanning was presented
in [1]. In this section, we build upon that pipeline and
define a generic framework that can deal with a wide variety
of sensors. This work is different from [1] in two critical
aspects:

1) It accounts for occlusions correctly by maintaining a
model of the environment

2896

2) It deals with noisy sensor data, especially data from
scanning lasers, by removing noise using knowledge
of the robot model.

The perception pipeline performs the key task of creating a
representation of the world that can be used for collision
checking. We aim to create a representation that can be
updated in realtime, is easily accessible for collision check-
ing and deals correctly with occlusions. We also aim to
design the interface to the pipeline to be generic enough
to incorporate a wide variety of sensor inputs.

A. Sensor Input

The raw input received from the sensor is in the form
of a point cloud: a set of points in space that correspond
to observed objects in the environment. Most 3D sensors
provide information in this format and can be easily plugged
into our system. For our implementation on the PR2, the
system was interfaced with two different sensors: a Videre
stereo camera with projective texture and a tilting Hokuyo
laser scanner. The laser sensor is mounted on a tilting stage
and it moves up and down at a specified velocity. The
viewing angle of the sensor is 270◦. This allows the robot to
create a detailed representation of the environment in front
of it. The stereo camera can provide a denser representation
of the environment but was not used as extensively in our
implementation.

B. Processing Noisy Point Clouds

The sensor data is often noisy and needs to be processed
carefully before being incorporated into the robot’s view of
the environment. During manipulation, the arms of the robot
are frequently in the sensor field of view. The system must
then be able to distinguish sensed points that are coincident
with points on the robot itself (see Figure 3), i.e. it must be
able to infer that sensed points that are on the robot itself
are not part of the environment and therefore should not be
considered obstacles.

Such points are separated from the sensor input using a
simple approach: for each robot link that could potentially
be seen by the robot’s sensors, the system checks if any
points in the input cloud are contained in the geometric shape
corresponding to the convex hull of that link. This is a simple
test and quickly lets the system partition the sensor data into
two parts: points that are part of the environment and points
that are part of the robot itself and should not be considered
obstacles.

An additional problem, which we refer to as a shadowing
effect, is especially prevalent in laser scanner data. This
problem arises when laser scans graze very slightly the
different parts of the body of the robot. Points cast by the
edges of the arms now appear to be further away and part of
the environment. They form a virtual barrier below the arm,
on each side, and greatly constrain the motion of the arm.
Furthermore, as the arm moves, these shadow points often
appear to lie on the desired path of the arm, so execution is
halted. To remove these points, a small padding distance is
added to the collision representations of the the robot links.

If the line segment between a point in the input cloud and the
sensor origin intersects the extended collision representation,
the point is classified as a shadow point and removed.

The filtering process described above is also applied for
bodies the robot is manipulating: if the robot is holding
an object, that object must not be part of the collision
environment any more and the shadow points it casts need to
be removed. The processed point cloud with shadow points
removed can now be processed further for incorporation into
the collision environment representation of the robot.

C. Constructing a Collision Environment

The representation of the collision environment, also re-
ferred to as a collision map, consists of axis aligned cubes
where points from the input cloud are incorporated (see
Figure 4). Cubes with 1 cm sides were used in the collision
map implemented on the PR2. A cubic box is added to the
map at a particular location as soon as at least one sensor
point is found to occupy the grid cell corresponding to that
location. This process is simple and can be executed very
quickly.

