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Andreas Tobergte, Florian A. Fröhlich, Mihai Pomarlan, and Gerd Hirzinger

Abstract— This paper proposes a method for accurate robotic
motion compensation of a freely moving target object. This
approaches a typical problem in medical scenarios, where a
robotic system needs to compensate physiological movements
of a target region related to the patient. An optical tracking
system measures the poses of the robot’s end-effector and
the moving target. The task is to track the target with the
robot in a desired relative pose. Arbitrary motion in 6 DoF
is covered. The position controller of the medical light-weight
robot MIRO is enhanced by a Cartesian displacement observer.
The proposed observer feedback preserves the dynamics of
the robot, while achieving high accuracy in task space. The
target object is equipped with an inertial measurement unit in
addition to tracking markers. Target sensor data is fused by
an extended Kalman filter in a tightly coupled approach. The
robot control and the target tracking in the task space aim
to combine accuracy, dynamic performance and robustness to
marker occlusions. The algorithms are verified with the DLR
MIRO, an experimental target platform, and a commercial
tracking system. The experiments demonstrate rapid conver-
gence to desired Cartesian poses and good dynamic tracking
performance even at higher target motion speed.

I. INTRODUCTION

In modern operating rooms optical tracking systems (OTS)
are widely used for navigation and are the state of art in
accuracy. In neurosurgery, e.g. surgeons navigate hand held
tools equipped with reflecting marker balls while looking
at a monitor visualizing the tool in a virtual patient. The
3D data of patients is preoperatively recorded by computer
tomography (CT) or magnetic resonance imaging (MRI).
The markers of the tracking system are registered with
respect to the 3D data. After this preoperative scanning,
planning and registration phase, the tool and the patient can
be monitored intraoperatively in one reference system, which
is defined by the optical tracking system. The introduction
of robots into the operating room as a assistance device
for surgeons demands the integration of the robot in this
environment. We developed an application for placement
of pedicle screws with the Kinemedic, a versatile medical
light-weight robot [12], a predecessor of the MIRO (see
fig. 1). Tracking markers are attached to the robot and the
control loop is closed by the tracking system. However,
compensation of motion of the vertebra is not the focus,
it rather aims to achieve static accuracy only. A similar
application is addressed in [3], were a pedicle screw is
inserted in spinal fusion. Tracking markers are attached to the
operating area, but not to the robot. The planned trajectory is
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Fig. 1. The MIRO, a versatile medical light-weight robot developed at the
German Aerospace Center (DLR); An experimental platform with tracking
markers and an inertial measurement unit; An optical tracking system

modified online with the tracking data and sent to the robot
controller.

In this paper, we address the more abstract task of con-
trolling a robot with respect to a navigated object in the task
space, which is defined by a tracking system or a similar
external sensor. This represents a typical medical scenario,
as described above for pedicle screw placement or e.g. laser
osteotomy on the sternum. The task is divided into two
subtasks: (1) Accurate and fast control of the robot in the
task space. (2) Tracking of an object, which is fixed to
the patient. The task is executed without any assumptions
regarding periodicity of physiological motion and with 6 DoF
in the task space. The experimental system is implemented
with the medical light-weight robot MIRO [19]. The MIRO
is kinematically redundant with a joint configuration similar
to the human arm. Torques are measured in all seven DoF
in addition to position sensing for compliant and position
control mode. A full-state feedback position controller for
the MIRO with coupled, flexible joints is presented in [10].
The robot control enhanced with the tracking system aims to:
(a) increase the accuracy in the task space, (b) preserve the
good dynamics of the existing position controller, as well as
the robustness with respect to marker occlusions. The tracked
object is an experimental platform with markers for the
OTS and an inertial measurement unit (IMU), measuring 3
DoF acceleration and 3 DoF angular velocity. The combined
OTS/IMU system aims to: (a) increase the robustness with
respect to marker occlusions, (b) compensate for delay of
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the OTS, (c) reduce noise [18]. For both subtasks the
combination of accuracy and dynamic performance are key
issues.

In section II a review of accurate robot control and object
tracking with multiple sensors is given. In the following
sections III, and IV, our approaches for the control task and
the object tracking are presented, respectively. Experimental
results of the task space controller and the combined motion
compensation with OTS/IMU are given in section V. Sec-
tion VI concludes the paper and gives an outlook on future
work.

