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Abstract— A new approach for solving an optimal control
problem of ball pitching with an underactuated human-like
robot arm is proposed. The system dynamics is simplified to
a planar two-link robot with actuation only at the shoulder
joint and a passive spring at the elbow joint representing the
stiffness of the arm. The objective is to accelerate the ball
from an initial configuration at rest in such a way that the
projection of its velocity along a certain elevation angle is
maximal at a predefined release line. The suggested procedure
makes use of a parameterization of the robot motion in terms
of geometric relations among the generalized coordinates. We
systematically formulate a necessary condition for an optimal
motion resulting in a nonlinear differential equation that
describes a synchronization of the joint angles. A suitable
solution is found by numerically searching over a finite number
of free initial conditions.

Index Terms— Underactuated Mechanical Systems, Optimal

Control, Motion Planning

I. INTRODUCTION

How do humans pitch a ball or throw a javelin? What is

the motor control pattern associated with the motion? How to

train an athlete in order to optimize the trajectory? These are

interesting questions in research fields ranging from medical

science to robotics and control engineering.

In order to approach these questions we suggest an analyt-

ical procedure for a simple but still representative model that

describes the dynamical interaction of the main parts of the

human body involved in the pitching motion. The model of a

two-link pendulum is used with actuation at the shoulder and

a passive spring-loaded elbow joint accounting for the arm

stiffness. We search a motion for which the ball attached to

the end effector reaches the maximal velocity along a certain

elevation angle at a predefined release line when started

from a resting position. Although we do not constrain the

magnitude of the controlled torque at the shoulder, the lack

of direct actuation at the second joint1 limits reachable ball

velocities at the release line. Note that it is not a problem to

deal with more complex models that have additional actuated

degrees of freedom.
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1A linear spring added at the second joint can generate only certain torque
profiles and is considered as a part of the dynamical model rather than an
actuator.

The main contribution of this paper is a particular char-

acterization of a class of optimal motions for mechanical

systems with underactuation degree one. We show that, if

such an optimal motion exists, then by necessity there is a

geometric function among the generalized coordinates that

can be found as a solution of a particular nonlinear differ-

ential equation with coefficients determined by the physical

parameters of the robot. For certain initial conditions, which

are partly given by the initial configuration and initial control

torque, it is possible to reconstruct an (at least locally)

optimal trajectory.

The interest in human-like ball pitching robots reaches

back to a patent [8] in the 1960’s. Nowadays there is a

large number of experimental setups for studying human-

like ball-pitching motions and numerous videos and news

can be easily found in the internet. For a 2-degrees-of-

freedom model, such as introduced above, we can find

some control strategies reported in [3], [4], [6]. Detailed

analysis of the throwing system, physical characteristics,

and performance of a control strategy in experiments are

presented in [4], where a model with constraints instead of

a spring is analyzed as well. A deceleration control strategy

is proposed in [6] based on analysis of zero dynamics.

In this paper we concentrate on the motion planning pro-

cedure for optimal ball pitching. The problem statement and

some preliminaries are discussed in Section II. In Section III

we present the main result: a necessary condition valid along

an optimal pitching motion, provided it exists. It is written in

the form of an integral-differential dynamical system, which

is satisfied by a function that represents a synchronization

of the joint angles. A numerical study is presented in

Section IV. A discussion of the results together with some

concluding remarks are given in Section V. Experimental

studies are intended for future work.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Modeling the Arm Dynamics

Approximating the dynamics of a human arm in general by

the that of a two-link planar pendulum clearly oversimplifies

the description of the system. Indeed, several degrees of

freedom together with the 3D nature of the trajectory are

neglected, spin effects through fingers and wrist, internal

dynamics in muscles as well as sensory and feedback mech-

anisms in grasping are dropped. Meanwhile, it is apparent

that for fast motions such as pitching, the dynamics of a

two-link planar pendulum is relevant and captures the main

parts of the dynamical behavior of the arm responsible for

accelerating a ball in the hand.
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The equations of motion of the two-link planar pendulum

with shoulder and elbow joints (see Fig. 1) are compactly

written as

d

dt

[

∂L

∂q̇1

]

−
∂L

∂q1
= τq1

,
d

dt

[

∂L

∂q̇2

]

−
∂L

∂q2
= τq2

, (1)

where L = (K1 + K2 + Kb) − (Π1 + Π2 + Πb) is the

Lagrangian formed by the kinetic and potential energies

of the 1st and 2nd links and the ball, respectively (see

Appendix A for explicit expressions and model parameters).

