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Abstract— We consider the problem of task assignment and
execution in multirobot systems, by proposing a procedure for
bid estimation in auction protocols. Auctions are of interest
to multirobot systems because they provide a flexible way to
coordinate the assignment of tasks to robots. The main idea is
to exploit task execution controllers that rely on the availability
of value functions. These provide a natural way to obtain the
bid values for a given task, compared to the heuristic and ad-
hoc bid estimation procedures in common use. The Partially
Observable Markov Decision Process (POMDP) framework is
used to compute policies for the execution of tasks by each
agent, with the task bid values obtained directly from the
respective value functions. Several simulation examples are
presented for an urban surveillance environment, illustrating
the applicability of our ideas.

I. INTRODUCTION

We consider the problem of the assignment and execution

of tasks in multirobot systems. Auction protocols for comput-

ing the assignment of tasks are commonly used in multirobot

systems [4]. The main advantages of these protocols are

their robustness to individual agent failures and the reduced

bandwidth requirements [6]. Another advantage is that the

assignment solution is computed in a distributed manner, and

thus can be used by agents with low computational resources.

A crucial challenge in auction protocols is how to estimate

the value that each agent should bid for each task, given

that agents must evaluate their fitness for executing a task

using only locally available information. In mobile robotic

applications, tasks often consist of the execution of a path [6],

[4]. Thus, the bid value for each task is often a function of

the path distance, the travel time or a combination of these

measures [14]. In general, the fitness functions are heuristic

and must be defined for each task, usually in an ad-hoc

manner.

Instead, we propose to employ the value functions used in

design of the controllers for the execution of each task. A

value function estimates the benefit of taking a particular

action in a particular state, given the long-term objective

of executing a task. The fitness of an agent to execute a

task, given the state of the environment, is thus obtained

directly from the value functions. The main advantage is

that the bid functions are not tailored for the application
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at hand, but instead are obtained naturally from the re-

quirements of the tasks. In this paper, tasks are defined

and solved using Partially Observable Markov Decision

Processes (POMDPs) [10]. POMDPs form a general and

powerful mathematical basis for planning under uncertainty,

and their use in mobile robotic applications has increased in

recent times [21], [20].

Auction protocols and POMDPs are complementary

frameworks. The value functions, required to compute the

bids in auctions, are readily available when the execution of

tasks is formulated with POMDPs. The coordination among

the different robots is achieved by the auction protocol

because it computes the optimal task assignment given the

individual fitness values. As a result, the POMDP problems

have much smaller dimensions since full joint planning is not

necessary. Although our focus is not on efficient POMDP

solving, avoiding POMDP models that are exponentially

sized in the number of robots greatly improves scalability.

We demonstrate our ideas in a simulation of an active

surveillance system, illustrating the benefits of combining

POMDPs and auction protocols, as well as showing the limits

of centralized POMDP solutions.

The remainder of this paper is organized as follows.

Section II presents an overview of the proposed approach.

The POMDP framework is reviewed in Section III, and

Section IV describes the auction protocol. In Section V the

proposed approach for the estimation of bids is proposed. In

Section VI the approach is applied to an active surveillance

problem and evaluated in simulation. Finally, in Section VII

the results and future work are discussed.

II. COORDINATION IN MULTIROBOT SYSTEMS

The problems considered in this paper are the assignment

of tasks and their execution in a multirobot system. The

first is formulated as the assignment of tasks with unknown

arrival order. Each robot can execute only one task at the

time, although it can be interrupted to begin the execution

of another. It is assumed that communication and hardware

failures may occur and consequently, the number of avail-

able mobile robots at any given instant is not known. The

computation of the assignment solution when the order of

task arrivals is known and no failures occur is NP-hard

in general [9]. The available algorithms proposed for this

problem often require computational resources organized in

a centralized manner. For instance, in [8] the order of the

tasks arrival is known and the task allocation is solved in a

centralized manner.

The second problem is the synthesis of controllers for the

execution of each task by the robots. Each has available a
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Fig. 1. Diagram of proposed solution. Each agent has a POMDP model
for each task in parallel, but only one is active (indicated by a solid box).

finite, and possibly distinct, set of actions and can perceive

features of interest in the environment. This problem is then

formulated as computing a controller for the execution of a

task by the robot. The tasks are assumed to be executed by

a single agent, without explicit coordination with the others.