II. STATE OF THE ART

In this section an overview of recent works related to the
two subtasks accurate robot control and multi sensor object
tracking is given.

A. Accurate Robot control

This section describes the usage of visual tracking com-
bined with robotics as it is predominantly applied in in-
dustrial and medical scenarios. With increasing processing
power optical sensors are very suitable for contact free
measurements in complex environments. There is a wide
range of algorithms and measurement systems available,
varying from specialized object pose estimation to general
purpose tracking systems.

For calibration a highly accurate measurement system or
an exactly known environment is used to obtain parameters
of an individual setup. In robotics the kinematic model of a
robot is usually based on engineering data and customized
by a calibration procedure to increase the accuracy of the
robot [4]. Within a defined workspace the error between
desired Cartesian pose and the real pose is measured at mul-
tiple positions. Based on this data the model parameters are
optimized by error minimization. The measurement system
may for example be an optical tracking system that is used
to generate a robot signature to compensate for geometrical
and flexibility errors in the entire working range [1] of
an absolute accurate robot. As the calibration is a offline
procedure, it provides no correction of errors which result
from flexibilities in the structure of the robot or external
influences like deformations based on thermal effects.

There are several concepts of using tracking data online
to compensate for errors. Some are based on a high level
of knowledge about the shape of the error. In this context
the visual feedback can be used to parametrize adaptive
controllers [7] [13] [14] to reduce quasi-periodic distur-
bances. In a medical context movement of organs caused by
respiration or the beating heart would belong to this category
of disturbances. To achieve the compensation of errors which
cannot easily be characterized by an error model, the tracking
data is predominantly fed to cascaded controller structures.
The Cartesian pose error, measured by a visual sensor, is for
instance used as input for an inverse Jacobian controller [2],
Cartesian PID controllers or control in feature space [9].

B. Multi sensor object tracking

Sensor fusion is an established technique to improve the
quality and reliability of sensor data. Several sensor systems
are used to observe a process, and the information from these
systems is combined in such a way that it will make use
of each individual sensor’s strengths and compensate their
weaknesses. Often, this is achieved through some variant of
the Kalman filter.

A typical example from the field of navigation is the
inertial sensors and GPS combination, with an Extended
Kalman filter used as the sensor fusion algorithm. An inertial
measurement unit can provide frequent measurements of
accelerations and angular velocities of a moving object,
while the GPS is used to correct, from time to time, the
position drift accumulated during integration of the inertial
measurements [16] [8]. Sensor fusion has found uses in
several other fields as well, for instance motion tracking [11],
augmented reality [5] [6] and terrain mapping [15].

For the inertial/GPS combination, the concept of different
levels of coupling has been developed. Thus, an inertial/GPS
fusion may be loosely, tightly or ultra-tightly coupled, de-
pending on the degree of processing done on the satellite
data before it is fed to the sensor fusion algorithm. The less
preprocessing, the tighter the coupling. In particular, tightly
coupled means that the filter receives each satellite mea-
surement and calculates position, rather than receiving the
position calculated by some other method. Similar concepts
are used in other areas and for other sensor combinations
as well [20] [6]. In [18] the tight coupling concept is
transferred to OTS/IMU navigation. Furthermore different
sampling rates and latencies of the sensors are explicitly
included into the model.

III. ACCURATE TRACKING CONTROL

In the motion compensation task accuracy is defined with
respect to the optical tracking system as that is the reference
in the operating room. In that sense the OTS is accurate
by definition and the robot is accurate if its pose matches
the one of the OTS. The task is to track a certain desired
pose O

MTd which describes the homogeneous transformation
of marker frame M attached to the robot with respect to the
object frame O (fig. 3, solid line). The relative pose

O
MT =W

O T−1 ·WM T (1)

of the robot’s marker with respect to the object is given by
the robots marker pose and the object pose with respect to
the absolute world frame W , which defines the task space
(fig. 3, dashed and dotted line, respectively). It is the robot’s
subtask to track

W
MTd =W

O T ·OM Td (2)

whereas it is up to the sensor data fusion to provide estimates
of W

O T. The desired relative pose O
MTd can change over time.

It could, e.g. be a whole trajectory generated offline in a
planning procedure or simply a constant pose.

In the following section the idea of the proposed task
space controller with displacement observer is described for
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1 DoF. Afterwards, the error is modeled for a kinematic
chain including the robotic setup. The observer feedback is
introduced taking the different sampling rates of the MIRO
and the OTS into account.

