
GenoM3: Building middleware-independent robotic components

Anthony Mallet, Cédric Pasteur**, Matthieu Herrb, Séverin Lemaignan, Félix Ingrand*

Abstract— The topic of reusable software in
robotics is now largely addressed. Components based
architectures, where components are independent
units that can be reused accross applications, have
become more popular. As a consequence, a long list
of middlewares and integration tools is available in the
community, often in the form of open-source projects.
However, these projects are generally self contained
with little reuse between them. This paper presents a
software engineering approach that intends to grant
middleware independance to robotic software compo-
nents so that a clear separation of concerns is achieved
between highly reusable algorithmic parts and inte-
gration frameworks. Such a decoupling let middle-
wares be used interchangeably, while fully benefitting
from their specific, individual features. This work has
been integrated into a new version of the open-source
Gen

oM component generator tool: Gen
oM3.

I. Introduction

Autonomous robots have to be endowed with a great
amount of different software pieces. By nature, these
pieces are heterogeneous: not only different kind of tasks
have to be implemented (often categorized as “percep-
tion, decision and action”) but also different pieces have
to fulfil very different timing constraints, ranging from
hard real-time requirements to offline data processing or
loosely coupled reasoning activities. Taking into account
the fact that all the pieces also have to interact with
many of the other pieces, autonomous robots end up to
be what is commonly described as a “complex system”.

In order to master this complexity, component-based
software architectures have proven to be a viable solu-
tion [13], [4]. Software components ease the system build-
ing task by focusing on the software reuse aspect and off-
the-shelf software composition rather than programming
a complete application from scratch. From the developer
point of view, components are usually independent of
each other, encapsulate internal details of algorithms and
are not application specific.

While they are independant units of processing, soft-
ware components are primarily meant to communicate
with other components. One specificity of robotics (com-
pared to traditional software engineering) resides in that
the architecture formed by the set of running components
is intrisically dynamic. This characteristic leads to strong

*The authors are with CNRS ; LAAS ; 7 avenue du colonel
Roche, F-31077 Toulouse, France. CNRS ; LAAS is affiliated with
the Université de Toulouse ; UPS ; INSA ; INP ; ISAE ; F-31077
Toulouse, France. {mallet,matthieu,slemaign,felix}@laas.fr.

**Cédric Pasteur is now with École Polytechnique, 91128
Palaiseau Cedex, France. cedric.pasteur@polytechnique.edu.

requirements in terms of communication, controllabilty
and synchronization of components, a task which is
mostly performed by the software running between the
components: the “robotic middleware”.

Throughout this paper, “middleware” should be un-
derstood as the software that implements the commu-
nication and synchronization primitives and grants to
components the access to the underlying operating sys-
tem primitives and device drivers. Middlewares have a
major influence on components design and are as such an
important part of component-based architectures. The
community now benefits from many developments in
this area [22], [8], [21], [12]. All existing middlewares
are different, provide their own specificity and generally
exhibit unique qualities that make them better suited to
a particular task or context.

Such a long list of available tools (be they explicitely
designed for robotics or not) is a positive fact: it gives
more freedom and leaves the choice of picking the tool
that is best suited to a particular application. Conse-
quently, projects focusing on providing reusable software
that can be integrated in any framework, like GearBox [7]
or robotpkg [19], are progressively emerging: this raises
the issue of selecting the adequate middleware. Since this
selection should be done early in the component design
process, the choice is critical and can only be revoked
at a high cost in terms of software (re)development.
This issue is preeminent when different teams have to
share software that was not initially developed from the
same base choices. Component are, by design, long lived
entities and ideal components should thus not be so
much tied to any middleware; reusing components in
different contexts or catching up with a new middleware
contribution should be straightforward. This is however
generally not possible as of today. While a lot of effort
has been put in making software components modular,
reusable and easily replaceable, the same remains to be
done at the middleware level.

This paper presents a software engineering approach
(and associated tools) that intends to tackle this problem
at a meta-level without making any strong assumption
on middleware software. The main idea is to decouple
the algorithmic core of software components from their
middleware encapsulation so that middlewares can be
used interchangeably, while fully benefitting from their
specific, individual features. This work has been inte-
grated into a new version of the open-source Gen

oM
component generator tool, named Gen

oM3. After briefly
describing alternative approaches, Section II presents the

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4627

general approach implemented in Gen
oM3. Section III

details important aspect of the Gen
oM component model

and Section IV explains the component description lan-
guage that grants the middleware independance to the
component itself. Finally, Section V illustrates the paper
with two concrete use cases that are under development.

