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Abstract— This paper presents a new algorithm for selecting
the optimal needle insertion point in images of hand veins for
robotic IV insertion. The 3D coordinates and orientation of
the vein that the algorithm detects would eventually be fed
to a robot for insertion of the IV needle. The goal of the
algorithm is to identify venous bifurcations and determine an
insertion point and approach angle for the needle in between
their branches. The algorithm uses an annular tracking window
that tracks along the veins and searches for bifurcations. We
describe methods for centering the initial bifurcation estimates,
error-checking, and positioning the needle exactly in between
the bifurcation branches. We conclude with an experimental
study of 50 subjects that shows a 32.4% success rate at detecting
all bifurcations and a 82.6% success rate at finding at least one
bifurcation in each image that contains bifurcations.

I. INTRODUCTION

A. Background

Intravenous (IV) catheterization is a medical procedure
wherein a flexible plastic tube, or catheter, is inserted into
a vein for the delivery of medicinal fluids. The catheter
initially surrounds a needle that punctures the wall of a vein
so that the catheter can be slid off of the needle and into the
vein, whereupon the needle is removed. Nearly 1 billion IV
insertions take place in the United States annually, and 28%
of those insertions fail on the first attempt in normal adults,
with appreciably higher failure rates in children [1], [2].
Failed insertions commonly cause bruising and pain, but can
also lead to long-term nerve damage and schlerosis of the
veins.

Robotic IV insertion has been proposed as a possible
solution to increase the insertion success rate through pre-
cise movement of the needle and enhanced sensory abili-
ties [3], [4]. Towards this end, we are currently developing
a 7-DOF robot, as shown in Figure 1, that can insert either
under teleoperation or autonomously. Such a system could
be used to treat people in remote or hostile locations where
a human practitioner could not be present. Autonomous in-
sertion could be used in hospitals to increase the success and
through-put of phlebotomists, nurses, and anesthesiologists.
While good mechanical design can provide precise needle
motion, the robot must also include robust vein detection
through various sensors to provide the target location and
insertion trajectory for the needle.

One of the reasons for the high failure rate for human
practitioners is the difficulty of locating veins precisely.
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Fig. 1. 7 DOF robotic IV insertion system currently under development.

Practitioners often have great difficulty seeing or feeling
small veins, as found in women and children, or veins that
lie beneath a layer of fat, as found in children and obese
patients. However, detection of the veins through various
sensors could allow a robot to target veins that human
practitioners otherwise could not localize. In [3], robotic
palpation, or tactile sensing, was used to locate veins by
instrumenting a probe with a force sensor and examining
changes in tissue stiffness across the arm. However, the
pressure of palpation may roll the vein away from the probe,
thereby skewing the position information. Further, palpation
suffers from an inability to map more than a small segment
of vein or provide real-time tracking of the vein in case the
vein/arm moves during insertion. An alternative is the use of

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4597



infrared imaging, as in [4]. The deoxygenated haemoglobin
in veins absorbs infrared light more than surrounding tissues,
so veins appear as dark on a light background under infrared
light [5]. Such imaging systems are commercially available
for assisting human practitioners and can be readily adapted
to provide images of veins to a robot [6], [7]. However, a
topic of ongoing research is how to provide a robot with the
ability to analyze and interpret these vein images so as to
select an optimal insertion location.

The conventional wisdom of many practitioners is that
inserting at a venous bifurcation minimizes the vein rolling as
opposed to inserting along the midsection of a single vein be-
cause bifurcations are tethered by more connective tissue [8].
For this reason, our algorithm searches the venous network
for bifurcations as the optimal insertion points. Since the
dorsum of the hand contains far more bifurcations than does
the forearm or antecubital fossa (inside of the elbow), we
are restricting our insertions to the hand. Concentrating on
the hand has the additional benefits of allowing for easier
mechanical access to the insertion point and the ability to use
simple transillumination of the veins, whereas the forearm is
too thick for transillumination.

