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Abstract— To compute collision-free and dynamically-
feasibile trajectories that satisfy high-level specifications given
in a planning-domain definition language, this paper proposes to
combine sampling-based motion planning with symbolic action
planning. The proposed approach, Sampling-based Motion and
Symbolic Action Planner (SMAP), leverages from sampling-
based motion planning the underlying idea of searching for
a solution trajectory by selectively sampling and exploring
the continuous space of collision-free and dynamically-feasible
motions. Drawing from AI, SMAP uses symbolic action plan-
ning to identify actions and regions of the continuous space
that sampling-based motion planning can further explore to
significantly advance the search. The planning layers interact
with each-other through estimates on the utility of each action,
which are computed based on information gathered during
the search. Simulation experiments with dynamical models
of vehicles carrying out tasks given by high-level STRIPS
specifications provide promising initial validation, showing that
SMAP efficiently solves challenging problems.

I. INTRODUCTION

Research in robotics has focused since its inception to-

wards increasing the ability of robots to plan and act on their

own in order to complete assigned high-level tasks. Toward

this goal, this paper studies the following problem:

Given a high-level specification, plan the sequence

of motions the robot needs to execute so that the

resulting trajectory is dynamically feasible, avoids

collisions, and satisfies the high-level specification.

There are two crucial aspects to this problem: (i) planning

in the space of possible high-level actions and (ii) planning

in the space of possible motions.

Action planning, which assumes a discrete world and dis-

crete actions, has been extensively studied in AI. Throughout

the years, significant progress has been made in addressing

increasingly complex discrete planning problems. In fact,

current methods based on symbolic reasoning have made

it possible to specify high-level goals using sophisticated

planning-domain languages, such as STRIPS [1], ADL [2],

PDDL [3], HAL [4], and efficiently plan the sequence of

discrete actions that accomplishes the specified goals [5].

In contrast, motion planning assumes a continuous world

and continuous motions. The motivation comes from nav-

igation, exploration, search-and-rescue missions, and other

applications where it is essential to compute trajectories that

can be followed by the robot in the physical world. As a

result, the planned motions need to not only avoid colli-

sions with obstacles but also satisfy differential constraints

imposed by underlying robot dynamics. Due to the increased

complexity, motion planning has generally been limited to

simpler goal specifications, such as reachability, where the

objective is to compute a collision-free and dynamically-

feasible trajectory from an initial to a goal state [6], [7].

Researchers have generally considered action planning

and motion planning separately. As a result, the problem

of planning motions that satisfy high-level specifications

is typically approached by first using action planning to

compute a sequence of discrete actions that satisfies the

goal specification. In a second step, motion planning based

on controllers is used to consecutively follow the discrete

actions in the continuous world [8], [9], [10], [11], [12].

In many cases, however, collision-avoidance requirements

and differential constraints imposed by dynamics make it

difficult or impossible to design a controller that can follow

a discrete action in the continuous world. As a result,

decoupled approaches have had limited success.

This paper treats the problem planning collision-free and

dynamically-feasible trajectories that satisfy high-level spec-

ifications as a search problem over both the discrete space

of actions and the continuous space of motions. To conduct

the search efficiently, this paper develops the Sampling-based

Motion and Symbolic Action Planner (SMAP), which com-

bines sampling-based motion planning with symbolic action

planning. SMAP leverages from sampling-based motion plan-

ning the underlying idea of searching for a solution trajectory

by selectively sampling and exploring the continuous space

of motions. Sampling-based motion planners have had sig-

nificant success in solving challenging reachability motion-

planning problems in high-dimensional continuous spaces,

as surveyed in [6], [7]. To handle both collision avoidance

and differential constraints imposed by dynamics, SMAP uses

a tree-based exploration of the continuous space. The tree

is rooted at the initial state and is incrementally extended

with trajectories obtained by applying input controls to the

states in the tree and propagating the dynamics forward

in time. The success and computational efficiency depends

on the ability of SMAP to effectively guide the tree-based

exploration toward the goal. Drawing from AI, SMAP uses

symbolic action planning to guide the tree-based exploration

by identifying and selecting discrete actions and regions of
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the continuous space that sampling-based motion planning

can further explore to significantly advance the search for

a solution trajectory. The planning layers in SMAP interact

with each-other through estimates on the utility of discrete

states and actions, which are computed based on information

gathered during the tree-based exploration. Thus, symbolic

action planning guides sampling-based motion planning,

while the latter feeds back information in the form of

utility estimates to improve the guide in the next iteration.

