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Abstract— We propose a more robust robot programming
by demonstration system planner that produces a reproduction
path which satisfies statistical constraints derived from demon-
stration trajectories and avoids obstacles given the freedom
in those constraints. To determine the statistical constraints a
Gaussian Mixture Model is fitted to demonstration trajecto-
ries. These demonstrations are recorded through kinesthetic
teaching of a redundant manipulator. The GMM models the
likelihood of configurations given time. The planner is based
on Rapidly-exploring Random Tree search with the search tree
kept within the statistical model. Collision avoidance is included
by not allowing the tree to grow into obstacles. The system is
designed to act as a backup for a faster reactive planner that
may fall into a local minimum.

To illustrate its performance an experiment is conducted
where the system is taught to open a Pelican case using a
Barrett Whole Arm Manipulator (WAM). During reproduction
an obstacle is placed nearby the case to partially obstruct
the manipulator. The planner successfully avoided this obstacle
without drifting from the trend in the demonstrations.

I. INTRODUCTION

The field of robot programming by demonstration, or im-
itation, is concerned with the efficient transfer of behaviour
from a human demonstrator to an observing robot. This
approach promises to greatly minimize the amount of expert
domain knowledge a user needs to operate a robot. It also
provides a more natural interface to the system and should
reduce programming effort. For an overview of the field see
[1].

Imitation can be conducted at a number of levels of
abstraction. In higher level approaches [2] [3] the focus is
organization of behaviour primitives. This paper addresses
lower, trajectory level imitation where the concern is on how
to reproduce a behaviour trajectory given a set of demonstra-
tion recordings. The approach assumes that the user is trying
to demonstrate a behaviour as consistently as possible. Large
variation in some portion of the demonstrations is assumed
to suggest some liberty when performing the task.

In much of the literature on trajectory imitation [4] [5] [6]
[7], the focus has been on producing a statistically likely or
generally successful path where collision avoidance is largely
ignored. Our application, a robotic lab technician, requires a
different emphasis. With a constant threat of collision and
a broad variety of different situations in which imitation
must be conducted we require a robust scheme. This is
especially true in a production line where a manufacturer
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cannot afford to have a robot get ‘stuck’. A robust scheme
would require a search for some reproduction trajectory
that not only satisfies the statistical constraints determined
through some demonstration characterization phase, but also
avoids obstacles and joint limits. Obstacles can, of course,
contact any part of the robot.

Path planning, where the emphasis is on finding some safe
path from a start to a destination, has often been conducted
using the Rapidly exploring Random Tree (RRT) concept [8].
The planner’s requirements for statistical completeness are
very undemanding. This planner was chosen for adaptation
into the present work over alternative algorithms such as
the probabilistic roadmap or randomized potential fields
planners because it is straight-forward to include complicated
manipulator dynamics and collision information into the
algorithm. Plant dynamics are not considered in this paper,
but will be added in future efforts.

The RRT algorithm can be explained briefly as follows.
A tree is initialized with the root set at the required start
position. Subgoals are randomly chosen uniformly across
the search space. For each subgoal, the nearest tree node is
determined and a child node is instantiated for it by moving
(through simulation of the plant model) from the selected
node a short distance toward the subgoal. If a collision occurs
enroute then the growth is halted and the child is created just
short of collision. When a node approaches the goal and a
path exists from it to the goal, the path from this node to
the tree root is a solution. Because the method is statistically
complete it will find a path to a goal assuming one exists.

This paper proposes an RRT-based planning algorithm
which attempts to find some configuration space path that
avoids collision and imitates a behaviour by remaining within
statistically determined constraints. It can be used in parallel
with a faster, reactive planner as a backup measure in case
the reactive planner is unable to find a solution. The platform
chosen to illustrate these ideas is a redundant manipulator,
a Barrett WAM, with seven degrees of freedom (DOF). The
additional free DOF can be exploited to find some collision
free path. Optimization of the path with respect to some time
or smoothness metric is left for future work.

Demonstration data is collected through kinesthetic teach-
ing as in [4]. The WAM simply compensates for gravity
and allows the user to move it through some motion. The
grasper, a Barrett Hand, can be adjusted in the same way at
any point. Alternative data collection schemes used in related
works include recording demonstrator posture using marker-
less colour tracking algorithms [9] or marker based vision
schemes [7]. The kinesthetic approach was chosen because
as the user illustrates a motion to the robot he/she is made
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fully aware of the robot’s mechanical limitations. This also
completely circumvents the correspondance problem which
is not a focus of the work.