A. Observer Concept

The task requires an accurate robot control. The proposed
task space controller is based on an observer feedback. The
observer feeds back an error between transformed measure-
ments of internal sensors and measurements of an external
sensor. In fig. 2 the idea is shown for a simple 1 DoF system.
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Fig. 2. Observer feedback with an external sensor observing the error of
the robot’s sensors

The robot here is a position controlled robot, that tracks
an desired value X ′d . In the 1 DoF case, the error Xe being a
function of the robot’s states could, e.g. be a constant offset
or an arbitrary function of X ′. If it is only a constant offset
and therefore not dependent on X ′, the system in fig. 2 is
obviously stable, if the robot as a closed loop system is
stable. The position in the task space X will furthermore
converge to the desired position Xd , if X ′ converges to X ′d .

However, in the general case, where Xe is dependent on X ′

the feedback of Xe can potentially cause stability problems.
This is addressed by inserting a lowpass filter to reduce the
dynamics of the observer feedback. The complete system can
then be divided into two separated systems for the analysis
of the stability using the singular perturbation theorem. The
error Xe is then considered quasi-constant for the outer loop
with the observer. Then the same stability and convergence
declarations as above can be applied.

The main difference between the observer feedback com-
pared and a classical cascaded control structure is that the
observer compares X with X ′ which are both measured
states, instead of comparing X with Xd . The advantage is
that the observer feedback does not reduce the dynamics
of the robot controller, because only the observer feedback
is reduced in dynamics and not the feedforward path from
Xd to X ′d . If the error Xe equals zero, the observer will not
have any influence at all, unlike a cascaded controller that
reduces the complete dynamics in any case. It is also robust
with respect to blackouts of the external sensor, since only
the correction can not be updated anymore. The proposed
observer feedback aims to preserve the robot’s controller
performance without adding significant drawbacks.

Fig. 3. The transformations of frames in the setup and the MIRO robot
are accumulating errors.

B. Error model

The pose of the robot’s marker in the world frame is given
by the tracking system and a chain of transformations

W
MT =W

B T ·BS T ·SE T ·EH T ·HM T (3)

where W
B T is the location of the robot’s base B. The frames

B
S T, S

ET and E
HT are the frames of the MIRO’s shoulder S

in base, ellbow E in shoulder and hand H in ellbow frame,
respectively. The first transformation combines 3 DoF, the
second and third integrate 2 DoF for a coupled joint each.
The pose of the marker with respect to the hand is given by
H
MT.

Measurements of W
MT are given by the tracking system and

B
S T, S

ET and E
HT are calculated by the forward kinematics as

functions of link sided joint positions of the MIRO. The
frames W

B T and H
MT are not directly measured but computed

by a numerical optimization from a set of measurements in
different kinematic configurations. Due to errors in the trans-
formations, equation (3) is not fulfilled for real data. Taking
into account that all terms on the right side of equation (3)
contain errors, whereas the left side is considered the ground
truth, one can rewrite equation (3) in the form:

W
MT =W

B’ T ·B’
B T ·BS’ T ·S’

S T ·SE’ T ·E’
E T ·EH’ T ·H’

H T ·HM’ T ·M’
M T (4)

In this equation W
B’T, e.g. denotes the transformation that

was identified (or measured) and B’
B T denotes the error

associated with it that is needed to get the real transformation
W
B T that we would like to have. However, identifying all
error frames needed for correcting and associating them
with physical properties such as joint sensor offsets, link
lengths and robot base location means calibrating the whole
setup in the operating room. This requires a huge set of
offline recorded data in different kinematic configurations,
especially if flexibility is taken into account.

The approach chosen in this paper is to observe the error
online and identify it for the current pose. Unfortunately, the
OTS can only measure the ends of the transformation chain
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being the markers of the world W and the robot marker frame
M. It is not possible to observe how this error is distributed,
over B’

B T, S’
S T, E’

E T, H’
H T and M’

M T. The idea is to choose one
of these error transformations and assume all errors to occur
there and the other transformations simply to be identity
matrices. This arises the question: Which matrix is the most
convenient to chose? Concerning the goal of zero steady state
error it does not matter because any error matrix can fulfill
equation (4) if the others are identity matrices. When taking
dynamic motion into consideration this changes. It is then
convenient to choose the error matrix which has the smallest
gradient, so that it still is approximately correct at the pose
the robot is moving to. The smallest gradient has the matrix
that is undergoing the fewest motion itself, which is B’

B T.
Neglecting the identity matrices and summarizing the

forward kinematics with B
HT the observed error model is

given by:
W
MT =W

B’ T ·B’
B T ·BH T ·HM T (5)

C. Observer feedback

Equation (5) only describes the geometric model of the
system. Usually, an external measurement system is signifi-
cantly slower than the robot’s internal sensors. This is to be
taken into account to ensure data integrity in time.