As a result of this interplay, SMAP becomes increasingly

successful in identifying regions whose further exploration

can significantly advance the search while avoiding spending

valuable computational time exploring regions that do not

advance the search. Simulation experiments with dynamical

models of vehicles carrying out tasks given by high-level

STRIPS specifications provide promising initial validation,

showing that SMAP efficiently solves challenging problems.

II. RELATED WORK

SMAP is motivated by earlier work on manipulation plan-

ning [13], [14], [15], [16] and hybrid systems [17], [18].

The work in [14] used discrete search over the manipulation

graph to guide PRM (Probabilistic RoadMap [19]) sampling-

based planner in the computation of transfer and transit

paths. Later work by [15], [16] led to the aSyMov planner,

which extended the idea even further by combining PRM

with symbolic action planning, making it possible to specify

high-level goals in planning-domain definition languages.

A limitation of these approaches that rely on PRM is

that they cannot take into account differential constraints

imposed by dynamics. To construct a roadmap, each edge

(a, b) requires connecting the state a to b via a dynamically-

feasible trajectory. Exact solutions to this steering problem

are available only in limited cases, while numerical solu-

tions impose significant computational cost [20], rendering

roadmap construction impractical.

In contrast, SMAP uses a tree-based exploration of the

state space, which does not require any steering, but only the

ability to propagate dynamics forward in time. Forward prop-

agation is readily achieved through numerical integration,

making it possible for SMAP to generate not only collision-

free but also dynamically-feasible trajectories that satisfy the

high-level specification. Moreover, an essential component

of aSyMov is a computationally-intensive backtracking pro-

cedure that checks for collisions to ensure that a candidate

action is grounded in a geometric context that has at least

a collision-free path from the initial state. SMAP takes a

different approach, which avoids backtracking, by validating

each trajectory before adding it to the tree.

SMAP builds upon prior work [21], [22], [17], [18], which

showed how to effectively combine sampling-based motion

planning with discrete search to compute collision-free and

dynamically-feasible trajectories that satisfy high-level spec-

ifications given by linear temporal logic. A limitation of

the work in [21], [22], [17], [18], is that it relies on an

explicit representation of the discrete space and the possible

transitions between the discrete states. To address this limita-

tion, SMAP integrates sampling-based motion planning with

symbolic action planning, which can handle complex dis-

crete planning problems. The integration of sampling-based

motion planning with symbolic action planning also makes

it possible for SMAP to handle high-level goal specifications

given by planning-domain languages.

III. PRELIMINARIES

A. Discrete Specifications by Planning-Domain Definition

Languages

Drawing from research in AI, this paper uses planning-

domain definition languages, such as STRIPS, to allow for

sophisticated high-level planning specifications. Details can

be found in standard AI books [23], [5]. For completeness,

a summary follows. A discrete model is a tuple M =
(O,P,Q, qinit, φgoal,A), where

• O denotes the set of objects (or atoms).

• P denotes the set of predicates, which express relations

among objects in O.

• Q denotes the discrete state space. A discrete state

is a conjunction of all positive and grounded literals

that currently hold in the world. A positive literal is

of the form P (t1, . . . , tm), where P ∈ P and each ti
is an object or an object variable. A positive literal is

grounded if it does not contain any object variables.

• qinit ∈ Q denotes the initial discrete state of the world.

• φgoal denotes the goal specification, which is given as

a formula constructed by combining positive grounded

literals with Boolean operators ¬, ∨, and ∧.

• A denotes the set of action schemas. An action schema

A = (vars,pre,post) ∈ A is defined in terms of object

variables, a precondition that must hold before execu-

tion, and a postcondition that will hold after execution.

A precondition is usually given as a conjunction of

positive literals, while a postcondition is given as a

conjunction of positive or negative literals. An action

a ∈ A is a specific instantiation of the variables in A. If

the precondition is satisfied, the execution of a changes

the current state according to the postcondition, i.e.,

adding positive literals and deleting negative literals. If

the precondition is not satisfied, a has no effect.