An imitation path planner requires some statistical model
of a taught behaviour. The statistical constraint used in the
work closely resembles the method discussed in [4] [10].
A Gaussian mixture model (GMM) is fitted over a set of
demonstration trajectories using the expectation maximiza-
tion algorithm. The GMM is used to model the likelihood
of a trajectory passing through a portion of space at a
certain time when the behaviour is being executed. A brief
description will be given in section 4, but for an indepth
understanding the reader should consult [10].

The structure of the paper is as follows. Section 2 will
discuss related work and Section 3 will present the data col-
lection method. Section 4 will briefly describe the approach
used to statistically characterize the demonstrations trajec-
tory. The proposed planner is described in detail in Section
5 with experimental results illustrating its performance in
Section 6. Section 7 gives conclusions and future work.

II. RELATED WORK

A work with a similar goal is described in [9]. In the work,
statistical characterization is conducted in a manner similar
to the approach in [4], but reproduction is performed with
collision avoidance in mind. Their proposed reproduction
method relies on gradient descent (or Levenberg-Marquardt)
to optimize a path to minimize a cost function which includes
a collision term. It is based on previous work in [11]. The
approach is designed to be fast. Our emphasis is different.
Because such methods cannot eventually guarantee a path
if one is possible, in other words they are not statistically
complete, we instead chose to use a robust general planner
based on the RRT scheme.

The Dynamic Movement Primitive (DMP) [6] based sys-
tem described in [12] adjusts parameters of a controlling
differential equation to avoid obstacles whilst mimicking the
behaviour of a tutor. It is also essentially reactive in its
collision avoidance and no general search is conducted to
guarantee a feasible path. Their priority was also speed.

The imitation scheme in [7] attempts to detect collision
during simulation of the reproduction path. If detected,
the system simply halts. In [13], a method for planning
the grasping of an object is presented which uses models
extracted from demonstrations. The work applies to grasping
and not to general interaction situations like opening a case.

Outside imitation, planning with manifold or volume con-
staints has been addressed using an RRT [14]. Their planner
requires a manifold constraint to be specified beforehand
so that the RRT variant can bridge start and goal positions
through the obstacle.

III. DATA COLLECTION

As discussed, demonstrations are recorded through
kinesthic teaching. A user is asked to demonstrate the task
as accurately as necessary a number of times. The end-
effector position and orientation are regularly logged with a

timestamp after contact is made with the environment. Thus
a trajectory point is a 7 dimensional vector with the first
value being time, the next three being position and the last
three, orientation in spin-axis form (the axis of rotation times
angle of rotation required to transform the base frame to the
end-effector frame). The elbow position is ignored. For the
work presented in the paper, the manipulator interacts with
a single object. The frame of this single object is used as
the base frame in which to process all the recordings. This
is done because that frame is the one of importance to the
user when he/she manipulates the object.

To localize the object, small retroreflectors are attached
randomly on its surface. A Riegl 3D imaging laser scanner
is used to produce a point cloud of the robot’s immediate
vicinity. The points’ return intensities are thresholded for
particularly high values and a clustering algorithm is applied
to the result to identify retroreflector centers and orientation.
The Iterated Closest Point (ICP) algorithm [15] is used
to align two recordings’ retroreflector centers to bring the
trajectories into a common frame.

IV. DEMONSTRATION STATISTICAL
CHARACTERIZATION

To ensure that the trajectories are in temporal agreement,
ie. that similar behavioural nuances occur at the same time,
we apply Dynamic Time Warping (DTW) [16] as in [9]. The
rest of the characterization approach used in the proposed
system is an approximation of the approach discussed in [4].

All points from the set of warped demonstration trajec-
tories are modelled as sample points independently drawn
from a Gaussian Mixture Model (GMM) given by

p(x̄) =
K∑

k=1

πkn(x̄|µ̄k,Σk) (1)

where K is the number of components and n(x̄|µ̄k,Σk) is
the normal density with covariance matrix Σk and mean
µ̄k. The GMM parameters are learnt through the use of
the Expectation-Maximization (EM) [17] algorithm. The
EM algorithm is seeded with an initial estimate of density
centers calculated with the k-means algorithm. This method
seeks to wrap the data in a statistically defined corridor
which captures the allowances available during reproduction.
Trajectory segments of low required accuracy have mixture
components of large variance and high accuracy segments
have low variance.