The signal τq1
is the generalized torque at the shoulder and

should be presumably of large amplitude for moving the

whole arm, while the signal τq2
is the generalized torque

at the elbow and expected to be smaller.

Bio-mechanical mechanisms for generating the torque

τq2
in an elbow of a human arm as well as ways for

approximating it are important points for a discussion. There

are no doubts that an elbow is actively controlled during a

human pitching motion. However, there are several reasons

to postulate that for the model (1) the signal τq2
is mainly

generated by an elastic element (see also [1]):

• The elbow moves quickly with high amplitude, which

can be interpreted as well-tuned open loop control

strategy that can be realized by a spring-like actuator.

• Passive or semi-passive actuation at the elbow joint

does not necessarily restrict possible motions, but rather

allows to have reasonable and human-like proportions

of mass distribution, torque levels and response time.

• If the second link would be directly actuated, then the

search for an optimal pitching trajectory should take

into account the limits of τq2
. Otherwise an optimal

motion does not exist, since the arm could move as

fast as possible even within an arbitrary short interval

of time. Assuming that the second link is not actuated

but spring-loaded, we can remove such limitation and

search for a motion that utilizes dynamical properties

of the mechanical structure as much as possible.

From now it will be assumed that the torque τq2
is generated

by a linear spring2

τq2
= −K (q2 − q1 − qoff) , (2)

where the spring coefficient K and the offset qoff are

constants. Combining the second equation of (1) with (2),

we obtain the equation of motion for the second link as

d

dt

[

∂L

∂q̇2

]

−
∂L

∂q2
+ K (q2 − q1 − qoff) = 0 . (3)

It has no control input, so the mechanical system (1) is

underactuated with one passive link; this type of two-link

pendulum is also known as Pendubot [7], but here equipped

with a spring about the elbow joint.

2All arguments below can be repeated in the same way if the spring has
a non-linear characteristic.

B. Problem Formulation

An initial configuration of the two-link pendulum (1)–

(2) at t = 0 is given (see Fig. 1(a)). Let the vertical line

x = Xb(R) be the pitching line at which the ball shall be

released (see Fig. 1(b)). The problem is to determine the

optimal trajectory of the ball, i.e. finding

• time evolution of the generalized coordinates q1(t) and

q2(t) ,

• time evolution of the external (control) torque τq1
(t) ,

• the duration of the motion TR > 0 ,

such that the horizontal component of the final ball velocity

Vbx(TR) is maximized at the release line x = Xb(R)
starting from rest at x = Xb(B) . Here we assume that the

end effector can be adjusted to a desired elevation angle at

ball release. One could also choose to maximize the final ball

velocity along an angle different from the horizontal. The

considerations shall be restriced to smooth pitching motions

only.
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(a) The initial configuration
of the two-link pendulum.
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(b) The final configuration and target trajec-
tory.

Fig. 1. The problem is to determine the trajectory of the ball and
the corresponding behavior of both links starting at rest at the initial
configuration and ending at the release point with maximum ball velocity
in the horizontal direction.

III. MAIN RESULT: CHARACTERIZATION OF OPTIMAL

PITCHING FOR THE SYSTEM (1)–(2)

Let us assume that the optimal pitching trajectory

q1 = q1⋆(t), q2 = q2⋆(t), t ∈ [0, TR] (4)

from a given configuration [q1⋆(0), q2⋆(0)] indeed exists.

Below we suggest a series of steps to convert the stated

problem into a problem of finding initial conditions for a

nonlinear differential equation.

Step 1

Let us note that for an optimal trajectory (4) we must have

an optimal evolution of the abscissa of the ball coordinates

in the inertia frame defined as (see Fig. 1):

Xb⋆(t) = l1 cos(q1⋆(t)) + l2 cos(q2⋆(t))

evolving from Xb⋆(0) = Xb(B) to Xb⋆(TR) = Xb(R) .