A discrete solution consists of a finite sequence of actions

[ai]
n
i=1 that transforms the world from qinit to a discrete state

that satisfies φgoal.

B. Interpretation over Continuous Spaces

The physical world, which includes the robotic system, ob-

stacles, and objects to be manipulated, is commonly modeled

in a continuous setting. The continuous space of the world,

denoted by S, consists of a finite collection of continuous

variables that can describe the world, e.g., placement of

objects, joint values in a robot arm, vehicle velocity.

The continuous space S gives meaning to the predicates in

the discrete specification. As an example, On(book, table)
holds iff the book is actually on the table. Since a continuous

state s ∈ S specifies the placement of objects, one can
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determine whether or not the predicate holds at s. This inter-

pretation of which predicates actually hold at a continuous

state provides a mapping from the continuous space to the

discrete space, denoted as a function mapS7→Q : S → Q.

Moreover, trajectories over S give meaning to the ac-

tions in the discrete specification. A trajectory over S is

a continuous function ζ : [0, T ] → S, parametrized by

time. As the continuous state changes according to ζ, the

discrete state, obtained by the mapping mapS7→Q, may also

change. As a result, the trajectory ζ follows a discrete action

a if (i) mapS7→Q(ζ(0)) satisfies a’s precondition and (ii)

mapS7→Q(T ) satisfies a’s postcondition.

The underlying dynamics are specified as a set of dif-

ferential equations f : S × U → Ṡ, where U is a control

space consisting of a finite set of input variables that can be

applied to the system (e.g., a car can be controlled by setting

the acceleration and the rotational velocity of the steering

wheel). A dynamically-feasible trajectory ζ : [0, T ] → S is

obtained by computing a control function ũ : [0, T ] → U and

propagating the dynamics forward in time through numerical

integration from a given state s ∈ S, i.e.,

ζ(t) = s+

∫ t

0

f(γ(h), ũ(h)) dh.

The dynamically-feasible trajectory ζ : [0, T ] → S is

considered collision free if each state along the trajectory

avoids collisions with the obstacles.

IV. METHODS

To effectively compute a collision-free and dynamically-

feasible trajectory that starts at sinit ∈ S and satisfies the

discrete goal specification φgoal, SMAP conducts the search

both in the continuous space S and in the discrete state and

action spaces, Q and A.

In the continuous space S, SMAP maintains the search

data structure as a tree T = (V,E). Each vertex v ∈ T [V ]
is associated with a continuous state s ∈ S, written as v.s.
An edge (v′, v′′) ∈ T [E] indicates that SMAP has computed

a collision-free and dynamically-feasible trajectory from v′.s
to v′′.s. Initially, T [V ] contains only one vertex, vinit, which

is associated with the initial state sinit ∈ S, and T [E] is

empty. As SMAP explores S, new vertices and new edges

are added to T . The procedure consists of selecting a vertex

v ∈ T for expansion and then extending the tree from

v by generating a collision-free and dynamically-feasible

trajectory that starts at v.s. A common strategy is to apply

some control u ∈ U to v.s and simulate the dynamics

forward in time until a collision occurs, a state-constraint

is violated, or a maximum number of steps is exceeded [6],

[7]. The control u ∈ U is generally selected uniformly at

random to allow subsequent calls to extend the tree along

new directions. Intermediate states along the trajectory are

also added to the tree, as suggested in [6], [7]. The search

terminates successfully when a vertex vnew is added to

T such that mapS7→Q(vnew.s) satisfies φgoal. The solution

trajectory is then obtained by concatenating the collision-

free and dynamically-feasible trajectories associated with the

edges in T [E] connecting vinit to vnew.

Due to challenges posed by the high dimensionality of

the continuous space S, collision-avoidance requirements,

differential constraints imposed by dynamics, and the com-

plexity of the discrete specification, the success of the

search depends on the ability of SMAP to effectively and

selectively sample and explore S. SMAP employs symbolic

action planning to identify regions in S that sampling-based

motion planning can then selectively sample and explore

to significantly advance the search for a collision-free and

dynamically-feasible trajectory that satisfies φgoal.

In particular, SMAP groups the tree vertices according to

the mapping function mapS7→Q. Let Γ denote the list of all

such groups, where Γq ∈ Γ contains all the vertices v ∈ T
such that mapS7→Q(v.s) = q, i.e., each time a vertex v is

added to T , v is also added to ΓmapS7→Q(v.s).