To determine the number of mixture components to use,
the Bayesian Information Criterion (BIC) is employed. To do
this, a number of mixture models are estimated with different
numbers of components. The range used is from 1 to 30
components. The estimation is calculated roughly using k-
means. For an explanation of the advantages of this approach
see [9]. The BIC metric is calculated for every model using

BIC = −2L+ P ln(N) (2)
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where L is the likelihood of the data given by

L =
N∑

i=1

log
( K∑

k=1

πkn(x̄|µ̄k,Σk)
)

(3)

and P is

P = (K − 1) +K
(
D +

1
2
D(D + 1)

)
. (4)

N is the number of sample points and D is the dimension
of the data. The model with the lowest BIC is used.

A typical result is a set of densities strung together that
run along the mean of the trajectories. Generally, patches
of low point probability can appear between densities along
the mean curve. For the reproduction planner discussed
later we require sequential mixture components’ regions of
higher likelihood to overlap along the mean trajectory so
that no ‘gaps’ exist. This is because the planner uses a
potential reproduction path point’s likelihood in the mixture
model to decide whether or not to ignore it. Thus the
‘gaps’ would present artificial boundaries. Another problem
is that, occasionally, multiple parallel (with overlapping time)
mixture components appear.

To correct these issues an approximation of the result is
created. The mixture components are sorted by mean time.
All the other dimensions of each are marginalized away to
leave just densities on time. For the planner presented in this
paper an actual GMM is not required. All that is necessary is
a sequential set of Gaussians that envelope sections of space
and time to form a statistical corridor. The marginalized
result of the components can be used to determine when,
in time, that component is dominant. The equation

tmid =
µt,iσt,i+1 + µt,i+1σt,i

σt,i + σt,i+1
(5)

can be used to determine the transistion point between which
two sequential mixture components switch dominance. It is
the average of the means weighted by standard deviation.

These transistions define a series of intervals which can be
used to segment the warped trajectories into sets. Reestimat-
ing the densities by using the elements of a component’s set
plus some overlap of the previous and future sets produces
the series of Gaussian densities used by the planner. These
densities are 6 DOF with time left out because the dynamics
of a behaviour are not considered in this paper. The process
is illustrated in Fig. 1 and Fig. 2 on 2D synthetic data. An
overlap of 0.05 was used on either side of each interval to
produce the example. Note that in Fig. 2 that the multiple
modes have been flattened in two sequential densities. The
mixture components also overlap more than in the EM case.

V. THE REPRODUCTION PLANNER

A. The RRT

Algorithm 1 shows the reproduction RRT process. In
the code, N represents the model and the symbol N(i)
represents mixture component i. The other symbols will
be defined throughout the explanation. Initially a tree T is
initialized with a root node set at some starting configuration.

Fig. 1. A normal EM calculated GMM over a set of trajectories. Red
ellipses represent 2x standard deviation areas of the mixture components.
The data is in blue. The green bars represent intervals calculated using
Equation 5.

Fig. 2. The approximated string of Gaussians produced as a result of
characterization. Red ellipses represent 2x standard deviation areas of the
components.

A standard RRT chooses random subgoals around some
fixed goal point. In the proposed algorithm, the subgoals
are chosen around the mixture components of the GMM
with the statistical variance of those mixture components.
This approach will not upset the statistical completeness
of the RRT when taking into consideration the statistical
constraints. To see why this is the case consider the portion
of space outside the statistical constraints to be a single
obstacle. Subgoals are still chosen randomly within the
unobstructed space, but will lead in front of the tree.

The variable c is the current sample mixture component
number. After one iteration of the algorithm it is incremented
unless it is equal to the number of the latest mixture
component contacted by the tree (m) in which case it is
set to zero (the number of the first component).

The random point chosen, x̄rand, is in the form of a 6
DOF vector consisting of position and orientation of the
end-effector. If the random point is outside two standard
deviations of the mixture component then it is discarded
and another is selected. This is to prevent highly unlikely
points from pulling the planner away from a reasonable
result. If the planner has to operate more conservatively, then
this check can be made more intolerant. A random inverse
kinematic (IK) solution, q̄rand, is chosen for the sample. This
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solution must not collide with the environment and must
not violate any manipulator joint constraints. The function
‘ValidConfiguration’ should check this. If there is no valid
IK solution another random subgoal is selected.