B. Related Work

Bifurcation detection has been studied widely for images
of retinal arteries. In [9], the entire image is searched using
the assumption that bifurcations will occur at areas of high
variation in Sobel edge direction. Similarly, in [10] and [11]
a course grid of seed-points that looks for local gray-scale
minima between oppositely-signed edges is applied across
the entire image. Recursive tracing proceeds from these
seed-points by moving in the direction that best fits the
vein model of a gray-scale minimum between antiparallel
edges. However, searching the entire image can generate
many false positives, especially if the image is noisy or
has artifacts. In the case of our particular vein images, the
variation in gray-scale intensity and contrast of the veins
leads to poor edge detection such that the edges cannot
be followed reliably. An alternative to searching the entire
image is to trace along the arteries from a known landmark,
hopefully reducing the number of false-positives. In [12],
Canny edge detection is performed, and tracing occurs along
the detected edges, starting from the optic disk. In [13],
a steerable Gaussian filter is used to trace from the optic
disk. This tracing assumes thin, well-defined vessels with
consistent cross-sectional profiles. Unfortunately, the vessels
in our images exhibit cross-sectional intensity profiles of
varying size, noisiness, and degree of saturation such that
looking at their cross-sectional profile does not give much
reliable information.

C. Overview

In this paper, we present a new algorithm for finding
the position and orientation of venous bifurcations in an
image. We first detail a method for locating the wrist veins
as a reliable starting point for vessel tracking. We then
present a new annular tracking window that examines the
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Fig. 2. (a) Imaging system. (b) Raw image of veins. Veins appear as dark
on a light background. (c) Enhanced image. Veins now appear as bright on
a dark background.

macro-structure of the vein instead of a small slice, allowing
for tracking noisy, variable veins with erratic edges, as
well as detecting bifurcations during the tracking process.
We describe a method for centering an initial bifurcation
estimate on the true center of the bifurcation by using a
set of concentric annular windows. We detail methods for
error-checking and finding the actual point of insertion in
between the branches of a bifurcation. Finally, we discuss
the experimental results of applying our bifurcation detector
to a set of sample images.

II. IMAGE ACQUISITION

A. Imaging System

Our imaging system is a low-cost approximation of
commercially-available infrared imaging systems such as [6]
and [7]. Our setup transilluminates the hand from the palm
side and views the illuminated venous structure from the
dorsal side, as shown in Figure 2(a). The light source consists
of 5 high-power Osram SFH-4730 infrared LEDs (λpeak =
850nm) spread out across the palm and covered with a
diffusing glass to provide even lighting. It should be noted
that according to [5] and [14], the light-blocking capacity
of deoxyhaemoglobin (the deoxygenated blood in veins) is
highest at a wavelength of 760nm and is reduced by as much
as 50% from its peak value at 850nm. Further, the light-
blocking capacity of oxyhaemoglobin (the oxygenated blood
in arteries) is much lower at 760nm than at 850nm. There-
fore, the contrast between veins and the surrounding tissues,
and in particular arteries, is maximal at 760nm, resulting
in more readily-identifiable veins in the images and less
ghosting effects from faint arteries. However, the available
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Fig. 3. (a) Identifying wrist branches with histogram at bottom of image. (b) Polar histogram of annular tracking window. (c) 1 Vein crossing represents
a faded, single vein. (d) 2 Vein crossings represent a solid, single vein. (e) 3 Vein crossings represent a bifurcation. (f) Incremental movement of tracking
window.

light source for a wavelength of 850nm was considerably
more practical. The camera is a Videre STOC stereo camera
(6 cm baseline) with the IR filter removed and provides
640x480 monochrome images, as shown in Figure 2(b). The
stereo camera allows us to calculate the 3D position and
orientation of the vein that we detect in a 2D image.

B. Image Enhancement

The veins are often difficult to identify in the raw images
due to low contrast and fading of some vein sections, as
seen in Figure 2(b). For this reason, we enhance the images
to increase the vein vs. non-vein contrast and normalize
the appearance of the veins so that all sections appear
similar. We use Laplace of Gaussian (LOG) filtering (σ = 8,
window width of 5σ, determined empirically) to accentuate
the vein macrostructure over the background and histogram
equalization to improve the overall contrast in the image.
Figure 2(c) shows the enhanced version of the raw image
seen in Figure 2(b).