II. Middleware-Independant Components

A. Background
One common solution to overcome the software inde-

pendance issue is to build abstraction layers on top of
the software expected to be replaceable (see Figure 1).
However, building abstration layers is often cumbersome
and can lead to performance loss. A more elegant solution
is normalization (or standardization). For instance, the
POSIX norm has, to a large extent, granted the hardware
and operating system independance to regular software.
However, when it comes to robotics middleware stan-
dardization, the state of the art is quite different.

The most mature contributions to the normalization
of middlewares and components are OMG CORBA[5]
and CORBA Component Model (CCM) [23]. These are
not specifically robotics-oriented, though, and miss some
important points that have to be addressed in robots
architectures. First, the Request Broking architecture
might not fit well in a dataflow oriented context. Then,
CORBA does not provide, per se, tools to build dynamic
architectures with programable control and data flows.
It does not either provide design guarantees that a com-
ponent fits within a given architecture model (like the
layered architecture of T-Rex[10], amongst many others,
where decision layer controls functional components).
Finally, most of the existing implementations simply
forget about real-time computing or are not lightweight
as one would expect [9]. A new contribution was brought
recently by the OMG RTC (Robotic Technology Com-
ponent) [14] that provides a robotic-oriented component
model compatible with CCM. OpenRTM-aist [15] is the
freely available implementation prototype, developed by
the AIST and based on CORBA.

Interestingly, many robotic middlewares are based on
alternative technologies that are generally not normal-
ized (or are custom extensions to standards). This is for
instance the case of major contributions like ROS [20],
Player [17] or Orocos [16] whose architecture fall into the
case of Figure 1a. This suggests that current standards
are not satisfactory to the robotics community. Indeed,
normalization is usually achieved only for mastered and
well understood issues — at the cost of taking the least
common denominator of technologies encompassed by
the norm — and robotic middleware might not be mature
enough to pass this step. The cost required for switching
from a middleware to another might also be an additional
drawback to the emergence of a standard.

An alternative solution is middleware interoperability.
It does not solve all the issues (a single component
is still tied to one middleware) but components built

Component

Library

Middleware

OS

Component

Library

Abstraction

Middleware

OS

Component

Library

Normalized
Middleware

OS

a. b. c.

Fig. 1. a. Classical component architecture: a library uses a
middleware by making direct calls to the middleware functions. The
component is tied to the middleware in question. b. Abstraction: the
middleware can be wrapped with an abstraction layer. Abstraction
grants middleware independance at the cost of an extra layer. c.
Normalization: middleware interface can be normalized. All middle-
wares have to conform to the norm for granting true middleware
independance; which is not easily achieved. Often, the norm will
also be the least common denominator of available functionalities.

with different middlewares are able to communicate with
each other through interoperable middlewares, solving
the issue of using off-the-shelf components for building
a custom application. This remains however a cum-
bersome process, as for abstraction layers, since this
involves bridging components, extra conversions or data
(re)encoding. While this can be acceptable if only two
middlewares are involved, this is hardly tractable in
pratice if all the components of an application are built
from different middlewares. Only CORBA achieved a real
interoperability, thanks to normalization, and this is of
course conditioned by individual implementations fully
respecting the norm. Beyond CORBA, interoperability
is often a matter of transients and ad hoc developments.

B. GenoM3: General Approach

In order to overcome the aforementioned issues and
grant true middleware independance to robotics compo-
nents, we propose the component architecture described
on Figure 2a. The algorithmic core (the “library” on
Figure 2) is made independant of middleware by using
glue software linking the two pieces together. Instead
of making direct calls to the middleware, component
functions in the library simply have to formally describe
the input or output objects they use (Section IV). The
glue code is responsible for making the necessary calls to
the middleware and passing (or retrieving) the desired
objects to (or from) the library’s functions. The imme-
diate benefit of such an architecture is that the problem
of middleware independance is deferred to the sole glue
software and a clear separation of concerns between
the algorithmic core and the middleware is achieved.
Additionally, we propose to automatically generate the
glue code so that if another middleware is to be used,
the latter can be easily replaced (Figure 2b).

This approach has been implemented as an evolution of
Gen

oM [6]. Historically, Gen
oM was generating the code of

components from a single, generic source code intimately
tied with its companion middleware “pocolibs” [18]. The

4628

Component

Component “glue”

LibraryMiddleware

OS

Component
Formal
DescriptionGenerated code

LibraryMiddleware

OS

a. b.

