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Abstract— Birds, bees, and fish often flock together in
groups to find the source of food (target) based on local
information. Inspired by this natural phenomenon, a flocking
control algorithm is designed to coordinate the activities of
multiple agents in noisy environments. Based on this algorithm,
all agents can form a network and maintain connectivity. This
is of great advantage for agents to exchange information. In
addition, collision avoidance among agents is guaranteed in the
whole process of target tracking. We show that even with noisy
measurements the flocks can achieve cohesion and follow the
moving target. We also investigate the stability and scalability
of our algorithm. The numerical simulations are performed to
demonstrate the effectiveness of the proposed algorithm.
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I. INTRODUCTION

Flocking is a phenomenon in which a number of agents

move together and interact with each other. In nature, schools

of fish, birds, ants, and bees, etc. demonstrate the phenomena

of flocking. Flocking control for multiple mobile agents has

been studied in recent years [1], [2], [3], and it is designed

based on three basic flocking rules proposed by Reynolds in

[4]: flock centering (agents try to stay close to nearby flock-

mates), collision avoidance (agents try to avoid collision with

nearby flock-mates), and velocity matching (agents try to

match their velocity with nearby flock-mates). The problems

of flocking have also attracted many researchers in physics

[5] and biology [6].

Early work on flocking control stability includes [1], [2],

[3]. Tanner et al. [1] and [2] studied the stability properties

of a system of multiple mobile agents with double integrator

dynamics in case of fixed and dynamic topologies. In [3], the

theoretical framework for design and analysis of distributed

flocking algorithms was proposed. This established a back-

ground for flocking control design for a group of agents.

As an extension of the flocking algorithm in [3], flocking of

agents with a virtual leader in case of a minority of informed

agents and varying velocity of virtual leader was presented

in [7].

In this paper we study the stability properties and connec-

tivity preservation during the flocking of a multi-agent sys-

tem. The main difference with the above related work is that

we consider the effect of position and velocity measurement
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errors (noises) in sensing the agent’s neighbors and the agent

itself, and the noises in sensing the position and velocity of

the target. We propose a new flocking control algorithm that

allows the flocks to preserve connectivity, avoid collision,

and follow the target even in such noisy environments. We

demonstrate that by applying our algorithm the agents can

flock together and maintain connectivity better compared

with those in existing flocking control algorithms.

The rest of this paper is organized as follows. In the next

section we present the background of flocking control and

problem formulation. Section III describes flocking control

to track a moving target in noisy environments. Section IV

presents the main results on stability analysis of flocking con-

trol in noisy environments. Section V shows the simulation

results. Finally, Section VI concludes this paper.

II. FLOCKING BACKGROUNDS AND PROBLEM

FORMULATION

In this section we will present flocking control background

and the problems in existing flocking control algorithm.

We consider n agents moving in an m (e.g., m = 2,3)

dimensional Euclidean space. The dynamic equations of each

agent are described as:
{

q̇i = pi

ṗi = ui, i = 1,2, ...,n.
(1)

here qi, pi ∈ Rm are the position and velocity of node i,

respectively, and ui is the control input of agent i.

To describe the topology of flocks we consider a dynamic

graph G consisting of a vertex set ϑ = {1,2...,n} and an edge

set E ⊆ {(i, j) : i, j ∈ ϑ, j , i}. In this topology each vertex

denotes one member of the flock, and each edge denotes the

communication link between two members.

We know that during the movement of agents, the relative

distance between them may change, hence the neighbors

of each agent also change. Therefore, we can define a

neighborhood set of agent i as follows:

Ni =
{

j ∈ ϑ : ‖q j −qi‖ ≤ r, ϑ = {1,2, ...,n} , j , i
}

,

here r is an active range (radius of neighborhood circle in the

case of two dimensions, m = 2, or radius of neighborhood

sphere in the case of three dimensions, m = 3), and ‖.‖ is

the Euclidean distance.

The geometry of flocks is modeled by an α-lattice [3] that

meets the following condition:

‖q j −qi‖ = d, j ∈ Ni, (2)

here d is a positive constant indicating the distance between

agent i and its neighbor j. However, at singular configura-

tion (qi = q j) the collective potential used to construct the
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geometry of flocks is not differentiable. Therefore, the set of

algebraic constrains in (2) is rewritten in term of σ - norm

[3] as follows:

‖q j −qi‖σ = dα, j ∈ Ni, (3)

here the constraint dα = ‖d‖σ with d = r/kc, where kc is

the scaling factor. The σ - norm, ‖.‖σ, of a vector is a map

Rm =⇒ R+ defined as ‖z‖σ = 1
ε [

√

1 + ε‖z‖2−1] with ε > 0.