Consider one such group Γq ∈ Γ and let a be an

action whose precondition is satisfied by q. Let a(q) de-

note the discrete state obtained as a result of a’s ef-

fect on q. Sampling-based motion planning in SMAP, de-

noted by EXPLOREACTION(T ,Γ,Γq, a), can then advance

the search by extending T from vertices associated with

Γq (which satisfy a’s precondition) toward the region of

the continuous space S that satisfies a’s postcondition,

i.e., map−1
S7→Q

(a(q)) = {s : s ∈ S ∧ mapS7→Q(s) =
a(q)}. There is, however, an associated computational

cost with each invocation of EXPLOREACTION(T ,Γ,Γq, a).
This raises a central issue about which group Γq ∈ Γ
and which action a, among the many available options,

should be selected for exploration at each invocation of

EXPLOREACTION. To address this issue, SMAP maintains a

running weight estimate UTIL(Γq, a) on the utility of having

EXPLOREACTION(T ,Γq, a) spend additional time attempt-

ing to extend T from vertices associated with Γq toward the

region map−1
S7→Q

(a(q)). The objective of UTIL(Γq, a), which

is updated based on new information gathered by sampling-

based motion planning, is three-fold:

(i) give high utility to (Γq, a) when the action plan from the

discrete state a(q) to a discrete state that satisfies φgoal

is short. This is to bias the search in the continuous

space S so that the sampling-based motion planner

follows action plans that can quickly lead to a solution.

(ii) give high utility to (Γq, a) when it is under-explored,

since additional exploration by the sampling-based mo-

tion planner could advance the search further.

(iii) give low utility to (Γq, a) when it is over-explored, since

over-exploration does not bring much new information

and wastes valuable computational time.

The core of SMAP interleaves symbolic action planning,

sampling-based motion planning, and updates to utility es-

timates in order to effectively compute a collision-free and

dynamically-feasible trajectory that satisfies φgoal:

• Use symbolic action planning and the utility estimates

to select a group Γq ∈ Γ and an action a whose

precondition is satisfied by q. Bias the selection process
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toward pairs (Γq, a) associated with high utilities.

• Use EXPLOREACTION(T ,Γq, a) for a short period of

time to extend T from vertices associated with Γq

toward continuous states in map−1
S7→Q

(q), which satisfy

a’s postcondition.

• Update the estimates UTIL(Γq, a) based on new infor-

mation gathered from EXPLOREACTION(T ,Γq, a).

This interplay of symbolic action planning and sampling-

based motion planning through utility estimates is a crucial

component of the computational efficiency of SMAP. In

particular, it allows SMAP to make proper use of the com-

putational time by selectively sampling and exploring those

actions a and regions of S that allow SMAP to significantly

advance the search for a collision-free and dynamically-

feasible trajectory that satisfies φgoal. Pseudocode is given

in Algo. 1. Details of the main components in SMAP follow.

Algorithm 1 SMAP

Input: problem specification; tmax: upper bound on time
Output: A collision-free and dynamically-feasible trajectory that

satisfies high-level specification or null if no solution is found

♦ initialize data structures
1: T ← ∅; Γ← ∅
2: vroot ← new vertex; vroot.s← sinit; vroot.parent← null

3: ADDVERTEX(vroot, T , Γ)

♦ core loop: interplay between symbolic action planning and
sampling-based motion planning through action utilities

4: while ELAPSEDTIME < tmax ∧ no solution path do
5: Γq ← SELECTGROUP(Γ)
6: a← Γq.curr action
7: status← EXPLOREACTION(T , Γ, Γq, a) (for a short time)
8: if status = solved then
9: ζ ← concatenate tree trajectories from root to last vertex

10: return ζ
11: UPDATEUTIL(T , Γq, a, status)
12: Γq.curr action← SELECTACTION(Γq)
13: for each new Γqnew

added to Γ do
14: [ai]

n
i=1 ← SYMBOLICPLANNER(A, qnew, φgoal)

15: Γqnew
.actions← {a1} ∪ Γqnew

.actions
16: return null

A. Symbolic Action Planning

SYMBOLICPLANNER(A, q, φgoal) computes an action

plan [ai]
n
i=1, which transforms the discrete state q to a

discrete state that satisfies φgoal. This is the only requirement

imposed on SYMBOLICPLANNER, since SMAP uses it as a

black-box. Therefore, SMAP can take advantage of research

in AI and plug in efficient symbolic actions planners [24],

[25], [26], [27], [28], [5]. These action planners, which

reason about the discrete problem symbolically, are capable

of effectively handling complex specifications in definition-

domain planning languages, such as STRIPS.