Fig. 2. a. A component architecture realizing a clear separation
of concerns between a middleware and a library: glue code grants
the decoupling. b. The GenoM3 tool generates the glue code from
a component formal description and a skeleton (not shown on the
figure) suited to the middleware.

major evolution in this version 3 resides in the definition
of “Component Templates”.

A component template is a generic skeleton, organized
as a set of source files. It implements the internals of
a component with classical primitives such as threads or
semaphores and takes care of the communication aspects
such as remote procedure call or data marshalling. In
short, a template contains all the source code that is
not part of the algorithmic core of any specific compo-
nent. Thus, only one template is required for a given
middleware: it will be reused among all components of
an application.

Yet, developing different templates offers an opportu-
nity to switch between alternative components architec-
tures (for instance, a threaded versus a non-threaded im-
plementation) or developing different component models.
Testing such alternative architecture design is a matter
of recompiling existing components with a new template.
This approach is more versatile than using a standard
middleware API since virtually any strategy can be
implemented in the templates while remaining transpar-
ent to the users implementing the core of components.
The template-based approach grants middleware inde-
pendance without the cost of a potentially too specific
component model. Additionally, there is no restriction
on the language in which component are written, and it
is possible to have C, C++, Java or Python templates,
provided the core library is written using the same (or a
compatible) language.

Since templates are generic, they have to be instan-
ciated for each individual component. This process is
done by Gen

oM thanks to code generation (see Figure 3).
From a Component Description File that contains all the
necessary information to describe the component (see
section IV), the Gen

oM parser builds an abstract syntax
tree and converts it into a suitable representation for the
scripting language of the template interpreter1. Then,
every file of the component template is read by Gen

oM
and interpreted. Special markers in the file are detected
and their content replaced in a manner similar to how a
PHP script is embedded into an HTML page (see Fig-
ure 4). The scripted code has access to all the information

1Currently TCL and Python are supported, but any language is
possible.

Component
source

.gen

Codels

GenoM3

Parser

Interpreter

Build

AST
1

2

3

Generated
Source

Generic skeleton
for middleware X

Template

Middleware

ComponentExt. Libraries

Fig. 3. Overview of the GenoM3 workflow. The “Component
source” represents the algorithmic core of the component and
implements the interface (services and data types). The description
file (.gen) is parsed by GenoM and converted into an internal
syntax tree. A template, selected amongst available templates, is
chosen and instanciated by the template interpreter according to
the syntax tree. The generated source code of the component can
then be compiled as a regular software in order to produce the
component binary.

#include <stdio.h >
int main() {

printf("Running component ‘%s ’!\n",
"<?tcl $component name ?>");

return 0;
}

Fig. 4. A sample GenoM3 template in C: the special <?tcl and
?> markers are interpreted as TCL code and the result replaces the
markers. The TCL code has access to the component description
file (here, it accesses only the component name).

of the component description file. A typical template
will consist of regular code, mixed with scripted loops
on e.g. services that generate calls to functions of the
core libraries. Since the interpreter relies on a complete
scripting language, there is virtually no restriction on
what a template can express.

From the component developer point of view, the
major concern brought by this approach is that the
algorithmic core of a component has to be written as a
set of individual functions, performing only elementary
actions. These functions are not responsible for the re-
trieval and disposal of their inputs and outputs, nor for
the implementation of architecture related aspects: this is
a template concern. This is however no different from the
way any regular library is written and is not a problem
in practice. These kind of functions are called codels [6]
(code elements) in Gen

oM’s vocabulary and the rest of the
paper will use this term to refer to such functions. Note
that codels are nothing more than callback functions,
bound to each services and states of a component.

III. Component Model

Gen
oM3 components follow a generic model defining

the concepts that a component template has to imple-
ment. The model does not impose anything on the im-

4629

startstop

main

event

end

[start][stop]

[main]

[main]

[event]

[sleep]

[end]

[end]
[ether]

[ether]
[ether]

Fig. 5. A sample Petri net of a GenoM3 activity. Places correspond
to codels and transitions are triggered by events. The termination
of a codel generates an event activating the next transition. Two
active places are shown (main and event). The Petri net of activites
are defined in the component description file.

plementation itself, since implementation is the respon-
sibility of the component templates. After sketching a
few general properties, this section details two important
aspects of the component model that are services and
data ports.