Unlike the Euclidean norm ‖z‖, which is not differentiable at

z = 0, the σ - norm ‖z‖σ, is differentiable everywhere. This

property allows to construct a smooth collective potential

function for agents.

The flocking control law in [3] controls all agents to form

an α-lattice configuration. This algorithm consists of two

components as follows:

ui = f α
i + f t

i . (4)

The first component of (4) f α
i , which consists of a

gradient-based component and a consensus component, is

used to regulate the potentials (repulsive or attractive forces)

and the velocity among agents,

f α
i = ∑

j∈Ni

φα(‖q j −qi‖σ)ni j + ∑
j∈Ni

ai j(q)(p j − pi), (5)

where each term in (5) is computed as follows [3]:

1. The action function φα(z) that vanishes for all z ≥ rα

with rα = ‖r‖σ is defined as follows:

φα(z) = ρh(z/rα)φ(z−dα)

with the uneven sigmoidal function φ(z) defined as φ(z) =
0.5[(a+b)σ1(z+ c)+(a−b)], here σ1(z) = z/

√
1 + z2, and

parameters 0 < a≤ b, c = |a−b|/
√

4ab to guarantee φ(0) =
0. The bump function ρh(z) with h ∈ (0,1) is

ρh(z) =







1, z ∈ [0,h)

0.5[1 + cos(π( z−h
1−h

))], z ∈ [h,1)

0, otherwise.

2. The vector along the line connecting qi to q j is

ni j = (q j −qi)/
√

1 + ε‖q j −qi‖2.

3. The elements ai j(q) of the adjacency matrix [ai j(q)] are

defined as

ai j(q) =

{

ρh(‖q j −qi‖σ/rα), i f j , i

0, i f j = i.

The second component of (4) f t
i is designed for distributed

target tracking,

f t
i = −ct

1(qi −qt)− ct
2(pi − pt) (6)

where ct
1 and ct

2 are positive constants, and (qt , pt) are the

position and velocity of the moving target defined as follows
{

q̇t = pt

ṗt = ft (qt , pt)

Finally, the Olfati-Saber flocking control law [3] in free

space is:

ui = ∑
j∈Ni

φα(‖q j −qi‖σ)ni j + ∑
j∈Ni

ai j(q)(p j − pi)

−ct
1(qi −qt)− ct

2(pi − pt). (7)

The control law (7) is designed under the following

assumptions:

1. Each agent can sense its own position and velocity

precisely (without noises).

2. Each agent can obtain its neighbors position and veloc-

ity via sensing or message broadcasting precisely.

3. Each agent can sense the target position and velocity

precisely.

However, in reality these assumptions are not valid be-

cause sensing noise always exists. Motivated by this obser-

vation we will study how to design a distributed flocking

control law to handle noises.

III. FLOCKING CONTROL OF MULTIPLE AGENTS IN NOISY

ENVIRONMENTS

In this section, first we design a distributed flocking

control law in noisy environments. Then we will derive the

dynamic error model. We assume that each agent senses

its own position and velocity with noises, and each agent

can obtain its neighbors position and velocity via sensing or

message broadcasting with noises. We also assume that each

agent senses the target position and velocity with noises.

A. Algorithm Description

We have the following definitions:

The local average of position and velocity (qi, pi) of agent

i and its neighbors is defined:
{

qi = 1
|Ni|+1 ∑

|Ni|+1

i=1 qi

pi = 1
|Ni|+1 ∑

|Ni |+1

i=1 pi,
(8)

and the global average of position and velocity (q, p) is

defined as:
{

q = 1
n ∑n

i=1 qi

p = 1
n ∑n

i=1 pi.
(9)

dil = qi − qi is relative distance between node i and its

local average of position;

vil = pi − pi is relative velocity between node i and its

local average of velocity;

dig = qi − q is relative distance between node i and its

global average of position;

vig = pi − p is relative velocity between node i and its

global average of velocity;

Assume that the estimates of position and velocity of agent

i are: q̂i = qi + εi
q and p̂i = pi + εi

p, where εi
q and εi

p are

position and velocity errors (noises), respectively. Then we

have:

q̂i − q̂ j = qi −q j + ε
i j
q ,

p̂i− p̂ j = pi− p j +ε
i j
p , here ε

i j
q = ε

j
q −εi

q and ε
i j
p = ε

j
p−εi

p.