B. Action Selection

Each Γq ∈ Γ maintains a list of actions, Γq.actions, that

are available for the selection process. This list is generally

a small subset of all the actions whose preconditions are

satisfied by q. For each a ∈ Γq.actions, Γq maintains a

utility estimate, UTIL(Γq, a). An action a ∈ Γq.actions is

then selected with probability proportional to its utility, i.e.,

ProbSelectΓq
(a) =

UTIL(Γqa)∑
a′∈Γq.actions UTIL(Γq′ , a′)

.

The selected action is kept as Γq.curr action.

In this way, actions associated with high utilities are

selected more often. This allows the sampling-based motion

planner to quickly expand the search toward promising

directions. At the same time, each available action has a

non-zero probability of being selected, which is important to

ensure that the search also expands along new directions.

When the group Γq is first created, the function

SYMBOLICPLANNER(A, q, φgoal) is invoked to compute an

action plan [ai]
n
i=1, which transforms the discrete state q to a

discrete state that satisfies φgoal. Since the overall objective

is to satisfy φgoal, if there are no action plans from q that

satisfy φgoal, then Γq is deleted from Γ. Otherwise, the

first action of the plan, a1, is added to Γq.actions. Thus,

initially, Γq.actions contains only one action. Note that this

provides an opportunity to use symbolic action planners that

can efficiently compute the first action of an action plan.

As the search progresses and new information is gathered

by the sampling-based motion planner, the utilities of actions

in Γq.actions are updated to take into account this new infor-

mation. When the utilities of all the actions in Γq.actions fall

below a certain threshold, SYMBOLICPLANNER(A, q, φgoal)
is invoked again to compute a new action plan [ai]

n
i=1, where

a1 6∈ Γq.actions. If it succeeds, as during initialization, the

first action of the plan is added to Γq.actions and is also

made available for selection.

In this way, the search is made broader when it becomes

difficult to make significant progress using the current actions

to guide the sampling-based motion planner. This allows the

sampling-based motion planner to explore new directions,

which could lead to further progress in the search for a

collision-free a dynamically-feasible trajectory that satisfies

the goal specification.

C. Group Selection

The utility of a group Γq ∈ Γ is defined as the utility of

the action currently selected in Γq, i.e.,

UTIL(Γq) = UTIL(Γq,Γq.curr action).

Then, as during action selection, a group Γq is selected from

Γ with probability proportional to its utility, i.e.,

ProbSelectΓ(Γq) =
UTIL(Γq)∑

Γ
q′∈Γ UTIL(Γq′)

,

which aims to strike a balance between being greedy and

being methodical by giving preference to groups associated

with high utilities, without ignoring other groups in Γ.

D. Action Utility

Drawing from earlier work in sampling-based motion

planning [29], [30], [31], [21], the utility estimates in this

5005



paper are designed to be computationally efficient and work

well in practice. Specifically, UTIL(Γq, a) is computed as

UTIL(Γq, a) =
1

(1 + nplan2)(1 + nsel)(1 + |Γa(q)|)
,

where nplan denotes the length of the action plan [ai]
n
i=1

(with a = a1) computed by SYMBOLICPLANNER when Γq

is first created (Algo. 1:14) and nsel denotes the number

of times EXPLOREACTION has been invoked with Γq, a
as arguments. Since the overall objective is to compute a

solution as quickly as possible, this scheme assigns high

utility to (Γq, a) when the action plan is short. To ensure

that SMAP does not spend all the time exploring a partic-

ular (Γq, a), the utility is reduced after each invocation of

EXPLOREACTION(T ,Γ,Γq, a). To avoid over-exploration,

the utility is also reduced as more and more tree vertices

are added to Γa(q). Further improving the proposed utility

estimates remains an important direction for future research.