A. General properties
Components are executable programs. They define

an interface made of a set of services and data ports.
Components must provide a service invocation facility
as well as unidirectional (input and output) data ports.
They must be able to send and receive events. They have
to define an internal data structure, named the IDS, that
is used by codels to store global and permanent objects.
Each codel has access to the IDS objects and use them
to communicate with other codels within the component.
Finally, components have to define one or more “exe-
cution tasks” that represent the execution context (e.g.
thread) in which services are run. Those tasks may be
periodic or aperiodic.

B. Services, activities and Petri nets
A service is an interface for running codels. It can be

invoked via a request on the component service port.
Services have optional input and output data and a list
of failure reports. Input data is stored in the IDS (and
output read from there), so that codels can access it.
A service might be incompatible with other services of
the same component or can be started multiple time,
provided it is compatible with itself. It always interrupts
other incompatible services when starting.

A service invocation triggers an activity that manages
codel execution. An activity is described by a Petri
net in which places correspond to codels execution and
transitions are events generated either externally or im-
plicitely by the return value of codels (see Figure 5).
When an activity starts, the start event is generated and
the corresponding codel executed. Similarly, the activity
is interrupted whenever the stop event is generated.
Asynchronous events trigger the execution of the cor-
responding codel (if any). A special sleep transition is
defined so that an activity can be put in a sleeping state,

waiting for external events or a stop to trigger a new
transition. The activity stops when all active places in
the Petri net have returned the special ether event.

If the execution task of a service is periodic, transitions
are executed at each period. They are otherwise executed
as soon as all the codels corresponding to active places
have returned. The codel execution order is undefined.

It should be noted that no direct remote procedure
call (RPC) for service invocation between components is
allowed. RPC should be performed by external applica-
tions that take care of setting up the architecture of com-
ponents. While this differs from traditional approaches,
this guarantees that components can be controlled and
will not interfere with the system. This also grants
an increased reusability since no component explicitely
depends on a particular set of services implemented by
other components.

C. Data ports and events

Components define input and output data ports, used
to implement dataflow connections in parallel to services.
Event sinks, aimed at receiving external asynchronous
events, are supported as well. Components templates
should provide the necessary infrastructure to connect
ports and event sinks, at run time, to symetric ports.
Different categories of data ports can be provided by the
templates, such as buffered or unbuffered, ring buffers,
etc. This is a run-time parameter and should be selected
when the port is connected to another port. Similarly
to RPC, the configuration of data port connections shall
be done only by external applications, so that dynamic
architectures can be set up. Data ports are typically of
fixed size. Variable size data ports are permitted, but
templates might not support them. Such ports typically
involve dynamic memory allocation and could be prob-
lematic with certain middleware or architectures.

IV. Component Description Language

A Gen
oM3 component is defined by i) its codels, typ-

ically organized in a standalone library and ii) a speci-
fication file that completely defines the component with
respect to the component model previously presented.
The full grammar is not described here: only important
aspects are presented in Figure 6. The following para-
graphs cover this example and detail some aspects.

Data types: A component description always start
with the definition of the data types used in the interface
(lines 1-4). Types are typically defined in separate files
and #included in the description, so that the definitions
can be shared amongst other components.

The syntax used is the subset of the IDL language
(part of the OMG CORBA [5] specification) related to
data type definitions. Using IDL guarantees the program-
ming language independance and offers a standardized
approach. Although IDL is part of CORBA, it should be

4630

1 struct demo_state {
2 double position;
3 double velocity;
4 };
5

6 inport long parameter;
7 outport double position;
8 event emergency;
9

10 component demo {
11 language: "c";
12 ids: demo_state;
13 };
14

15 service goto {
16 task: main;
17 input: position;
18 output: position;
19 throws: SERVO_ERROR;
20 codel start:
21 demo_init_velocity(out velocity)
22 yield main;
23 codel main:
24 demo_servo(in position , out velocity ,
25 outport position) yield main , stop;
26 codel stop , emergency:
27 demo_stop () yield ether;
28 };
29

30 task main {
31 period: 5ms;
32 priority: 20;
33 };

Fig. 6. A sample component description file.

clear that components are not tied anyhow to CORBA2.
Generic information: A component defines the pro-

gramming language used by the codels (line 11) and the
data type of the Internal Data Structure (IDS, line 12).

Data ports and event sinks: Data ports are defined
via the inport or outport keyword, followed by an IDL
type and the name of the port (lines 6-7). An event sink
in simply defined by its name (line 8).