Similarly, the estimates of position and velocity of the

target are: q̂t = qt +εt
q and p̂t = pt +εt

p, where εt
q and εt

p are

position and velocity noises, respectively. Then we have:
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q̂i − q̂t = qi −qt + εit
q ,

p̂i − p̂t = qi − pt + εit
p, here εit

q = εt
q − εi

q and εit
p = εt

p − εi
p.

Now, we propose a distributed flocking control law in

noisy environments as:

ui = cα
1 ∑

j∈Ni

φα(‖q̂ j − q̂i‖σ)n̂i j + cα
2 ∑

j∈Ni

âi j(q)(p̂ j − p̂i)

−cposd̂il − cvev̂il − ct
1(q̂i − q̂t)− ct

2(p̂i − p̂t)

−c
g
1(q̂i − q̂t)− c

g
2(p̂i − p̂t), (10)

here q̂i and p̂i are computed as
{

q̂i = 1
|Ni|+1 ∑

|Ni|+1

i=1 q̂i

p̂i = 1
|Ni|+1 ∑

|Ni |+1
i=1 p̂i,

(11)

and n̂i j, âi j(q) are computed as

n̂i j = (q̂ j − q̂i)/
√

1 + ε‖q̂ j − q̂i‖2,

âi j(q) =

{

ρh(‖q̂ j − q̂i‖σ/rα), i f j , i

0, i f j = i
,

and d̂il, v̂il are the estimates of dil and vil , respectively;

and cα
1 ,cα

2 ,cpos,cve,c
t
1, ct

2,c
g
1 and c

g
2 are positive constants. In

this control protocol, the first two terms are used to control

the formation (α-lattice configuration) and to allow agents

to avoid collision. −cposd̂il and −cvev̂il are called position

and velocity cohesion feedbacks, respectively. The role of

these negative feedbacks is to maintain position and velocity

cohesions. This means that each agent tries to stay close to

the local average of position (8) and minimize the velocity

mismatch between its velocity and the local average of

velocity (8) in noisy environments. That allows the network

to shrink in order to maintain network connectivity, and

also allows the error dynamics of the system to be bounded

(proved in Theorem 1). In addition, the terms −ct
1(q̂i− q̂t)−

ct
2(p̂i − p̂t) and −c

g
1(q̂i − q̂t)− c

g
2(p̂i − p̂t) allow each agent

and its neighbors to closely follow the target.

B. Dynamic Error Model

To study the stability properties, we have the error dynam-

ics of the system given as follows:
{

ḋig = vig

v̇ig = ui − 1
n ∑n

j=1 u j = ui −u, i = 1,2, ...,n,
(12)

here u = 1
n ∑n

j=1 u j.

Firstly, we have the following relations:

dil = qi −qi = dig + q− 1

|N j|+ 1

|N j |+1

∑
j=1

q j

= dig + q− 1

|N j|+ 1

|N j |+1

∑
j=1

(d jg + q)

= dig −
1

|N j|+ 1

|N j |+1

∑
j=1

d jg. (13)

Then similar to dil , vil is obtained as follows:

vil = vig −
1

|N j|+ 1

|N j |+1

∑
j=1

v jg. (14)

However, because agent i senses its own position and velocity

with noises, hence the estimates d̂il and v̂il are also corrupted

by noises (εi
d ,ε

i
v) as:

{

d̂il = dil − εi
d

v̂il = vil − εi
v.