Since the optimization problem is formulated in terms

of the abscissa of the ball coordinates, it makes sense

to reformulate our dynamics accordingly. Suppose that the
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implicit parameterization of the optimal motion by a scalar

variable t is resolved on some sub-interval3 of the interval

[0, TR] and the geometric function φ⋆(Xb) is found as

q1⋆(t) = φ⋆ (Xb⋆(t)) , (5)

then we must have

q2⋆(t) = arccos

(

Xb⋆(t) − l1 cos(φ⋆ (Xb⋆(t)))

l2

)

. (6)

The task of finding q1⋆(t) and q2⋆(t) can be reformulated

as the problem of finding Xb⋆(t) and φ⋆(Xb) by introducing

the change of coordinates

q1 = φ (Xb) , q2 = arccos

(

Xb − l1 cos(φ (Xb))

l2

)

. (7)

Step 2

Rewriting the non-actuated equation (3) in the new coor-

dinates (7) gives the following scalar 2nd-order differential

equation

α (Xb, φ, φ′) Ẍb(t)+β (Xb, φ, φ′, φ′′) Ẋ2
b (t)+γ (Xb, φ) = 0 ,

(8)

which describes the time evolution of the independent con-

figuration variable Xb , given a C2 –smooth function φ(Xb) .

Explicit expression of the scalar coefficient functions α(·) ,

β(·) , and γ(·) can be found in Appendix B.
Note also that solutions of (8) together with the new

coordinates (7) can be used to compute the control torque

τq1 in the first equation of the system dynamics (1) along a

particular trajectory.

Step 3

The equation (8) is integrable in closed form [5]. Straight-

forward calculations show that the value of the function

I
(

Xb(0), Ẋb(0),Xb(t), Ẋb(t)
)

=

= Ẋ2
b (t) − exp

{

−2
Xb(t)
∫

Xb(0)

β
(

τ,φ(τ),φ′(τ),φ′′(τ)
)

α
(

τ,φ(τ),φ′(τ)
) dτ

}

Ẋ2
b (0)

+
Xb(t)
∫

Xb(0)

exp

{

2
s
∫

Xb(t)

β
(

τ,φ(τ),φ′(τ),φ′′(τ)
)

α
(

τ,φ(τ),φ′(τ)
) dτ

}

2γ
(

s,φ(s)
)

α
(

s,φ(s),φ′(s)
) ds

(9)

is kept zero for all t ≥ 0 along any well-defined solution of

the system (8).
By assumption, the two-link pendulum (1) is at rest in the

beginning of the motion. Therefore, the desired ball velocity

Ẋb⋆(0) is zero even though the acceleration Ẍb⋆(0) might

be different from zero due to external torques. With such

initial conditions we can exploit the conserved quantity (9)

as determining equation for the velocity at the end of the

pitching motion, i.e. for t = TR it follows:

Ẋ2
b (TR) =

Xb(R)
∫

Xb(0)

−exp

{

2
s
∫

Xb(R)

β
(

τ,φ(τ),φ′(τ),φ′′(τ)
)

α
(

τ,φ(τ),φ′(τ)
) dτ

}

2γ
(

s,φ(s)
)

α
(

s,φ(s),φ′(s)
) ds

(10)

3Actually, one needs to partition the time interval [0, TR] into singularity-
free sub-intervals. The arguments below should be applied to each sub-
interval of such a partition. However, below we will show the result for
only one of them.

For the optimal motion (5) the value of Ẋb(t) at t = TR is

maximal. Therefore, the function φ⋆(·) defined by (5) is not

arbitrary, but the maximizer for the performance index

J =
Xb(R)

∫

Xb(0)

−exp

{

2
s
∫

Xb(R)

β
(

τ,φ(τ),φ′(τ),φ′′(τ)
)

α
(

τ,φ(τ),φ′(τ)
) dτ

}

×
2γ

(

s,φ(s)
)

α
(

s,φ(s),φ′(s)
) ds → max .