The optical tracking system provides pose measurements
W
MTφ(i) =W

M T[i] (6)

at a discrete step i ∈ N of precalibrated marker configura-
tions, where

φ(i) = i · ts,OT S− tl,OT S (7)

maps the measured sample to the physical time. The sam-
pling time and the latency of the OTS are given by ts,OT S and
tl,OT S, respectively. The measurements of the MIRO robot
are the motor positions in joint space θχ( j) and the joint
torques τχ( j). The function χ( j) = i · ts,MIRO associating the
j-th sample to the physical time, with the sampling time
ts,MIRO. The sampling time of the OTS is a multiple of the
MIRO and significantly higher.

The link sided positions q(χ( j)) can be observed

qχ( j) = θχ( j) ·K−1
τχ( j) (8)

with the joint stiffness K. The forward kinematics solution
then gives:

B
HTχ( j) = f kin(qχ( j)) (9)

From (5), regarding the different sampling rates, it follows
the observation of the correction matrix with one frame
corresponding to each measurement of the optical sensor:

B’
B Tφ(i) =B’

W T ·WM Tφ(i) ·MH T ·HB Tχ( j) (10)

While the above error observations are triggered by in-
coming data from the OTS the feedback correction frame

B’
B T∗

χ( j) = Lowpass(B’
B Tφ(i)) (11)

provides a feedback interpolated in the robot’s sampling
rate. The lowpass not only reduces the dynamics of the

observer feedback to ensure stability but also interpolates
the correction matrix and reduces noise.

The desired frame for the robot’s inverse kinematics
solution is then given by:

B
HTd,χ( j) =B

B’ T∗
χ( j) ·

B’
W T ·WM Td,χ( j) ·MH T (12)

The MIRO’s position controller implements a controller
in joint/motor space taking the joint coupling into account.
Motor positions, velocities, joint torques and their derivatives
are used in a full state feedback controller [10]. The torque
feedback effectively provides vibration damping and an addi-
tional disturbance observer reduces motor sided disturbances,
such as friction in the joint [17]. The controller is extended
with a fifth state, being the integral of the position to ensure
convergence to the desired position in the case of link sided
disturbances.

IV. MULTI SENSOR OBJECT TRACKING

In [18], we introduced a sensor fusion approach for motion
tracking using a combination of inertial sensors and an
optical tracking system. The motion of an object is modeled
as a process and an extended Kalman filter is used to combine
data from the two sensor systems and estimate the states of
this process.

xψ(k) = (W
U pψ(k),

W
U qψ(k),

W
U vψ(k),

U
U ab,ψ(k),

U
U ωb,ψ(k))

T (13)

Bias errors of the inertial sensors are expressed with respect
to the IMU frame U , which is rigidly connected with the
object O frame with O

UT (U is not shown in fig. 3). As
inputs, the process has the acceleration and angular velocity
as measured by the IMU:

uψ(k) = (am,ψ(k),ωm,ψ(k))
T (14)

where
ψ(k) = k · ts,IMU (15)

is a function that associates a discrete time step index k with
the continuous time moment when the sample was taken.
Note that the IMU and OTS have different sampling rates
(ts,IMU and ts,OT S respectively, with ts,IMU < ts,OT S). In general
an IMU is fast enough so that we can assume its data has
no delay. However, the OTS has a significant latency (tl,OT S)
due to image processing. The OTS measures the outputs of
the process, which are the positions of reflective marker balls
attached to the object.

yφ(i) = (W
M,1pm,φ(i),

W
M,2 pm,φ(i), ...,

W
M,n pm,φ(i)) (16)

The OTS also provides a quality value between 0 and 1 for
each marker. If the quality of a marker measurement is below
some threshold, that marker is considered invisible and that
measurement not used.