(15)

Also, the estimates of the local average of position and

velocity, respectively in (11) corrupted by noises (εi
q,ε

i
p) can

be rewritten as

q̂i = qi −dig +
1

|N j|+ 1

|N j |+1

∑
j=1

d jg + εi
q. (16)

p̂i = pi − vig +
1

|N j|+ 1

|N j |+1

∑
j=1

v jg + εi
p. (17)

Now, we can rewrite the control law (10) with considering

(15), (16) and (17):

ui = cα
1 ∑

j∈Ni

φα(‖q̂ j − q̂i‖σ)n̂i j + cα
2 ∑

j∈Ni

âi j(q)(p̂ j − p̂i)

+(cg
1 − cpos)(dig −

1

|N j|+ 1

|N j |+1

∑
j=1

d jg)

+(cg
2 − cve)(vig −

1

|N j|+ 1

|N j |+1

∑
j=1

v jg)

−(ct
1 + c

g
1)(qi −qt)− (ct

2 + c
g
2)(pi − pt)

+cposε
i
d + cveεi

v − c
g
1εi

q − c
g
2εi

p

−(ct
1 + c

g
1)ε

it
q − (ct

2 + c
g
2)ε

it
p (18)

Compute the average of control law (18), then substitute

obtained average u, and ui in (18) into (12) we obtain:

v̇ig = −(ct
1 + cpos)dig − (ct

2 + cve)vig

+Φi(V )+ Ωi(V )+ ζi(V ), (19)

where

Φi(V ) = cα
1 ∑

j∈Ni

φα(‖q̂ j − q̂i‖σ)n̂i j

−cα
1

n

n

∑
i=1

[ ∑
j∈Ni

φα(‖q̂ j − q̂i‖σ)n̂i j]

+cα
2 ∑

j∈Ni

âi j(q)(p̂ j − pi)

−cα
2

n

n

∑
i=1

[ ∑
j∈Ni

âi j(q)(p̂ j − pi)];

Ωi(V ) = −(
c

g
1 − cpos

|N j|+ 1
)
|N j |+1

∑
j=1

d jg − (
c

g
2 − cve

|N j|+ 1
)
|N j |+1

∑
j=1

v jg

−(
c

g
1 − cpos

n
)

n

∑
i=1

(dig −
1

|N j|+ 1

|N j |+1

∑
j=1

d jg)

−(
c

g
2 − cve

n
)

n

∑
i=1

(vig −
1

|N j|+ 1

|N j |+1

∑
j=1

v jg);
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ζi(V ) = cposε
i
d + cveεi

v − c
g
1εi

q − c
g
2εi

p

−(ct
1 + c

g
1)ε

it
q − (ct

2 + c
g
2)ε

it
p

−1

n

n

∑
i=1

[cposε
i
d + cveεi

v − c
g
1εi

q − c
g
2εi

p

−(ct
1 + c

g
1)ε

it
q − (ct

2 + c
g
2)ε

it
p].

Rewrite (19) in state space representation
[

ḋig

v̇ig

]

=

[

0 I

−k1I −k2I

][

dig

vig

]

+

[

0

I

]

(Φi(V )+ Ωi(V )+ ζi(V )), (20)

here k1 = (ct
1 + cpos), k2 = (ct

2 + cve), and I is an m x m

identity matrix.

Let Vi = [dig vig]
T , then we can rewrite (20) as

V̇i =

[

0 I

−k1I −k2I

]

Vi

+

[

0

I

]

(Φi(V )+ Ωi(V )+ ζi(V )) (21)

Note that the matrix Ai =

[

0 I

−k1I −k2I

]

is Hurwitz be-

cause with selected constants such that k1 > 0 and k2 > 0 this

matrix has eigenvalues given by the roots of (s2 +k2s+k1)
m,

which are in the strict left half plane.

IV. STABILITY ANALYSIS

In this section we will analyze the stability of our proposed

flocking control algorithm in noisy environments based on

the Lyapunov approach.

We assume that the errors of sensing position and velocity

have linear relationship with the magnitude of the state of the

error system. That is because two agents are far away from

each other, the sensing errors will usually increase. Hence,

we have
{ ‖εi

d(t)‖ ≤ ci
ed1

‖Vi(t)‖+ ci
ed2

‖εi
v(t)‖ ≤ ci

ev1
‖Vi(t)‖+ ci

ev2
, i = 1,2, ...,n.