E. Explore Action

The objective of EXPLOREACTION(T ,Γ,Γq, a) is to ex-

tend T toward the region map−1
S7→Q

(a(q)), so that T can

follow in the continuous space S the discrete action a.

This in itself a motion-planning problem, so SMAP can

draw from successful sampling-based approaches. Note that

EXPLOREACTION(T ,Γ,Γq, a) is invoked only for a short

time. In this way, if the exploration of action a does not ad-

vance the search, then SMAP will seek to explore alternative

actions in future iterations (see Algo 1).

EXPLOREACTION proceeds in an iterative fashion. At

each iteration, EXPLOREACTION first selects a vertex v from

which to extend T . At a second step, EXPLOREACTION

generates a dynamically-feasible trajectory ζ : [0, T ] → S
that starts at v.s, i.e., ζ(0) = v.s. ζ is generated by sampling

a control u ∈ U uniformly at random and simulating the

dynamics forward in time starting from v.s until a collision

occurs, a state-constraint is violated, or a maximum number

of steps is exceeded [6], [7]. Intermediate collision-free states

along ζ are added as new vertices to T . If a new vertex, vnew,

satisfies the goal specification, i.e., mapS7→Q(vnew) satisfies

φgoal, then a solution trajectory is obtained by concatenating

the tree trajectories from the root of T to vnew. Otherwise,

the above steps are repeated several times. The remainder of

the section describes in more detail the vertex-selection and

trajectory-generation strategies.

1) Vertex Selection: Over the years, numerous vertex-

selection strategies have been proposed in motion-planning

literature that rely on distance metrics, nearest neighbors,

probability distributions, and many others, as surveyed in

[6], [7]. Drawing from this body of research and earlier

work [21], [22], the vertex-selection strategy in this paper

combines the advantages of several successful techniques.

To bias the growth of T toward map−1
S7→Q

(a(q)), one

approach, proposed in [32], that has been shown to work

well in practice is to first sample a continuous state, s,
such that mapS7→Q(s) = a(q). The vertex from which to

extend T is then selected from the vertices in Γq ∪ Γa(q)

as the vertex whose associated continuous state, v.s, is the

closest to s according to a distance metric. The effect of this

strategy is to pull T toward map−1
S7→Q

(a(q)). Approximate

nearest neighbors [33], [34] are used to speed up computation

without any significant loss in accuracy.

Another objective of EXPLOREACTION is to grow T
toward unexplored or sparsely explored areas. This avoids

over-exploration and leads the search toward new directions.

As proposed in [35], [30], [31], [21], [22], an effective

strategy for these purposes is to select a vertex v in Γq∪Γa(q)

with probability inversely proportional to the density around

a ball centered at v.s. The effect of this strategy is to push

T toward unexplored or sparsely explored areas.

A third objective of EXPLOREACTION is to further extend

the search forward by increasing the depth of T , similar

to depth-first search in a discrete setting. The vertex from

which to extend T is then selected uniformly at random

from the last vertices (around 20 is shown to work well in

practice) added to T as a result of previous invocations of

EXPLOREACTION(T ,Γ,Γq, a).
The overall vertex-selection strategy then simply selects

at each iteration one of the above strategies uniformly at

random. The effect is a vertex-selection strategy that pulls

T toward map−1
S7→Q

(a(q)), while avoiding over-exploration,

finding new directions, increasing sampling in sparsely ex-

plored areas, and expanding the search depth.

2) Trajectory Generation: The trajectory-generation strat-

egy discussed in this section is designed to work well in

practice for a wide class of systems and actions. It is pos-

sible, however, to further improve these strategies by taking

advantage of the problem specification. In particular, one

can design specific trajectory-generation strategies for each

action a. As an example, if the action is “GraspObject,” then

the trajectory-generation strategy can be designed to produce

open-and-closing motions of the end-effector tool. In this

way, action-specific strategies can be used to further improve

the overall effectiveness of EXPLOREACTION(T ,Γ,Γq, a).