Execution tasks: Execution contexts are defined by
the task keyword and a name (lines 30-33). Properties
like execution period or priority are optional.

Services: Services (lines 15-28) may have input argu-
ments or produce output, defined as an element of the
IDS (lines 17-18).

An important part of the service definition is the map-
ping with user codels (lines 20-27). Each codel associated
to the service is defined by the codel keyword followed
by an event name. Some names are reserved: start and
stop correspond to the service invocation or interruption.
Other events are either generated by running codels (e.g.
main, line 23) or via an event (e.g. emergency, line 26).

Codels themselves are described with an IDL-like syn-
tax: the name of the function is followed by its arguments
that can be of type input, output and taken from the
IDS or the name of an inport or outport. The signature
of the codel function must of course match this definition.

2Of course, templates are free to use a CORBA-based middleware
but this is completely unrelated to the description file.

Codels return a value which can be either an error,
terminating the service and raising one of the exception
defined (line 19), or a transition in the Petri net of
the service. The list of valid transitions for a codel are
indicated via the yield keyword.

V. Component Templates: use cases

The first Gen
oM3 template developed corresponds to

the previous version of Gen
oM. The main purpose of

this template is to achieve a soft transition between
older and newer components, but it also served as a
validation of the new concepts. It has been written using
the Pocolibs [18] middleware, and is especially well suited
for real-time systems.

For demonstration purposes, two other templates have
been developed with two other middlewares: YARP [11]
and OpenRTM-aist [15]. Three components dedicated
to stereo-vision were ported to Gen

oM3 and have been
successfully compiled and run with all these templates.

The two next paragraphs describe two other concrete
use cases of components templates that are currently
under active development.

A. The openrobots simulator project

The OpenRobots Simulator is intended to be a ver-
satile, open-source simulator for mobile robotic applica-
tions. The development is driven by several European
and French research projects with a wide range of re-
quirements: from large simulation of multi-robot coop-
eration (up to twelve simultaneous robots) in open out-
door environments to human-robot interaction scenarii
in indoor environment. Another strong requirement is to
achieve compatibility with the largest set of middlewares.

The simulator uses the Blender Game Engine [3] and
relies on a set of reusable components to build the
simulation scenarii. Simulation components are indepen-
dant entities that comprise i) a geometrical and physical
representation (3D meshes with physical properties); ii)
a formal description of data they use and produce (a
Gen

oM file); and iii) Python code (codels) that implement
the algorithmic core. Since the components are to be run
in the Blender Game Engine, the template has to be
written in Python (possibly wrapping underlying C or
C++ libraries). Different templates can be written for
the middlewares that are to be supported, like YARP and
Pocolibs. As a result of the code generation, components
consist in a Python script that is run in the Blender
realtime 3D engine.

Simulation components are expected to produce data
(or use inputs) at different level of abstraction; each level
of abstraction can be specified as a data port in the
components. For instance, a stereo camera component
could output two video streams (left and right images)
or a single 3D depth map depending if the user wants to
simulate the reconstruction process or not.

4631

B. Controller Synthesis and Software Validation

Recent developments, in particular service robots, put
robots in close vicinity and in direct physical interaction
with humans. In order to address the issue of safety
and dependability of robot software in such demanding
contexts, it is critical to provide a formal approach which
guarantees that safety rules and properties related to
robot software components interactions are enforced.

The formal specification of Gen
oM components and

the use of a common component model for all compo-
nents was particularly well fitting the BIP[1] (Behaviour,
Interaction, Priorities) methodology. Consequently, an
approach that combines BIP component based design
with Gen

oM components was recently carried out [2]. A
BIP model of the generic Gen

oM component template was
developed and “BIP modules” were synthesized for the
complete functional layer of a rover. Gen

oM3 template
mechanism let us go further since a Gen

oM-BIP compo-
nent template can directly (and automatically) generate
the BIP modules from each component description file.
This results in a rover controller which is correct by
construction and that can be run by the BIP engine. It
is also possible to check if the model satisfies particular
properties and constraints, by using Verification and
Validation (V&V) tools such as D-Finder[2].

VI. Conclusions and Future Works

This paper has presented a software engineering ap-
proach that aims at fostering software reuse, focusing on
the middleware level. The central idea is to use com-
ponents templates, designed for a specific middleware,
but easily replaceable thanks to code generation. Our
main objective was to propose a solution that enables
efficient integration of robotic software withing different
frameworks without restraining the possibilities offered
by each of the available middleware. A prototype imple-
mentation is available and has successfully proven, with
three different middlewares, that the approach is effective
in handling real components.