(22)

We also assume that the noises εit
q and εit

p on the target

tracking terms (negative feedbacks) are bounded as
{

‖εit
q (t)‖ ≤ ci

eq

‖εit
p(t)‖ ≤ ci

ep, i = 1,2, ...,n,
(23)

and the noises εi
q and εi

p on the estimates of local average

of position and velocity of agent i and its neighbors, respec-

tively are bounded as
{

‖εi
q(t)‖ ≤ ci

eq

‖εi
p(t)‖ ≤ ci

ep, i = 1,2, ...,n.
(24)

Theorem 1. Consider a system of n mobile agents, that have

dynamics (1) and are controlled by the control law (10), and

all noises are bounded by (22), (23) and (24) . Let

c1
pv =

(cpos + 1)2 + c2
ve

2cposcve

+

√

(
cpos + c2

ve −1

2cposcve

)2 +
1

c2
pos

, (25)

and if

cposc
i
ed1

+ cveci
ev1

≤ 1

c1
pv

, (26)

and the parameters are such that

m

∑
j=1

2c1
pv[

√

(cg
1 − cpos)2 +(cg

2 − cve)2 − 1
n
(cposc

i
ed1

+ cveci
ev1

)]

(1− εi)[1− c1
pv(cposc

i
ed1

+ cveci
ev1

)]
(27)

< 1

here 0 < εi < 1 for ∀i, then the trajectories of (21) are

bounded.

Proof: To study the stability of the error dynamics (21),

one possible choice is to choose the Lyapunov function for

each agent as

Li(Vi) = V T
i PVi, (28)

here P = PT is a 2m x 2m positive-definite matrix (P > 0).

Then, the Lyapunov function for the composite system is

L(V ) =
n

∑
i=1

V T
i PVi. (29)

From (28) we have

L̇i(Vi) = V T
i PV̇i + V̇ T

i PVi. (30)

Then, substitute V̇i in (21) into (30) we obtain: L̇i(Vi) =
−V T

i CVi +2V T
i PB(Φi(V )+Ωi(V )+ f t

i (V )+ζi(V )), here B =
[

0

I

]

, and C = −(PAi + AT
i P).

Since for any matrix D = DT > 0 and vector X we have

λmin(D)XT X ≤ XT DX ≤ λmax(D)XT X , where λmin(D) and

λmax(D) are the minimum and maximum eigenvalue of the

matrix D. Then, from (29) we have ∑n
i=1(λmin(P)‖Vi‖2) ≤

L(V )≤ ∑n
i=1(λmax(P)‖Vi‖2). From this property and the fact

‖B‖ = 1 we obtain

L̇(V ) =
n

∑
i=1

L̇i(Vi) =
n

∑
i=1

[−V T
i CVi

+2V T
i PB(Φi(V )+ Ωi(V )+ ζi(V ))]

≤
n

∑
i=1

(−ci
1‖Vi‖2 + ci

2‖Vi‖

+‖Vi‖
n

∑
j=1

bi j‖V j‖), (31)

here

ci
1 = λmin(C)[1− 2λmax(P)

λmin(C)
(cposc

i
ed1

+ cveci
ev1

)],

ci
2 = 2λmax(P)[δmax

Φ + δmax
a + cposc

i
ed2

+ cveci
ev2

−(ct
1 + c

g
1)c

i
eq − (ct

2 + c
g
2)c

i
ep − c

g
1ci

eq − c
g
2ci

ep

−1

n

n

∑
j=1

(cposc
i
ed2

+ cveci
ev2

− (ct
1 + c

g
1)c

i
eq

−(ct
2 + c

g
2)c

i
ep − c

g
1ci

eq − c
g
2ci

ep)],
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where

δmax
Φ = max[|cα

1 ∑
j∈Ni

φα(‖q̂ j − q̂i‖σ)n̂i j

−cα
1

n

n

∑
i=1

[ ∑
j∈Ni

φα(‖q̂ j − q̂i‖σ)n̂i j]|],

δmax
a = max[|cα

2 ∑
j∈Ni

âi j(q)(p̂ j − p̂i)

−cα
2

n

n

∑
i=1

[ ∑
j∈Ni

âi j(q)(p̂ j − p̂i)]|],

bi = 2λmax(P)[
√

(c
g
1 − cpos)2 +(c

g
2 − cve)2(

1

|Ni|+ 1
+

1

n

+
1

n(|Ni|+ 1)
)− 1

n
(cposc

i
ed1

+ cveci
ev1

)].

Look at the first term in (31) we see that if [1 −
2λmax(P)
λmin(C) (cposc

i
ed1

+ cveci
ev1

)] ≥ 0 or cposc
i
ed1

+ cveci
ev1

≤ 1
c0

pv

with c0
pv = 2λmax(P)

λmin(C) then ci
1 > 0. Hence, the first term in (31)

gives a negative contribution to L̇(V ). It is noted that if c0
pv is

as small as possible the system will tolerate noise with largest

bounds (ci
ed1

and ci
ev1

) while keeping stability. Here, c0
pv is

minimized by taking C = I, or min(c0
pv) = 2λmax(P)

λmin(C) |C=I = c1
pv.