V. EXPERIMENTS AND RESULTS

The proposed method is tested on a variation of the 9-

puzzle game. An illustration is provided in Fig. 1. The robot,

Fig. 1. The car (with second-order dynamics) needs to pick up the objects
(shown in blue, labeled 1, . . . 9) one at a time and place them in the puzzle
cells corresponding to their labels, i.e., object i should be placed in area i.
Obstacles are shown in red. Figure better viewed in color.

which is a car, needs to pick up the cube objects (labeled
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1, . . . , 9) and place each object at the appropriate puzzle cell,

so that the label of the object matches with the label of the

cell. The car picks up an object by touching it, but it cannot

pick up more than one object at a time. The object that is

picked up can be released at any empty location (indicated

by the blue lines), including empty grid cells. After releasing

an object the car can pickup the same object or a different

objects. The car should avoid collisions with the objects at all

times (except the object that it picks up, which is allowed

to be in contact with the car). No collisions should occur

between two objects or with an obstacle.

The car is modeled as a second-order dynamical system.

Details can be found in [7, pp. 744]. The state s =
(x, y, θ, v, ψ) consists of the position (x, y) ∈ R

2 (|x|, |y| ≤
3.75m), orientation θ ∈ [−π, π), velocity v (|v| ≤ 3m/s),
and steering-wheel angle ψ (|ψ| ≤ 50◦). The car is controlled

by setting the acceleration u0 (|u0| ≤ 1m/s2) and the

rotational velocity of the steering-wheel angle u1 (|u1| ≤
100◦/s). The equations of motions are ẋ = v cos(θ); ẏ =
v sin(θ); θ̇ = v tan(ψ)/L; v̇ = u0; ψ̇ = u1, where L =
0.5m is the distance between the front and rear axles. The

body length and width are set to L and 0.5L, respectively.

The scaling factor is 1m = 0.14 workspace units.

The high-level discrete actions consists of picking up

an object and moving them from one puzzle cell to the

other, i.e., “PickUp”, “Release”, “PuzzleMoveLeft”, “Puz-

zleMoveRight”, “PuzzleMoveUp”, “PuzzleMoveDown”. The

problem specification is encoded in STRIPS. An illustration

of expressing one such action in STRIPS is provided below:

(:action PuzzleMoveUp

:parameters (?t ?x ?py ?ny)

:precondition (and (tile ?t) (position ?x)

(position ?py) (position ?ny)

(dec ?ny ?py) (at blank ?x ?ny)

(at ?t ?x ?py))

:effect (and (not (at blank ?x ?ny))

(not (at ?t ?x ?py)

(at blank ?x ?py) (at ?t ?x ?ny)))

This task provides several challenges. The discrete space is

complex. There is a large number of action plans, which pro-

vide solutions in the discrete setting. Due to the arrangement

of objects and obstacles, the objects cannot be transferred just

in any order. Moreover, the car will need to move the objects

around in the puzzle, from one cell to the other, in order to

achieve the desired configuration.

The experiments provide promising initial validation of

SMAP. These experiments highlight the importance of the

interplay between symbolic action planning and sampling-

based motion planning. Without symbolic action planning,

it is impossible for sampling-based motion planning just

by itself to find a solution, since the solution trajectory

must satisfy complex high-level specifications. We conducted

numerous trials (20 per planner). In each case a stand-alone

sampling-based path planners failed to find a solution. On

the other hand, SMAP was able to efficiently find a solution

in a matter of a few minutes (average 6 mins).

VI. DISCUSSION

This paper proposed a multi-layered approach, SMAP,

which incorporates symbolic, geometric, and differential

constraints into sampling-based motion planning. Given a

high-level goal specification in a planning-domain definition

language, such as STRIPS, SMAP computes a collision-

free and dynamically-feasible trajectory that satisfies the

goal specification. A crucial component of SMAP is the

interplay between symbolic action planning and sampling-

based motion planning. SMAP leverages from state-of-the-

art sampling-based motion planning the underlying idea of

searching for a solution by selectively sampling and explor-

ing the continuous space. To effectively incorporate collision-

avoidance and differential constraints imposed by underlying

dynamics, SMAP conducts a tree-based exploration of the

continuous state space. Drawing from research in AI, SMAP

uses symbolic action planning to identify discrete actions and

regions of the continuous space that sampling-based motion

planning can selectively sample and explore to significantly

advance the search. An objective for future work is to further

improve the interplay in SMAP between symbolic action

planning and sampling-based motion planning. We are also

working on adapting the proposed approach to real robotic

platforms. This will allow us to tackle increasingly complex

problems arising in robot manipulation and automation.
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