In this way, we avoid the severe complexity penalty involved

when considering the full joint planning problem (either

centralized or decentralized). The coordination is achieved on

a task level, by finding the optimal assignment of individual

tasks to agents.

A POMDP problem is formulated and solved for each of

the tasks each robot can execute. The POMDPs at each agent

receive the same set of local observations, but agents do not

share beliefs or other types of information. When a robot is

assigned a task, the policy of the corresponding POMDP is

enabled and the others disabled. That is, the actions executed

by the robot are those determined only by the policy of the

POMDP associated with the assigned task.

Figure II illustrates the proposed solution. The diagram

is composed of a central supervisor, denoted the auctioneer,

and a set of robot agents. The tasks to be executed by the

agent are received by the auctioneer and are then assigned

through an auction protocol. Although the assignment of

tasks is conducted in a centralized manner, the solution can

be extended to include multiple auctioneers, each responsible

for a small group of agents [7]. Furthermore, the notion

of a centralized task assignment is not crucial to the ideas

developed in this paper. Decentralized auction techniques

(e.g., [3]) that shift the burden of a centralized auctioneer

to a consensus problem could be applied as well.

A related approach is the Hoplites framework [11]. How-

ever, it focuses more on tightly-coupled coordination tasks,

while we target more loosely coupled scenarios. Another

difference is that in the original work, Hoplites is applied

to a path-planning problem. We consider more general types

of tasks and also we do not plan for the joint action space

(as can happen in Hoplites), to avoid an exponentially sized

problem description. Related in spirit to our work, in [5] the

authors propose to use combinatorial auctions for resource

allocation, modeling each self-interested agent using MDPs.

III. POMDP BACKGROUND

We will discuss POMDP models and solution methods,

briefly introducing some general background but focusing

on their application to the execution of tasks by an agent.

A more elaborate POMDP model description is provided

by [10], for instance.

A POMDP models the interaction of an agent with a

stochastic and partially observable environment, and it pro-

vides a rich mathematical framework for acting optimally in

such environments. The framework is based on the assump-

tions that at any time step the environment is in a state s ∈ S

and the action a ∈ A is taken by the agent. As a result of this

action, a reward r(s, a) signal is received by the agent from

the environment. The environment state is changed to the

new state s′, in accordance to a known stochastic transition

model p(s′|s, a). The task of an agent is defined by the

reward it is given at each time step. The goal is to maximize

the long-term reward signals received. After the environment

transition to the new state, an observation o ∈ O is perceived

by the agent. This is conditional on the current environment

state, and possibly the action executed, according to a known

stochastic observation model p(o|s′, a).
Given the transition and observation models, the POMDP

can be transformed to a belief-state MDP, where all the

past information of the agent is summarized using a belief

vector b(s). It represents a probability distribution over S,

from which a Markovian signal can be derived for the

planning of actions. The initial state of the system is drawn

from the initial belief b0, which is typically included in the

POMDP problem formulation. Every time the action a is

taken by the agent and the observation o is obtained, the

agent belief is updated by Bayes’ rule; for the discrete case:

bo

a(s′) =
p(o|s′, a)

p(o|a, b)

∑

s∈S

p(s′|s, a)b(s), (1)

where p(o|a, b) =
∑

s′∈S
p(o|s′, a)

∑

s∈S
p(s′|s, a)b(s) is

a normalizing constant.

In POMDP literature, a plan is called a policy π(b) and

maps beliefs to actions. A policy π can be characterized by

a value function V π which is defined as the expected future

discounted reward V π(b) the agent can gather by following

π starting from belief b:

V π(b) = Eπ

[

h
∑

t=0

γtr(bt, π(bt))
∣

∣

∣
b0 = b

]

, (2)

where r(bt, π(bt)) =
∑

s∈S
r(s, π(bt))bt(s) following the

POMDP model as defined before, h is the planning horizon,

and γ is a discount rate, 0 ≤ γ < 1.

The process of solving POMDPs optimally is hard, and

thus algorithms that compute approximate solutions are

used. Recent years have seen much progress in approximate

POMDP solving which can be used in this paper, see for

instance [19], [13]. Furthermore, if a value function has

been computed off-line, the on-line execution of the policy

it implements is computationally cheap.
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IV. AUCTION PROTOCOL

The purpose of the auction protocol is to determine

the POMDP policy that each agent must execute. This is

equivalent, in the context of this paper, to the assignment

of tasks to agents. The task generation process is assumed

to be exogenous to the multirobot system. The execution of

some tasks can be triggered by specific events, while others

can be scheduled to be executed periodically, such as battery

recharge operations. The tasks could also be executed upon

request by another agent or the auctioneer. As an example,

the auctioneer may directly receive event messages and

locally favor the assignment of some tasks over others. The

priority of each task is obtained from the specific application.