Now, let us analyze the first two terms in (31) as:

−ci
1‖Vi‖2 + ci

2‖Vi‖ = −(1− εi)c
i
1‖Vi‖2 − εic

i
1‖Vi‖2

+ci
2‖Vi‖

≤ −(1− εi)c
i
1‖Vi‖2 = δi‖Vi‖2

(∀− εic
i
1‖Vi‖2 + ci

2‖Vi‖ ≥ 0

⇔‖Vi‖ ≥
ci

2

εic
i
1

= θi) (32)

here 0 < εi < 1, and δi =−(1−εi)c
i
1. Clearly we can see that

if ‖Vi‖ ≥ θi then the first two terms in (31) give a negative

contribution to L̇(V ).
Next, consider the last term in (31) being over-bounded

by replacing bi with b∗i , and b∗i = max(bi)|1≤i≤n. For the

flocking control of multiple agents, n ≥ 2, we know that at

the initial state the agents are randomly distributed. Hence,

some agents may not have any neighbor or |Ni| = 0. Based

on this fact we have

b∗i = max(bi) = 2c1
pv[

√

(c
g
1 − cpos)2 +(c

g
2 − cve)2

−1

n
(cposc

i
ed1

+ cveci
ev1

)]. (33)

Then, we consider the general situation (‖Vi‖≥ θi and ‖Vi‖<
θi). Accordingly, we define the set

MO = {i : ‖Vi‖ ≥ θi,1 ≤ i ≤ n} = {i1O, i2O, ..., i
nO
O }

MI = {i : ‖Vi‖ < θi,1 ≤ i ≤ n} = {i1I , i
2
I , ..., i

nI
I }

here nO and nI are the size of MO and MI , respectively.

nO + nI = n; MO ∪MI = {1,2, ..,n}; and MO ∩MI = /0
Here we only need to prove L̇(V )≤ 0 for the case ‖Vi‖≥ θi

since for the case ‖Vi‖ < θi the proof is trivial.

First we assume that there exist positive constants such

that

K1 ≥∑
nI
j=1 b∗i ‖V j‖; K2 ≥∑

nI
j=1 ‖Vi‖; K3 ≥∑

nI
i=1(−ci

1‖Vi‖2 +

ci
2‖Vi‖); and K4 ≥ ∑

nI
i=1(‖Vi‖∑

nI
j=1 b∗i ‖V j‖);

Then from (31), (32) and (33) we have:

L̇(V ) ≤
nO

∑
i=1

δi‖Vi‖2 +
nO

∑
i=1

(‖Vi‖
nO

∑
j=1

b∗i ‖V j‖)

+
nO

∑
i=1

(K1 + K2b∗i )‖Vi‖+ K3 + K4

Let ZT = [‖Vi1O
‖,‖Vi2O

‖, ...,‖V
i
nO
O
‖] and the nO x nO matrix

S = [si j] be specified by

si j =







−b∗
i
j
O

, i f j , i

−(δ
i
j
O

+ b∗
i
j
O

), i f j = i.

Then we have

L̇(V ) ≤−ZT SZ + ∑
nO
i=1(K1 + K2b∗i )‖Vi‖+ K3 + K4.

Suppose that S ≥ 0, thus λmin(S) ≥ 0, hence we obtain

L̇(V ) ≤ −λmin(S)
nO

∑
i=1

‖Vi‖2

+
nO

∑
i=1

(K1 + K2b∗i )‖Vi‖+ K3 + K4 (34)

From (34) we can see that if ‖Vi‖ for i ∈ MO are suf-

ficiently large, then the sign of L̇(V ) is determined by

−λmin(S)∑
nO
i=1 ‖Vi‖2 or L̇(V ) ≤ 0.

A necessary and sufficient condition for S > 0 is that its

successive principal minors are all positive. Let us define |sm|
as determinants of the principal minors of matrix S, then we

have

|sm| = (1 +
m

∑
j=1

b∗
i
j
O

δ
i
j
O

)
m

∏
k=1

(−δikO
),m = 1,2, ...,nO.