An extended Kalman filter runs in two phases the ”predict”
and the ”correct” phase, which are associated with the
process and the measurement model. In our case that means,
several ”predict” phases will occur between two ”correct”
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phases, because the sampling time for the IMU is shorter than
for the OTS. Furthermore, the latest available OTS measure-
ments are not associated with the latest IMU measurements
and therefore the process states, due to latency of the OTS.
The IMU measurements and predicted states are stored in a
buffer along with the time they were collected/computed at.
The correction is not applied to the most recent state estimate
but rather to one stored in the buffer, at a time that matches
the time of the marker measurements. This way integrity
in time is conserved in the sense that only measurements
are fused that belong to the same physical time. After each
measurement update, the filter runs a series of ”predict” steps
on the stored states and IMU measurements, to propagate
the correction forward to the present. So all available data
is used at any time to get good estimates. The increased
computational load is no problem since we can assume that
enough processing power, like a PC with a CPU, is available.

The kind of sensor fusion employed in our approach is
tightly coupled, this means single positions are fed to the
Kalman filter instead of pre-computed poses to make use
of all visible markers. As long as at least three non-colinear
markers are visible the system is completely observable. The
filter is able to determine the tracked body’s position and
orientation as well as all the other states. If only one or two
markers are visible during an interval of time (on the order
of several seconds [18]), the filter can still use the available
information to constrain the states and maintain accuracy
in the world frame during this interval. If no markers are
visible however the position estimation tends to drift very
fast so this situation should be avoided. Another benefit of
the IMU/OTS fusion is the increased sample rate, since the
sensor fusion algorithm can provide good quality estimates
at the rate of the IMU, faster than the rate of the OTS alone.
These estimates are also latency compensated and will track
the current states without the delays of the OTS.

V. RESULTS

The proposed methods for accurate robot control and ob-
ject tracking are evaluated in the depicted experiments. The
medical light-weight robot MIRO from DLR is combined
with the optical tracking system ARTrack21. The tracked
object is an experimental platform with 4 markers and one
ADIS16350 IMU. A set of precalibrated marker targets is
rigidly attached to the robot’s tool flange and base. The setup
calibration is done by manually adjusting the marker targets
with the TCP and base-frame, respectively. The MIRO’s
communication backbone, a spacewire bus, is running at
3kHz. The OTS provides data at 60Hz and the IMU at
500Hz.

A. Task space control

The task space controller with observer feedback is im-
plemented as introduced in section III for the 6 DoF task
space. The MIRO is initially positioned in the middle of its
workspace, as shown in fig. 3. The correction matrix B’

B T is

12009-09 url:http://www.ar-tracking.de/ARTtrack2.52.0.html

initially the identity matrix2. The lowpass is implemented as
a first order filter with a cutoff frequency of 0.5Hz which
caused no stability problems. Responses to interpolated po-
sition commands along the y-axis in the task space were
evaluated. In fig. 4 a slow trajectory with 0.01 m

s is shown
in the upper graphs and a fast trajectory with 0.1 m

s in the
lower ones. The right side illustrates enlargements of the
convergence zones, around 10sec and 1sec, respectively.

Fig. 4. Response to an interpolated position command in the y-axis; slow
0.01 m

s on the top and fast 0.1 m
s on the bottom; desired trajectory (solid),

control without observer (dash-dotted), control with observer (dashed)

The MIRO tracks the desired position (solid line) in the
task space with an increasing error showing a slow drift away
from the track, if no observer is used (dash-dotted line).
The remaining steady state error is about 1mm for 100mm
motion. However, with the observer (dashed line) the error
practically converges to zero or below 0.1mm which is within
the magnitude of the sensor noise. For the slow motion on
top of fig. 4 the MIRO perfectly tracks the desired trajectory.
The fast motion on the bottom shows the limitations of the
approach. The controller with observer still performs better
than the controller without observer at any time. It drifts
a little bit due to the reduced dynamics of the observer
feedback and finally converges 0.6sec after the reference
trajectory stops.

The plots in fig. 5 correspond to the response to the in-

2The base frame is rotated 17◦ around the z-axis with respect to the world
frame.
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Fig. 5. Responce to an interpolated position command in the y-axis with
0.01 m

s ; Translations (left column) with x (solid), y (dash-dotted), z (dashed)
and Orientation (right column) around x (solid), y (dash-dotted), z (dashed);
Position and Orientation error without observer (top row) and with observer
(middle); Bottom row shows the correction matrix

terpolated position command with 0.01 m
s motion. The errors

for position (left) and orientation (right) for the controller
without observer are shown on top, where small errors occur
in all 6 DoF of the task space. When the observer is used,
these errors converge to zero. On the left a phase lag of the
controller can be seen in the y-axis (dash-dotted line). On
the bottom line the correction matrix B’

B T that absorbs the
error is shown.