The tasks arrive at the auctioneer at any time instant, but

are assigned in a bulk manner at regular intervals. It is also

possible to start an auction round on demand, if for instance

a high-priority task is received. The auctioneer, in order

to solve the task assignment problem, is only required to

know the expected discounted reward values of the POMDP

task models from each agent. The auction protocol is then

designed to obtain this information.

Definition 1 (Auction Protocol): The auction protocol is

as follows:

1) All of the tasks are announced to the agents by the

auctioneer.

2) The agents reply with their current expected discount

reward V π(b) for each task. Hence, this is obtained from

the solution V π for the task’s POMDP model, and the

agent’s current belief b.

3) The assignment solution is computed by the auctioneer

and announced to the agents.

The main advantage of this protocol is that the auctioneer

is not required to know the number of available agents or

their beliefs. The approach is also robust to the failure of

agents or temporary network shortages because if an agent

does not offer bids, the others are still assigned tasks. Finally,

the coordination of the agents for the execution of tasks is

implicitly obtained through the auction protocol.

The computation of the assignment solution is performed

efficiently in polynomial time using the Hungarian algo-

rithm [2]. The bandwidth requirements are also low since

only the current expected discounted reward must be reported

to the auctioneer. It was shown in [7] that the protocol has

low polynomial computational and communication complex-

ities in the number of agents and tasks.

As a result, this approach can be applied to small and

medium sized problems with tens or hundreds of agents and

tasks. In contrast, the auction protocols described in [4] often

exhibit exponential complexity. The reason is that in these

protocols, agents bid on bundles of tasks instead of the single

task case of our protocol.

Although the computational complexity is low, the solu-

tion is also sub-optimal because the arrival order of tasks

is not known. As was shown in [12], if the arrival order is

known for small bundles of tasks, the assignment solution

quality is improved without significant increases on the

computational and communication costs. Nevertheless the

problem of computing the bid values is not considered

in [12], the arrival order of the tasks is known in advance

and the agents’ state is known accurately. This is not the

case in this paper, where the arrival order of tasks is not

known and the agents only know their current state with

some uncertainty.

V. POMDPS FOR BID ESTIMATION

In this work we assume that the agents do not share

any information among them. The main reason is to reduce

the network bandwidth and the computational requirements,

since the POMDP instances are smaller. It is known that

relying on perfect communication can reduce the decentral-

ized planning problem to a centralized one [17], but the size

of the centralized problem still grows exponentially in the

number of agents.

Another reason is that in general the agents are not

required to coordinate in order to execute tasks. Conse-

quently, their POMDP models in general do not need to

account for the beliefs and actions of other agents although it

could improve overall team performance. For instance, if the

planned paths of two mobile robots intersect, the collision

could be avoided by sharing their beliefs. For this reason, it is

assumed that robots have built-in low-level safety controllers.

Since multiple independent decision makers are present

in the environment, the problem could be modeled as a

decentralized POMDP (Dec-POMDP) [15]. However, given

their very high complexity class, current algorithms do not

scale to the types of applications we are focusing on. In our

case, the coordination of the agents is obtained implicitly

through the auction protocol and the auctioneer; coordination

is considered on the level of task assignments vs. the level

of individual agent actions, as is common in Dec-POMDPs.

The reward model is equal for all tasks, where the robot

receives a single reward of 10 when it reaches the goal state.

Afterwards, it is transferred to an absorbing state, in which

it receives a zero reward. It leaves the absorbing state only

when a new task is assigned. The value functions of all

robots are normalized to [0, 10] in order to allow the fitness

of different robots to be compared. The absorbing state is

required because otherwise the POMDP values would keep

on rising after the robot would reach the goal state. This

is undesirable for our approach, since we compare values

between different POMDPs of the robots.

Although the value functions of the POMDPs are nor-

malized, it is possible to define priorities for the tasks by

multiplying each of the bid values by the respective task

priority. Since the bid values are normalized, the result is

that each bid is weighted by the respective task priority.