III. FINDING INITIAL BIFURCATION ESTIMATES

A. Identifying Wrist Veins

Our bifurcation finder operates by finding the most promi-
nent veins at the base of the wrist and tracking along
those veins with a window that looks for bifurcations. The
wrist veins are composed of the basilic, cephalic, and their
branches, such as the accessory cephalic vein. The desired
bifurcations occur in the dorsal metacarpal veins in the top
of the hand. Whereas the venous network in the hand varies
greatly between individuals, the location of wrist veins is
fairly consistent, providing an ideal starting location for
tracking. As in [12] and [13], we track along the veins from a
known location instead of searching the entire image because
a bifurcation that we detect while tracking along a vein is

more likely to be real than a bifurcation that we detect at a
random point in the image. To identify the wrist veins, we
take a horizontal sample strip (height = 8 pixels, determined
empirically) across the bottom of the image and examine
the smoothed histogram of gray-scale intensity, as shown
in Figure 3(a). After collapsing the strip to a single pixel-
width height by taking the median in the vertical direction,
we apply gaussian filtering in the horizontal direction and
hysteresis-thresholding to mitigate the noise in the histogram.
Since veins appear as bright against a dark background,
they are identified on the histogram as local maxima. Each
identified wrist vein becomes a starting point for tracking. We
use the histogram to size each tracking window to be twice
the width of the wrist vein that it will track. The tracking
window is larger than the vein being tracked so that the
tracking window is never entirely inside the vein.

B. Tracking Veins

Tracking along the wrist veins employs a steerable window
that uses information about the macrostructure of the vein
section contained within the window to determine how to
move along the vein. The tracking window consists of an
annulus (thickness = 8 pixels, determined empirically) that
is centered on a section of the vein. A polar histogram
of gray-scale intensity in the annular sample describes the
shape of the vein section contained within the window. As
before, the veins are identified in the smoothed histogram as
local maxima. After collapsing the annulus to a single pixel-
width thickness by taking the median in the radial direction,
we apply gaussian smoothing in the angular direction and
hysteresis-thresholding to reduce noise in the histogram.
Figure 3(b) shows the tracking window in detail.

Figures 3(c) - 3(f) show how the number of vein crossings
detected in the tracking window conveys information about
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Fig. 4. Tracking along wrist veins. (a) Un-clustered initial bifurcation
estimates. Small black dots show the path of the tracking window, and large
red dots show bifurcation estimates. (b) Clustered estimates of bifurcations
(shown as large red dots).

the section of vein within the window and how the tracking
window should move along the vein. We assume that one
vein crossing (C1) indicates that the tracking window is
centered on a faded, single section of vein, two crossings
(C1, C2) indicate that the tracking window is centered on
a solid, single section of vein, and three vein crossings
(C1, C2, C3) indicate that the tracking window is centered
on a vein near a bifurcation. In all three cases, the track-
ing window steps a small amount µ (5 pixels, determined
empirically) in the new direction

−→
N that is computed as the

vector between the window center and the vein crossing most
closely aligned with the previous direction of movement

−→
L .

The degenerate cases are zero vein crossings, which indicates
a lack of information, and more than three crossings, which
indicates noise. In either degenerate case, the tracking win-
dow steps in the last known direction of movement. In the
case of a detected bifurcation, the tracking window continues
tracking along the branch most closely aligned with the last
known direction of movement until it reaches an edge of
the image or stalls, whereupon it returns to track along the
alternate (third) branch of the bifurcation. Figure 4(a) shows
an example of vein tracking and initial bifurcation detection.
Due to the thickness of the veins, there are many points in the
vicinity of a single bifurcation that show three vein crossings,
or a detected bifurcation. Clustering all of the bifurcation
estimates based on distance from each other reliably thins
this mass of estimates to one estimate per actual bifurcation
detected, as shown in Figure 4(b).