A proper implementation of a collision environment with
frequent sensor updates must deal correctly with occluded
data. Replacing the original collision map with only fresh
sensor data on every sensor update implies that the map will
have no memory about obstacles that may now be occluded.
One approach to handling occlusions is to use ray-tracing to
trace out every ray coming from the sensors up to a large
distance and retain parts of the previous map that are now
found to be occluded. This can be very computationally
expensive. Since we strive to obtain a perception pipeline
that runs close to realtime, we only account for occlusions
caused by the robot itself: e.g., when the robot arm is
in front of the sensor and parts of the environment are
occluded. The simplified approach starts with the previous
world representation C (initially empty) and a new world
representation N . We first determine the set difference D
between the two views, i.e. we look for parts of C that are
not part of the new view N , i.e.,

D = C −N

These parts in D are either moving obstacles that have
changed their position or are parts that have become oc-
cluded. For every box d ∈ D, we then check whether the line
segment between d and the sensor origin intersects a body
part of the robot. If it does, the box is considered occluded
and is added to the new world view N . N now becomes the
current representation of the world that retains a memory
of the objects seen previously in the environment but now
occluded by parts of the robot. This implementation is fast
enough to satisfy our requirements for realtime implementa-
tion (it runs around 30Hz - 50Hz with approximately 10000
boxes in the environment).

The collision map is a critical input to the motion planning
and motion execution processes. In our implementation on
the PR2 robot, the environment was restricted to a box of
dimensions 2 m forward, 1.5 m on each side and 2 m upward,

2897

Fig. 3. The robot’s world view using its laser without (left) and with (right) filtering.

Fig. 4. Example collision map in an office showing retention of occluded
data in the environment. Part of the chair is occluded by the arm (marked
in red).

with respect to the robot’s base. The box contains the entire
reachable workspace of the arm. Restricting the environment
size has a significant performance impact and helps in the
goal of updating this environment in realtime.

IV. MOTION PLANNING ALGORITHMS

To make the process of incorporating different kinds
of motion planning algorithms easier, common interface
requirements were established that all motion planning pro-
cesses need to satisfy: offer a ROS service2 for computing
a motion plan. In essence, a motion planner maintains a
copy of the collision map it received and attempts to satisfy
the requests it receives. Currently three classes of motion
planners are offered through this interface:

• Sampling-based motion planning, based on the ompl
library [13]

• Grid-search techniques (A*-like) based on the sbpl
library [14]

• Trajectory optimization techniques: CHOMP (Covariant
Hamiltonian Optimization for Motion Planning) [2]

2A ROS service is akin to a Remote Procedure Call (RPC)

The experiments presented in later sections of this paper
used the sampling-based motion planners and CHOMP.

A. Sampling-based Motion Planning

Sampling-based motion planning works by constructing an
approximation of the state space of the robot through sam-
pling and collision checking [11], [12]. This allows comput-
ing collision-free solutions very quickly. Typical computation
times for the implementation on the PR2 robot were on the
order of 100 milliseconds. Due to the randomized nature of
such algorithms, the computed solution paths are not smooth
and can look unnatural. Shortening and smoothing steps are
thus applied to these paths to get more natural looking,
smoother paths [11], [12].

The implementation of sampling-based planners for the
experiments presented in this paper used a set of tree-based
algorithms from the ompl library. The particular planners
used included the following:

• LBKPIECE, a lazy, bi-directional implementation of
KPIECE (Kinematic Motion Planning by Interior-
Exterior Cell Exploration) [1], [15]

• SBL (Single-query Bi-directional probabilistic roadmap
planner with Lazy collision checking) [16]

• KPIECE [1], [15]
• RRT (Rapidly-exploring Random Trees) [17]

When a request for planning is received, the planner to be
used is selected based on the type of request. If a goal state
can be extracted from the request, a bi-directional planner is
preferred (LBKPIECE or SBL). Otherwise, if a goal state is
not available, only single-tree planners can be used (KPIECE
or RRT). The choice of planner to be used depends on the
planner’s priority. The priority is an integer value that is
updated (increased or decreased by 1, within fixed bounds)
based on whether the planner was successful or unsuccessful
in finding a solution to the request it received. The initial
priorities enforce the order in which the planners are listed
above: LBKPIECE has highest priority and RRT has lowest
priority.