VI. ACTIVE SURVEILLANCE SYSTEM

The presented approach is applied, in simulation, to an

active surveillance system. It is composed by a set of mobile

robots, an auctioneer and a network of cameras. These are

capable of detecting, with some uncertainty, the location in

the environment of robots and humans. Upon the detection of
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Fig. 2. Topological map of the active surveillance environment.

TABLE I

STATE VARIABLES USED BY DIFFERENT TASKS.

Task State variables

Patrol SouthWest Robot position
Patrol NorthWest Robot position
Patrol NorthEast Robot position
Patrol SouthEast Robot position
Meet Person Robot position, person position
Identify Person Robot position, person position
Recharge Robot position, battery level

a human by the cameras, the auctioneer is notified. Note that

here we present a simplified scenario, which can be extended

easily to include more events (with different priorities), for

instance the detection of fires.

The robots have available on-board cameras, which can

recognize humans, also with some uncertainty. Each robot

can obtain its localization in the environment directly from

the camera network. The on-board power supply of the

robots is limited and must be recharged after some time has

elapsed. The tasks the mobile robots can execute are thus: (i)

identifying humans, (ii) meeting a person, (iii) patrolling the

environment and (iv) recharging their on-board batteries. The

first two tasks are assigned only when a person was detected.

In these tasks the robot must approach the desired location

and use the on-board sensors either to identify a human or

meet it and engage in human-robot interaction. The last two

task types are assigned at regular intervals and have a low

priority with respect to the first two. In this manner, if no

events occur mobile robots can conduct patrols or recharge

their batteries. The tasks have different priorities, for instance

identifying humans is more important than the execution of

a patrol.

A set of four robots were simulated (as a unicycle), three

modeled after a Pioneer 3-AT robot (indicated by Pioneer

A, B and C), and one after an ATRVJr robot (“AtrvJr”).

The difference between the Pioneers and the AtrvJr is their

maximum speed, which is respectively 0.4m

s
and 1.0m

s
. In

addition, Pioneer A has a camera with a higher resolution

than those of other robots. Consequently, this robot can

observe a given location from a greater distance than the

others.

A topological map of the active surveillance environment
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Fig. 3. Comparing POMDP task auctions to a centralized POMDP solution.

is represented in Figure 2. It was obtained from the test site

of the URUS project [18], at the UPC campus in Barcelona,

Spain. The overall dimensions of the map are 100 by 100

meters and it was partitioned in smaller regions with their

centers represented in the map.

Each of the tasks mentioned in the previous section have

been modeled and approximately solved a POMDP, using

Symbolic Perseus [16]. The POMDP models are represented

using two-stage dynamic Bayesian networks, and the soft-

ware allows for exploiting (context-specific) independence

between state variables. Table I lists the different state

variables for each task. We assume the surveillance cameras

can localize each robot, but with a particular uncertainty.

Also each robot’s movement actions are subject to noise.

The movement actions of the robots are subject to noise and

each movement is penalized with a negative reward of −0.1.

The discount rate γ is set to 0.95.

A. POMDP Auction vs. Centralized POMDP

To show the advantage of auctioning individual POMDP

tasks over executing a joint POMDP policy in a distributed

way, we compared the performance in a scenario with two

robots and two patrol tasks. A model was created for the

joint task with state variables and observation models for

each robot. The reward is the sum of the reward models

for the individual tasks. The actions are now all possible

combinations of the individual robot actions.

The centralized model was solved using the same parame-

ters of Symbolic Perseus, for 50 iterations. The performance

is compared in Figure 3 with the summed performance of

the two individual tasks, denoted by “POMDP Task auction”.

The control quality of each value function is determined

empirically by simulating the respective policy a 1, 000
times. Figure 3(a) plots the mean of the control quality for

both solutions, as a function of the computation time. Both

solutions reach the same control quality, but the centralized

solution takes much longer to compute. In Figure 3(b) the

complexity of the value functions is plotted, measured by

the number of nodes in Symbolic Perseus algebraic decision

diagram representation. Since the centralized model is larger,

the complexity is an order of magnitude higher than the two

individual POMDP tasks combined.

In addition to the much higher computational cost, the

centralized model requires the robots to synchronize their
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(a) Four Patrol tasks.
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(b) A Patrol, a Meet person and a Recharge task. Two other Patrols were assigned but not shown.
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(c) An Identify person task and a Patrol task.

Fig. 4. For several experiments with different sets of tasks to be assigned, we plot the POMDP value of each robot’s belief over time, using the its value
function for each task.

view of the state at each time step by sharing their local

observations. This tightly coupled implementation requires

a network with a low latency and high quality of service.