Algorithm 1 ReproductionRRT(q̄start, q̄end, N )
1: T ← (q̄start, 0)
2: m← 1
3: c← 0
4: while TimeRemaining() do
5: x̄rand ← RandomPoint(N(c))
6: if Within2SD(x̄rand, N(c)) then
7: q̄rand ← RandomIKSolution(x̄rand)
8: if ValidConfiguration(q̄rand) then
9: q̄nearest ← NearestNeighbor(T , q̄rand, c)

10: q̄step ← Extend(q̄nearest, q̄rand)
11: x̄step ← ForwardKinematics(q̄step), N(c+ 1)
12: if Within2SD(x̄step) then
13: T.AddNode(q̄step, c+ 1)
14: if c+ 1 > m then
15: m← c+ 1
16: if m = f then
17: P ← ExtractPathFromChild(q̄step)
18: return P
19: end if
20: end if
21: else
22: T.AddNode(q̄step, c)
23: end if
24: c← c+ 1
25: if c ≥ m then
26: c← 0
27: end if
28: end if
29: end if
30: end while
31: return failed

The standard RRT algorithm then searches for the closest
node in the tree from which to grow. The proposed algorithm
differs in that it selects the closest node which has met a
number of criteria (this is done in the ‘NearestNeighbour’
function). The first is a temporal criterion. Recall that the
mixture components are sorted in time. We require a node
to be pulled to a mixture component k only if it has entered
all mixture components up to and including k. This is the
first criterion. It is enforced by associating every node with
a score equal to the number of the latest mixture model it
has visited. The root (line 1) has a score of 0.

The second criterion is that the node is within two standard
deviations of its current, associated mixture component (the
latest mixture component through which it has passed) or
the subgoal component. Again, as with the check on how
unlikely a random sample (x̄rand) is, the planner can be
made more conservative by adjusting this criterion so that a
point must be within, say, one standard deviation.

As in the standard RRT a new node is added to the tree by

growing the selected node a short distance toward the subgoal
configuration (done in the ‘Extend’ function). To move the
manipulator a short distance toward qrand a direction vector
is first constructed using

qdir = qstep − qrand/|qstep − qrand| (6)

. This vector multiplied by a small magnitude is added
to qstep to produce the new node configuration. There are
alternative interpolation schemes. An example is calculating
the Jacobian transpose or pseudoinverse and using them to
determine qdir so that motion of the end-effector is approx-
imately directly toward the subgoal. The simpler method of
Equation 6 produces satisfactory results without much com-
putation penalty. To test for collision with the environment,
configurations are sampled regularly along the interpolated
route and tested using some mesh-to-mesh collision detection
package.

If this growth enters the current mixture component (la-
belled c) then the node is associated with that component
(tested on line 11). This node is then allowed to grow into
the next mixture component. If this next mixture component
number is greater than m, m is incremented.

Having m grow as mixture component waypoints are
reached prevents subgoals from being selected from mixture
components that cannot currently be reached. The algorithm
stopping condition is when the tree reaches the neighbour-
hood of the final mixture component (labelled f ) or when
the maximum allowed search time is exceeded.

B. Path Refinement

The configuration space path generated by the reproduc-
tion RRT is rough and may contain substantial redundant
backstepping. To refine the path for a more visually ap-
pealling, faster (fewer waypoints) solution Algorithm 2 is
used. The algorithm removes redundant waypoints in the
plan. P is the path provide by Algorithm 1 and M is the
GMM.

The variable C is used to ensure that the algorithm runs
until there are no changes to the path. Function ‘Valid-
Motion’ interpolates between the path nodes provided to it
using the principle in Equation 6 and checks for collisions.
The following if statement (line 10) checks that the average
likelihood (calculated in function ‘AvgLikelihood’) of the
path that skips node i + 1 is not lower than the original
section of the path. This likelihood is, of course, determined
using the model, M , discussed in Section 4.

The path refinement algorithm runs through the plan and
checks whether any step between two points can be removed
without having the manipulator collide or reducing the path
overall likelihood. If so, this point is removed.