2898

B. CHOMP

CHOMP (Covariant Hamiltonian Optimization for Motion
Planning) [2] is a trajectory optimizer that is based on co-
variant gradient descent techniques. It can be used to smooth
paths generated by sampling-based motion planners. More
importantly, it can also optimize a naı̈ve initial trajectory
that may be in collision (e.g., a straight line in configuration
space) to be collision-free. This property of CHOMP allows
it to be used as a stand-alone motion planner in a variety of
situations.

We first define a cost function over the trajectory as
a sum of smoothness cost and collision cost. Smoothness
is typically defined as a sum of squared derivatives along
the trajectory for each joint. The collision cost and its
gradient are obtained from a Signed Distance Field [2]. These
Cartesian collision cost gradients are transformed into joint
space using the Jacobian of the robot, and covariant updates
ensure that every gradient update to the trajectory is smooth.
In our implementation, CHOMP takes between 0.5 and 2
seconds to optimize a trajectory out of collision, depending
on the complexity of the problem.

Since the cost function for CHOMP includes a collision
cost, trajectories generated using this planner tend to ap-
proach an object along a path of low collision cost. Such
paths may not be optimal but often represent a good approach
direction for the end-effector to grasp the object. We exploit
this capability of CHOMP to complement sampling-based
planners. In particular, we use CHOMP as part of a two-stage
planning process where sampling-based planning is used to
quickly generate the initial path to a collision free state close
to the goal specified by the user. CHOMP is then used as a
second stage planner to complete the plan towards a goal
that could possibly be in collision.

V. MOTION EXECUTION MONITOR

Using the perception pipeline and the motion planning
services described above, motion plans can be computed
for a robot in an environment that is continuously updated
in realtime. These motion plans can then be sent to a
trajectory controller which attempts to follow them as best
as possible. In this section we describe how the interface
between perception, motion planning and control works and
we show how it is applied to the PR2 arm as an example.

The motion execution monitor is aware of two motion
planners: a long-range planner, which should be fast and
safe, but cannot always reach the goal if it is too close
to a contact point, and a short-range planner which always
moves to the desired goal. In this work, we used sampling-
based motion planning (with a preference for bi-directional
planners) for the long-range planner and CHOMP for the
short-range planner.

If the goal states are in collision, using sampling based
bi-directional planning alone may not be feasible. Ignoring
collisions up to a small depth with a sampling-based planner
will allow the planner to potentially touch the object we
are trying to grasp multiple times, thus pushing it away or
knocking it over before reaching the final state.

Using a trajectory optimization technique alone would
be computationally intensive and too slow for replanning.
Fast replanning is needed to account for a rapidly changing
environment, especially in the presence of humans.

For these reasons, we use a combination of the two
techniques. Sampling based planning is used to plan a path
to a feasible state near the goal. It is very fast and allows us
to replan quickly if needed. Once we are close to the goal,
we use CHOMP to move to the desired final state, relying on
its ability to minimize the collision cost for a path to the
goal.

Algorithm 1 details the actual workings of the motion
planning and execution system. In particular, the system
makes an attempt to satisfy the request for a motion plan
by making intelligent choices about the types and number
of planners to be used. It also uses information about the
environment to execute safe plans, i.e. collision checking is
continuously used in concert with the changing representa-
tion of the environment to ensure that the executed plans
do not collide with the environment. We now examine the
components in the system in more detail.

Algorithm 1 HANDLEREQUEST(req)
GS ← FINDSTATESINGOALREGION(req)
SORT(GS, state with fewest contacts first)
if GS 6= ∅ and ISSTATEVALID(GS[0]) then

return RUNLONGRANGE(GS[0])
else

if (v ← SEARCHVALIDNEARBY(req)) then
success← RUNLONGRANGE(v)
if success then

if GS 6= ∅ then
return RUNSHORTRANGE(GS[0])

else
return RUNSHORTRANGE(req)

end if
else

return false
end if

else
return RUNLONGRANGE(req)

end if
end if

1) Attempt to find states in goal region: The request for a
motion plan is often to reach a goal region instead of a single
goal state. If the request is simply a set of joint constraints,
it is easy to sample states in the goal region. E.g., in the
implementation on the PR2, we simply construct a state in
the “middle” of the goal region (mid-point for bounds in each
dimension). If the request constrains 6 degrees of freedom
for the end-effector, inverse kinematics can often be used to
find states in the goal region. If a valid goal state is found
(all constraints are satisfied and there are no collisions), the
long-range planner can be run to obtain a solution path. In
the case of the PR2, this is the course of action that is usually

2899

taken when the arm is asked to move to a location that is
not very close to obstacles.