B. Motion Compensation

Experiments were done with the complete system evaluat-
ing the task space control and the object tracking in combi-
nation. The pose estimates of the target platform provided by
the sensor data fusion were additionally filtered with a 10Hz
first order lowpass filter. Even though the sensor data fusion
reduces noise [18] compared to the OTS alone, the quick
responding controller of the MIRO requires an additional
smoothing of the commanded pose. The desired relative pose
O
MTd is considered to be a virtual tool attached to the robot
with it’s distal end3 effecting the target object. The target
object pose W

O T is therefore independently measured with
the OTS and compared to W

MT ·OM T−1
d .

The plots on top of fig. 6 show the motion of the object
platform with respect to an initial pose of the object that is
to be compensated. The platform is moved in translation (top

3This is illustrated with a laser pointer in the video attachment.

Fig. 6. Free motion of the handheld object platform in 6 DoF; Translations
(left column) with x (solid), y (dash-dotted), z (dashed) and Orientation
(right column) around x (solid), y (dash-dotted), z (dashed); Motion from
initial pose (top row); Error of a virtual tool acting on the object (middle);
Plots on the bottom show the correction matrix

left) with a magnitude from about 50mm to over 150mm on
the dominant x-axis (solid). The error (middle left) is below
5mm and is dominated by the phase lag of the estimated
and filtered pose, as well as the lag of the robot’s position
controller. The magnitude of the correction matrix (bottom
left), as expected, increases with the magnitude of motion.
The error in orientation (middle right) stays within the range
of ±1 degree, for the complex motion. The magnitudes of the
correction matrix in translation and orientation B’

B T (bottom
row) correspond to the magnitude of the motion.

VI. CONCLUSION AND FUTURE WORK

The task of tracking an object with a robot was divided
into two subtasks. The first is to control the robot accu-
rately in the task space and the other one is tracking the
moving object. The task space was defined by an optical
tracking system locating the robot and the moving object
with markers, in a typical medical scenario. The robot’s
position controller was enhanced by an observer comparing
the position measurements of the robot and of the optical
tracking system. In the robotic setup the observer feedback
efficiently compensates for residual errors predicated on
robotic setup errors as well as kinematic errors. In addition
the observer preserves the high dynamics of the MIRO’s
position controller and enhances the robot with absolute
accuracy. An extended Kalman filter fuses measurements of
an inertial measurement unit and optical data. It provides
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pose estimates with reduced latency and noise compared
to stand-alone optical tracking. It furthermore increases the
robustness to marker occlusions. Tracking of a constant
relative pose of the MIRO robot with respect to the freely
moving object was shown in the 6 DoF task space.

Application of the proposed structure will be compensa-
tion of respiration motion in, e.g. laser osteotomy or spinal
surgery. Future versions might also be adapted to beating
heart motion compensation with an endoscope serving as
external sensor. Tracking performance could be improved
by more sophisticated error modeling. Instead of assuming
all errors to occur in one frame of the transformation chain
it could be distributed. Application specific reductions of
DoF of the task space and assumptions about periodicity
of physiological motion can be used to further reduce the
residual tracking error.
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[17] Luc Le Tien, Alin Albu-Schäffer, Alessandro De Luca, and Gerd
Hirzinger. Friction observer and compensation for control of robots
with joint torque measurement. In IROS, pages 3789–3795, 2008.

[18] Andreas Tobergte, Mihai Pomarlan, and Gerd Hirzinger. Robust multi
sensor pose estimation for medical applications. In Proceedings of
the 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 492–497, 2009.

[19] Hagn U., Nickl M., Jörg S., Passig G., Bahls T., Nothhelfer A., Hacker
F., Le-Tien L., Albu-Schffer A., Konietschke R., Grebenstein M.,
Warpup R., Haslinger R., Frommberger M., and Hirzinger G. The
DLR MIRO: A versatile lightweight robot for surgical applications.
In Industrial Robot: An International Journal2008.

[20] Gregory Francis Welch. SCAAT: Incremental Tracking with Incomplete
Information. PhD thesis, Department of Computer Science, University
of North Carolina at Chapel Hill, October 1996.

4572