VI. EXPERIMENT

The experimental setup is show in Fig. 4. A Barrett WAM
was clamped to an office bench beside a Pelican camera case.
The task of the experiment is to teach the system to open
the case. Two meters from the Barrett a Riegl 3D imaging
laser scanner was bolted into a tripod and used to capture
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Fig. 3. The execution of a plan which involves avoiding a close obstacle.

Algorithm 2 PathRefine(P , M )
1: C ← 1
2: while C > 0 do
3: C ← 0
4: i← 1
5: while (i ≤ Length(P ) −2) and (C = 0) do
6: if ValidMotion(P (i), P (i+ 2)) then
7: L1 = AvgLikelihood(Motion(P (i), P (i+2), M ))
8: L2 = AvgLikelihood(Motion(P (i), P (i+1), M ))
9: L3 = AvgLikelihood(Motion(P (i+ 1), P (i+ 2),

M ))
10: if L1 ≥ (L2+L3)

2 then
11: RemoveFromPath(P , i+ 1)
12: C ← 1
13: end if
14: end if
15: i← i+ 1
16: end while
17: end while
18: return P

an environment mesh around the case. Its position relative
to the Barrett was carefully hand calibrated. As mentioned
earlier, the scanner point cloud was also used to determine
the pose of the case. The retroreflectors used as fiducials are
the white discs pasted to the front of the case.

An obstacle, a flat bar, is put in front of the case to obstruct
the Barrett during reproduction. When demonstrations are
recorded the obstacle is removed. The attached video shows
the recordings and a reproduction solution (at 2x speed).
Planning is conducted in a in-house simulation package
which is similar to OpenRAVE [18]. The point cloud of the
environment provided by the scanner is used to produce a
mesh. A mesh of the WAM for a given set of joint angles
was generated using data from OpenRAVE. A rendition of
the meshes and laser scanner results used is shown in Fig.
5. The orange bulbs on the environment mesh represent
retroreflectors on the case. To determine collision between
these two meshes during planning the package OPCODE
[19] was used.

To find IK solutions for the Barrett there are a number
of approaches. Slower methods include Jacobian-transpose

Fig. 4. The experimental setup.

Fig. 5. A screenshot of the simulator illustrating the meshes used and
typical results from the laser scanner.

and pseudo-inverse iteration, but for planning where this
operation has to be performed many times a fast pseudo-
analytical method is necessary. The program IKFast that is
provided with OpenRAVE provides this.

The plan was produced in two stages. The reproduction
RRT is used to produce a solution from a relatively open
portion of space just away from the case front. A second
basic RRT scheme is used to generate the path from the
manipulator’s home position to the first configuration of the
reproduction path.

Fig. 3 shows a few frames from the produced plan. In the
second frame the manipulator can be seen shifting under
the bar with the elbow trailing safely behind under the
obstacle. The hand will not turn upward and drop the wrist
to make more room because this was never demonstrated to
the system. It will only operate within the envelope of the
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demonstrations.
It should be noted that the gap, under the lid through

which the fingers must slide to open the case, is small.
When the task was demonstrated the user was more precise
in this portion and so the statistical constraints will allow
little variance when planning there.

Fig. 6 shows the statistical constraints and the recorded
trajectories on common axes. The blue bulbs are the mixture
components’ surfaces of two standard deviations plotted over
each other with some transparency. This allows one to see the
resulting corridor through which the planner must traverse.
To obtain a 3D density, which is necessary for plotting, from
the 6D density which is produced by the characterization
stage, the last three orientation variables are marginalized
away. Fig. 7 shows the same statistical constraints with the
planned path.

Fig. 6. The statistical constraints (blue band) and recorded trajectories
(black connected dots).

Fig. 7. The statistical constraints and the planned end-effector path.

VII. CONCLUSIONS AND FUTURE WORK

A planning algorithm was presented which is capable of
satisfying statistical (imitation) constraints, extracted from
demonstrations, and collision avoidance constraints simul-
taneously. The scheme was successfully demonstrated on a
Barrett WAM with the objective of opening a case whilst
avoiding a close obstacle.

In future work, the statistical constraints will be replaced
with a model which captures smoothness, velocity and more
precise directional information so that the planner can tackle
dynamic problems. The current run-time of the algorithm is
in the order of five minutes on a Pentium Dual-Core 1.80Ghz
PC. Optimization to bring this within a few seconds will be
a major focus of future work.
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