2) Finding an intermediate state: If no valid goal state
was found based on the imposed requests, we run a genetic
algorithm (GAIK [1], from ompl) to find a state that is valid,
but as close as possible to the specified goal region. If a
valid state is found, it serves as an intermediate state for the
motion plan, since it is close to the goal but not really in the
goal region. The long-range planner is used to move to this
intermediate state. If successful, the short-range planner is
then used to move to the desired grasping pose. In the case
of the PR2, this is the usual course of action taken when
attempting to grasp an object.

3) Executing the motion: Algorithm 2 details the exe-
cution of the motion plan. A request is sent to a motion
planner (long-range or short-range) and the resulting path
is forwarded to the trajectory controller. While the path
is being executed, it is checked for collision periodically,
using new environment data. If the path becomes invalid, the
controller is asked to stop the execution and a new motion
is to be computed. This setup achieves a simple version of
replanning [1].

Algorithm 2 RUNPLANNER(goal)
done = false
while not done do

done = true
path← FINDMOTIONPLAN(goal)
if ISPATHVALID(path) then

STARTEXECUTION(path)
while execution of path not complete do

if not ISPATHVALID(path) then
STOPEXECUTION(path)
done = false
break

end if
end while

end if
end while

VI. RESULTS

Our system was implemented on the PR2 platform and
has been validated by testing as part of a large set of high-
level tasks. The tasks were designed to test the system’s
ability to grasp objects in cluttered environments, manipulate
safely with large objects grasped in the gripper and deal with
constraints on the end-effector. The first task was a large
systems level task that required the robot to deliver drinks to
people in a simulated restaurant (Figure 5). The bottles were
placed on kitchen counter-tops and the robot had to grasp
and manipulate them without colliding with any part of the
environment. This task also involved a sub-task where the
robot had to manipulate a bottle without spilling its contents.
This was achieved by applying a pose constraint on the end-
effector that placed bounds on its orientation to keep the

Fig. 5. Implementing a grasping task as part of a larger system task of
serving drinks at a restaurant

Fig. 6. Manipulating a grasped object in a cluttered environment.

bottle upright. A video of this entire system-level task can
be found in [18].

A second task involved manipulating a long metal bar
held by the arm of the robot in a cluttered environment.
Here, the robot had to manipulate the metal bar through a
small opening while avoiding a cluttered environment. The
robot had a model of the arm a priori and included it in its
kinematic model to account for possible internal collisions
and external collisions with objects in the environment as
well. Figure 6 shows a series of snapshots of one such
planned motion3. Note the significant clutter and occlusion
problems that arise when the robot is carrying out this task.

Figure 7 shows the combined planner in action, moving a

3A video of this task can be found at http://www.kavrakilab.
org/willow-demos/

2900

Fig. 7. Combining planners to carry out a manipulation task.

bottle from one position on a table to another. Small errors
in the sensed collision environment due to sensor noise can
sometimes cause the planner to perceive the initial position
of the bottle to be in collision. However, CHOMP can be
used to first plan away from the table, thus moving out of
collision. Sampling-based planning can then plan a path to
the goal position. If needed, the system again switches to
CHOMP to execute the last phase of the manipulation, i.e.,
placing the bottle back on the table3. All of these changes
in used planning techniques are not apparent to the user.