IV. REFINING AND ERROR-CHECKING BIFURCATION
ESTIMATES

A. Centering the Bifurcation Estimate

The initial bifurcation estimate often does not coincide
with the true center of the bifurcation due to the asymmetric
distribution of initial guesses that were eventually clustered.
Thus, we need an algorithm for finding the true center of
the bifurcation given a moderately-close initial estimate. We
have devised a solution to this problem by looking at the
correlation in a set of concentric annular samples taken at
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Fig. 5. (a) Concentric annular samples near a bifurcation. (b) Correlation
in the set of annular samples in the vicinity of the bifurcation. (c) Example
of centering algorithm on a real bifurcation.

different diameters, as shown in Figure 5(a). These samples
are resized versions of the tracking window described above.
If we position this set of annuli at each pixel in the vicinity of
the bifurcation and examine the correlation, we find that the
global maximum of the correlation corresponds to the true
center for bifurcations with 3 branches. Since there are more
than two samples, we compute the correlation as the sum of
correlations between adjacent rings. Figure 5(b) shows the
correlation plot for the example bifurcation in Figure 5(a).
Figure 5(c) shows an example of the centering algorithm on
a real bifurcation. Note that the initial estimate is appreciably
off-center but that the centered estimate appears directly
at the center of the bifurcation. For brevity, we omit the
derivation of this centering algorithm.

B. Error-Checking

We employ two simple methods of error-checking to
detect false-positive bifurcations. In a fashion similar to the
centering algorithm, we examine concentric annular samples
of each bifurcation over 35 different diameters and count
the number of diameters that elicit the characteristic three
vein crossings of a true bifurcation. If our estimate is a
true bifurcation, then it looks like a bifurcation over many
scales, whereas false-positives appear like bifurcations over
only a few diameters. In practice, false-positives almost
uniformly return a low number of counts (below 10), whereas
true bifurcations return a much higher number (typically
above 25). A final, simple error-check is to ensure that each
bifurcation is centered on a bright spot (vein). Figure 6(a)
shows examples of both error-checks. Note that the false
positive is centered on a dark spot (non-vein) and only shows
the three vein crossings for the particular diameter shown,
whereas the true bifurcation is centered on a bright spot and
shows the three vein crossings over most diameters.
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Fig. 6. (a) Error-checking for false-positives. (b) Finding the insertion
point, angle.

C. Finding the Insertion Point

The desired insertion point at a bifurcation is not the center
of the bifurcation, but, rather, along the edge in between the
two branches of the bifurcation furthest from the wrist, as
shown in Figure 6(b). To find this point, we use Canny edge
detection to compute the edges of the veins in the vicinity of
the bifurcation. This edge detection uses locally determined
threshold values because the intensity of the veins varies
somewhat over the image, precluding the usage of global
threshold values. Once the local vein edges are found, we
sample along the line that bisects the two distal branches
of the bifurcation until we intersect with a vein edge. This
intersection at the edge of the vein is the desired insertion
point, and the bisecting line is the desired direction for the
IV needle. It is acceptable for the bisecting line and needle
not to align exactly with the branch nearest the wrist because
the needle will not enter the vein far enough to hit the back
wall, and the catheter is sufficiently flexible to deflect safely
away from the back wall and into the lumen of the base vein
branch.

D. Weighting Multiple Bifurcations

If multiple bifurcations are detected in the same image,
we must be able to decide which is optimal for insertion.
Towards this end, we examine each bifurcation and compute
a weighted score based on a variety of desirable traits. These
traits include the correlation found during the centering pro-
cess, orientation with respect to the wrist direction, distance
from the center of the hand, and average gray-scale intensity
in the vicinity of the bifurcation. The correlation and in-
tensity metrics address our confidence in the authenticity of
the bifurcation. The orientation and distance metrics address
the practical concerns that we wish to insert the needle in
the direction of the wrist and near the center of the hand,
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(c)

C

B

A

(d)

Fig. 7. (a,b,c) Examples of correctly identified and characterized bifur-
cations. The arrows show the desired position and orientation of the IV
needle. (d) Failure modes. Point A is a false negative, point B is a correctly
identified but misplaced bifurcation, and point C is a false positive that arose
because two separate veins appeared to be a bifurcation.

as is standard practice among practitioners. While these
metrics make sense from an engineering perspective, it will
be necessary in the future to determine additional clinical
criteria used by practitioners to select amongst bifurcations
and implement the same weighting in our algorithm.