Due to −δikO
> 0 with k = 1,2, ...,m, to have all above

determinants positive, we need:

∑m
j=1

b∗
i
j
O

δ
i
j
O

> −1 or

m

∑
j=1

2c1
pv[

√

(cg
1 − cpos)2 +(cg

2 − cve)2 − 1
n
(cposc

i
j
O

ed1
+ cvec

i
j
O

ev1
)]

(1− εi)[1− c1
pv(cposc

i
j
O

ed1
+ cvec

i
j
O

ev1
)]

(35)

< 1

for m = 1,2, ...,nO. Since 1 ≤ m ≤ nO ≤ n, the inequality

(35) is satisfied when (27) is satisfied.

V. EXPERIMENTAL RESULTS

In this section we discuss a metric to evaluate the network

connectivity. Then we test our proposed flocking control

algorithm (10) and compare it with the existing flocking

control algorithm (7) in noisy environments. The parameters

used in this simulation are specified as follows:

- Parameters of flocking: number of agents = 50 (randomly

distributed in the square area of 120 x 120 size); a = b = 5;

d = 16; the scaling factor kc = 1.2; the active range r =
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kc ∗ d = 19.2; ε = 0.1 for the σ-norm; h = 0.2 for the bump

function (φα(z)); h = 0.9 for the bump function (φβ(z)).
- Parameters of target movement: The target moves in a

sine wave trajectory: qt = [50 + 50t, 295− 50sin(t)]T with

0 ≤ t ≤ 6.

- The noises used in the simulation are Gaussian with zero

mean, variance of 1 and standard deviation of 1.
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Fig. 1. Snapshots of agents when they are randomly distributed (a, a’),
when they form a network (b, b’), and when they track a target (red/dark
line) moving in sine wave trajectory (c, c’), here (a, b, c) are for algorithm
(7) and (a’, b’, c’) are for algorithm (10).

To evaluate the the network connectivity maintenance, first

we know that the link (connectivity) between node i and node

j is maintained if the distance 0 < ‖qi −q j‖ ≤ r. Otherwise

this link is considered broken. Then for graph connectivity:

a dynamic graph G(ϑ,E) is connected at time t if there

exists a path between any two vertices. Based on the above

analysis, to analyze the connectivity of the network we define

a connectivity matrix [ci j(t)] as follows:

[ci j(t)] =

{

1, i f j ∈ Ni(t), i , j

0, i f j < Ni(t), i , j

and cii = 0. Since the rank of Laplacian of a connected graph

[3] [ci j(t)] of order n is at most (n−1) or rank([ci j(t)])≤ (n−
1), the relative connectivity of a network at time t is defined

as: C(t) = 1
n−1

rank([ci j(t)]). If 0 ≤ C(t) < 1 the network is

broken, and if C(t) = 1 the network is connected. Based on

this metric we can evaluate the network connectivity in our

proposed flocking control algorithm (10) and the existing

flocking algorithm (7).

Figure 1 represents the results of the moving target

(red/dark line) tracking in the sine wave trajectory in noisy
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Fig. 2. The connectivity is evaluated by the C(t) value: (a) algorithm (7),
and (b) algorithm (10).

environments where (a, b, c) represent the results of the

existing flocking control algorithm (7), and (a’, b’, c’) rep-

resent the results of the proposed flocking control algorithm

(10). Figure 2 shows the results of connectivity: (a) for the

algorithm (7), and (b) for the algorithm (10). To compare

these algorithms we use the same initial state (position and

velocity) of the mobile agents. Comparing these figures we

see that by applying the proposed flocking control algorithm

(10) the connectivity is maintained while the existing flock-

ing control algorithm (7) fails to do this. Also, by applying

the algorithm (10) we can see that after only five iterations

the agents form a network and then maintain connectivity in

presence of noises. In both algorithms, collision avoidance

among agents is guaranteed. For more details please see

some video files which are available at our ASCC Lab’s

website.

htt p : //ascc.okstate.edu/pro jectshung.html

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of controlling a

group of agents to form a network and track a target in noisy

environments. Our approach is based on flocking control that

integrates position and velocity cohesion feedbacks in order

to deal with the noises. The stability of the proposed flocking

control law is investigated based on the Lyapunov approach.

Also, the network connectivity preservation is improved, and

collision avoidance among agents is guaranteed. In the future

work we intend to study how the communication time delays

affect to the performance of the proposed approach.
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