VII. CONCLUSIONS

We present a system capable of planning and replanning in
an environment that is constructed in realtime, using sensed
data. Motion planning is achieved through a combination
of techniques, taking advantage the speed of computation
of sampling-based planning and the ability of trajectory
optimization techniques to achieve contact while minimizing
collisions. This combination of planners is implemented in a
manner that is transparent to the user. The system has been
successfully used by a number of researchers as a component
in more complex tasks.

The system is general in the sense that its design is
modular and can be applied to other similar hardware plat-
forms, not only the PR2. All this code is freely available at
http://www.ros.org.

VIII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of
everyone at Willow Garage Inc. and thank Lydia Kavraki
for providing valuable comments.

REFERENCES

[1] R. B. Rusu, I. A. Şucan, B. Gerkey, S. Chitta, M. Beetz, and L. E.
Kavraki, “Real-time perception guided motion planning for a personal
robot,” in International Conference on Intelligent Robots and Systems,
St. Louis, USA, October 2009.

[2] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
IEEE International Conference on Robotics and Automation, 12–17
May 2009, pp. 489–494.

[3] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. J. Kuffner.,
“Bispace planning: Concurrent multi-space exploration,” in Robotics:
Science and Systems, Zurich, Switzerland 2008.

[4] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J.
Kuffner, “Manipulation planning with workspace goal regions,” in
IEEE International Conference on Robotics and Automation, May
2009.

[5] D. Katz, E. Horrell, Y. Yang, B. Burns, T. Buckley, A. Grishkan,
V. Zhylkovskyy, O. Brock, and E. Learned-Miller, “The UMass Mo-
bile Manipulator UMan: An Experimental Platform for Autonomous
Mobile Manipulation,” in IEEE Workshop on Manipulation for Human
Environments, Philadelphia, USA, August 2006.

[6] C. Borst, C. Ott, T. Wimbock, B. Brunner, F. Zacharias, B. Baeum,
U. Hillenbrand, S. Haddadin, A. Albu-Schaeffer, and G. Hirzinger, “A
humanoid upper body system for two-handed manipulation,” in IEEE
International Conference on Robotics and Automation, April 2007, pp.
2766–2767.

[7] S. Srinivasa, D. Ferguson, M. V. Weghe, R. Diankov, D. Berenson,
C. Helfrich, and H. Strasdat, “The Robotic Busboy: Steps Towards
Developing a Mobile Robotic Home Assistant,” in Intl. Conference
on Intelligent Autonomous Systems (IAS-10), July 2008.

[8] T. Ihme and U. Ruffler, Motion Planning Based on Realistic Sensor
Data for Six-Legged Robots, ser. Informatik aktuell, Autonome Mobile
Systeme, pp. 247-253. Springer Berlin/Heidelberg, 2007.

[9] P. Sermanet, R. Hadsell, M. Scoffier, U. Muller, and Y. LeCun,
“Mapping and planning under uncertainty in mobile robots with long-
range perception,” in International Conference on Intelligent Robots
and Systems, 2008, pp. 2525–2530.

[10] Y. Kuwata, G. Fiore, J. Teo, E. Frazzoli, and J. How, “Motion
planning for urban driving using RRT,” in International Conference
on Intelligent Robots and Systems, 2008, pp. 1681–1686.

[11] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, June 2005.

[12] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[13] “http://www.ros.org/wiki/ompl.”
[14] “http://www.ros.org/wiki/sbpl.”
[15] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by

interior-exterior cell exploration,” in International Workshop on the
Algorithmic Foundations of Robotics, Guanajuato, Mexico, December
2008.

[16] G. Sánchez and J.-C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” International
Journal of Robotics Research, vol. 6, pp. 403–417, 2003.

[17] S. M. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” Computer Science Dept., Iowa State University, Tech.
Rep. 11, 1998.

[18] W. G. Inc., “Intern challenge,” http://www.willowgarage.com/blog/
2009/08/17/intern-pr2-challenge-2009, 2009.

2901