V. EXPERIMENTAL METHODS AND RESULTS

We developed our bifurcation-finding algorithm on a set
of thirteen images that provided for iterative refinement.
We determined algorithm parameters such as LOG filter σ,
window step size µ, and annular thickness empirically in
these 13 images. To test the general applicability of the
algorithm, we applied it to fifty images that were unseen
during development. The test population was 72% male, had
an age range of 22-56 (µ = 31.0, σ = 9.1), and was 72%
caucasian and 28% asian. To compare the performance of
our algorithm with that of human practitioners, we provided
four medical doctors with the same images and asked them
to identify all bifurcations, without preference to size or
desirability. Our algorithm successfully detected and char-
acterized 32.4% of the bifurcations identified by the doctors
with a false positive rate of 11.6%. However, our algorithm
correctly found and characterized at least one bifurcation
in 82.6% of the images that contained bifurcations, which
comprised 92% of all images (4 images did not contain any
bifurcations). Assuming that it is clinically sufficient to find
only one (instead of every) bifurcation per hand for the robot
to insert an IV, our vein-finding algorithm would allow us to
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insert on the majority (82.6%*92% = 76%) of individuals.
Figures 7(a-c) show examples of successfully detected and
characterized bifurcations, and Figure 7(d) shows several
failure cases. Although the algorithm was not tested on
children, we expect future pediatric tests to be successful due
to the algorithm’s ability to auto-size the tracking window
to differently-sized veins. It should be noted that the large
width of the tracking window creates margins at the edges of
the image that are unsearchable by the algorithm, whereas
humans can search the entire image. In fact, many of the
bifurcations that the doctors identified and our algorithm
did not were near the edges of the image/hand where the
algorithm could not search. These “missed” bifurcations are
not as important as others because it would be inconvenient
to insert an IV at the edge of the hand.

VI. DISCUSSION AND CONCLUSION

In this paper we developed a new visual vein-finding tech-
nique for use in a robotic IV system, as shown in Figure 1. In
such a system, our algorithm would analyze infrared images
of the hand to locate suitable insertion points at bifurcations
and provide the robot with the 3D position and orientation
of the IV needle for insertion. Specific to our vein-finding
algorithm, we discussed a new method for tracking veins
that uses an annular tracking window to examine the macro-
scale structure of local sections of vein. We then discussed
a method for centering our initial rough bifurcation estimate
by maximizing the correlation in a set of concentric annular
samples near the bifurcation. We detailed a method for error-
checking bifurcation estimates and positioning the IV needle
exactly in between the branches of a bifurcation. Finally, we
tested the performance of our algorithm on a set of 50 images
and were able to correctly find and characterize 32.4% of
all bifurcations with a false positive rate of 11.6% and find
at least one bifurcation in 82.6% of images that contained
bifurcations.

The experimental results have revealed several insights
as to the limitations of our algorithm. The algorithm has
particular difficulty in detecting closely-spaced bifurcations
because they appear as a single, noisy bifurcation rather than
distinct bifurcations. A limitation of the centering algorithm
is the assumption that bifurcations consist of 3 straight
branches. In some cases, there are more than 3 branches, or
the branches are sufficiently curved to break the centering
process. A further problem is that each tracking window
maintains a constant size as it tracks along a wrist vein, even
though the veins periodically change diameter. This can lead
to either too much noise for an oversized tracking window
or too little information for an undersized tracking window.
Dynamic resizing of the tracking window is a potential
solution to this problem.

Beyond addressing these limitations, future work will
focus on using depth information from the stereo images
to calculate the desired world-frame position and orientation
(roll, pitch, and yaw) of the IV needle based on the selected
bifurcation in a particular image. The robot will use this
calculated configuration to generate a trajectory for insertion.

Real-time visual tracking of the selected insertion point will
continue to update the desired insertion trajectory for the
robot throughout the insertion. We will also investigate the
effect of light scattering on the accuracy of depth information
in the stereo infrared images, as well as possible benefits of
switching between infrared and visible-light imaging so as
to switch between internal and external views of the hand,
respectively.
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