On the other hand, the auction protocol has a much lower

degree of coupling and does not require a high-quality

communication network. Of course, for tasks that require

tight coordination, e.g., two robots carrying an object jointly,

a centralized solution can be hard to avoid.

B. POMDP Auction Simulation Results

In a first experiment, all of the robots were initially

positioned in the center node, located at (46, 45). The robots

are requested four patrol tasks, one to each corner of the map.

The value functions of each robot over time are plotted in

Figure 4(a). They are updated as the state beliefs of the robots

change while moving through the environment. An hysteresis

mechanism prevented the assignment solution from changing

too often. Since it is the fastest robot, the AtrvJr robot has

initially the highest value for any task. It is initially assigned

the “Patrol SouthEast” task, while Pioneer A gets “Patrol

NorthWest”, Pioneer B “Patrol NorthEast”, and Pioneer C

“Patrol SouthWest”. The task “Patrol NorthWest” is not

initially assigned to the AtrvJr because the assignment is

determined by maximizing the sum of all bid values and not

the individual bids.

In the second experiment, three of the robots started in

the central node and the other at (46, 75). Initially, the three

patrol tasks are requested but a recharge task is also requested

when a robots has a low battery level. Upon the detection of

a person, a “Meet Person” task is requested. The obtained

value functions of the robots plotted in Figure 4(b). Since the

robots start with a full battery, all patrol tasks are assigned.

At about 50 time units, a person was detected at (46, 90)
and the “Meet Person” task was requested. Since the other

tasks have a lower priority, Pioneer A abandoned its patrol

task and was assigned to meet the person. At about 100 time

units, the AtrvJr robot while moving to the patrol task goal
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passed in the node containing the battery recharge station. It

was then assigned the recharge task because the battery level

was low and destination of the patrol task was still far.

In the last experiment, robots Pioneer A and B were

initially placed at (2.5, 17.5) and (87.5, 17.5) respectively.

Their value functions are plotted in Figure 4(c). The robots

were initially requested two patrols tasks, one for each

of their current locations. As a result, the robots did not

move. At about 40 time units, a person was detected at

node (46, 17.5) and an “Identify Person’ task was requested.

For this task, unlike the meet person, the robot must only

approach the person close enough to take a clear picture.

Although A is further away from the person, it has a camera

with a higher resolution. For this reason it is assigned the

identify person task instead of Pioneer B.

From these experiments it is visible that the auction

protocol enabled the robots to coordinate their task execution

without communication of their state or beliefs. The system

was also able to autonomously respond to detected events

that occurred after the initial task assignment.

VII. CONCLUSIONS

We presented an approach to the assignment and execution

of tasks in a multirobot system. The motivation was to illus-

trate the benefits for multirobot systems of mixing auction

protocols with controllers based on value functions. Auction

protocols enable the coordination of multiple agents in low

quality networks and provide robustness to individual agent

failures. In this paper, we proposed a more principled way

of estimating the bid values of each agent, in lieu of the

heuristic and often ad-hoc approaches in common use.

The controllers for the execution of tasks were defined

using the POMDP framework. If suitable stochastic models

of the environment and the agent observations are available,

the synthesis problem can be formulated in a straightforward

mathematical manner. The combination of the two frame-

works produced a solution where the individual drawbacks

are minimized. From the synthesis of controllers using

POMDP task models, the values to bid are naturally obtained

from the respective expected discounted rewards, and the

agent’s belief is already factored into this value. As a result,

it is not necessary to invest additional time in the design of

bid functions for each of the agents’ tasks. Furthermore, as

they are derived directly from the task controller, they are

likely to reflect better true bid values, compared to commonly

used heuristic bid functions.

The use of an auction enabled the use of smaller POMDP

models than otherwise would be used if all agents and all

tasks are considered simultaneously. This is because the

agents coordination is implied in the use of the auction proto-

col and the auctioneer. Therefore, in the controller synthesis

problem the other agents and tasks can be abstracted away.

This is at the cost of optimality, since in practice the agents

can interfere in each others’ task execution.

A direction of future research is the synthesis of a con-

troller for the auctioneer to determine the task priorities. The

purpose is to maximize some performance criteria, such as

the minimum assignment delay for some task types. The

controller can also be used to determine which tasks to

trade with other auctioneers. Finally, we plan to extend our

simulations to include more events, and we intend to apply

our techniques in a real-world setup [1].
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