Although the proposed component model was thought
as generic as possible, it imposes a restriction on the
application architecture since direct remote procedure
calls between components are not allowed. While this is
generally acceptable, this can become a real problem in
some situation. Solutions to work around this restriction
are currently under study.

Beyond the software reuse problem, we believe that the
Gen

oM3 approach can also help in comparing and evaluat-
ing available robotics middlewares. Performance analysis,
for instance, is rarely tackled because it would require
a real application, running many components compiled
with different frameworks. Such an experimental setup
simply does not exist as of today, but could be made more
easily available if switching from a middleware to another
would be only a matter of recompiling an application’s
software.

The component template approach is also potentially
powerful as templates can implement virtually anything.
An interesting extension would be to implement com-
ponent composition, that is, producing a single binary
program from a set of individual components. This can
be an efficient approach for embedded computing or, for
instance, if communication performance is a concern.

References

[1] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous
real-time components in BIP. In Fourth IEEE International
Conference on Software Engineering and Formal Methods,
pages 3–12, Pune (India), September 2006.

[2] S. Bensalem, M. Gallien, F. Ingrand, I. Kahloul, and
N. Thanh-Hung. Designing autonomous robots. IEEE
Robotics and Automation Magazine, 16(1):67–77, 2009.

[3] Blender. http://www.blender.org.
[4] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Ore-

back. Towards component-based robotics. In IEEE Interna-
tional Conference on Intelligent Robots and Systems, pages
163–168, Tsukuba (Japan), 2005.

[5] OMG CORBA 3.1. http://www.omg.org/spec/CORBA/3.1.
[6] S. Fleury, M. Herrb, and R. Chatila. Genom: A tool for the

specification and the implementation of operating modules
in a distributed robot architecture. In IEEE International
Conference on Intelligent Robots and Systems, volume 2, pages
842–848, Grenoble (France), September 1997.

[7] GearBox: Peer-reviewed open-source libraries for robotics.
http://gearbox.sourceforge.net.

[8] J. Kramer and M. Scheutz. Development environments for
autonomous mobile robots: A survey. Autonomous Robots
Journal, 22:101–132, 2007.

[9] A. Makarenko, A. Brooks, and T. Kaupp. On the benefits
of making robotic software frameworks thin. In IEEE Inter-
national Conference on Intelligent Robots and Systems, San
Diego, CA (USA), 2007.

[10] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and
R. McEwen. A deliberative architecture for auv control. In
IEEE International Conference on Robotics and Automation,
Pasadena, CA (USA), May 2008.

[11] G. Metta, P. Fitzpatrick, and L. Natale. YARP: yet another
robot platform. International Journal of Advanced Robotic
Systems, 3(1):43–48, 2006.

[12] N. Mohamed, J. Al-Jaroodi, and I. Jawhar. Middleware for
robotics: A survey. In International Cconference on Robotics,
Automation and Mechatronics, pages 736–742, September
2008.

[13] I.A.D. Nesnas, R. Volpe, T. Estlin, H. Das, R. Petras, and
D. Mutz. Toward Developing Reusable Software Components
for Robotic Applications. In IEEE International Conference
on Intelligent Robots and Systems, pages 2375–2383, Maui, HI
(USA), October 2001.

[14] OMG RTC Robotic Technology Component 1.0 specification.
http://www.omg.org/spec/RTC/1.0.

[15] OpenRTM. http://www.is.aist.go.jp/rt/OpenRTM-aist.
[16] The Orocos Project. http://www.orocos.org.
[17] The Player Project. http://playerstage.sourceforge.net.
[18] Pocolibs: POsix COmmunication LIbrary.

https://softs.laas.fr/openrobots/wiki/pocolibs.
[19] robotpkg. http://www.laas.fr/~mallet/robotpkg.
[20] ROS: Robot Operating System. http://www.ros.org.
[21] RoSta: Robot Standards and Reference Architectures.

http://www.robot-standards.org/.
[22] A. Shakhimardanov and E. Prassler. Comparative evaluation

of robotic software integration systems: A case study. In IEEE
International Conference on Intelligent Robots and Systems,
pages 3031–3037, San Diego, CA (USA), 2007.

[23] N. Wang, D. Schmidt, and C. O’Ryan. Component-based
software engineering: putting the pieces together, chapter
Overview of the CORBA component model, pages 557–571.
Addison-Wesley Longman Publishing Co., Inc., 2001.

4632