(11)

Step 4

The functions α(·) and β(·) in the performance index

(11) have the following structure

α
(

τ, φ, φ′
)

= ρ1

(

τ, φ
)

· φ′ + ρ2

(

τ, φ
)

β
(

τ, φ, φ′, φ′′
)

= ρ1

(

τ, φ
)

· φ′′ + ρ3

(

τ, φ, φ′
)

,
(12)

where ρ1(·) , ρ2(·) , ρ3(·) can be obtained from the expres-

sions of α(·) and β(·) used in (8). We can exploit this

structure for rewriting the first factor in (11) independent

of φ′′(·) such that the optimization task takes the standard

form4

Xb(R)
∫

Xb(0)

Ψ
(

s, φ(s), φ′(s)
)

ds → max (13)

with

Ψ = −exp

{

2
s
∫

Xb(R)

ρ3(τ,φ,φ′)−ρ′

1

(

τ,φ
)

φ′
−ρ′

2
(τ,φ)

ρ1(τ,φ)φ′+ρ2(τ,φ) dτ

}

×

[

ρ1(s,φ)·φ′+ρ2(s,φ)
ρ1(Xb(0),φ)·φ′+ρ2(Xb(0),φ)

]2
2γ(s,φ)

α(s,φ,φ′) .

(14)

It is a well-known fact [2] that, if a maximizer φ(·) of (13)

is C2 –smooth, then by necessity it should satisfy the Euler–

Lagrange equation

d

ds

[

∂

∂φ′
Ψ

]

−
∂

∂φ
Ψ = 0 . (15)

This is not a differential equation with respect to time,

it is written in terms of a variable that parameterizes the

position on the trajectory of an optimal motion. In fact, it

is an integral-differential equation that can be equivalently

rewritten5 as a 4 th-order nonlinear differential equation with

φ = φ⋆(s) being a solution.

Summary

Let us summarize our findings.

Theorem 1: Consider the planar two-link pendulum (1)

such that the external torque at the elbow joint is generated

by a spring (2), whereas the torque at the shoulder joint is

a variable that can be chosen arbitrary. Suppose that there

exists a C2 –smooth optimal pitching motion for a given

starting configuration of the robot (1), which is the solution

of the problem stated in Section II. Then, by necessity, there

exists the function φ⋆(s) defined by (5), which must be a

solution of the equation (15).

4Detailed steps can be found in Appendix C.
5It can be done provided the solutions are smooth.
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IV. NUMERICAL SOLUTION

In this section we present two out of many solutions

of equation (15) computed numerically. The corresponding

pitching trajectory of the robot (1)–(2) is finally obtained

by solving the reduced dynamics (8). The physical model

parameters of the two-link pendulum (1)–(2) used for the

numerical study are given in Appendix A.

Considering only C4 –smooth solutions of the integral-

differential equation (15) allows to rewrite it as the following

4 th-order differential equation

φ(4)(Xb) = f
(

Xb, φ(Xb), φ
′(Xb), φ

′′(Xb), φ
(3)(Xb)

)

(16)

with respect to the independent variable Xb . Numerical

integration of (16) requires the initial conditions
[

x0 = Xb(0), φ(x0), φ′(x0), φ′′(x0), φ(3)(x0)
]

. (17)

The values for x0 and φ(x0) are given by the initial

configuration of the robot

x0 =
[

Xb(t) = l1 cos q1(t) + l2 cos q2(t)
] ∣

∣

t=0

φ(x0) =
[

φ(Xb(t)) = q1(t)
]
∣

∣

t=0
.

Providing a value for the initial control torque τq1
(0) makes

it possible to find the initial value for φ′(x0)

φ′(x0) = h
(

x0, φ(x0), τq1
(0)

)

using the expressions for the second derivatives q̈(0) from

(1)–(2) and Ẍb(0) from (8). Note that the velocities q̇(0) and

Ẋb(0) are all equal to zero given the fact that the motion

starts from a resting position. The initial conditions φ′′(x0)
and φ(3)(x0) can be obtained providing the values for τ̇q1

(0)
and τ̈q1

(0) , which to some extent are free values to choose.

Let us consider the following initial configuration of the

robot:

q1(0) = π/2 − 0.15 rad

q2(0) = q1(0) − 0.5 rad

}

⇒

{

x0 = 0.35 m

φ(x0) = 1.421 rad ,

such that we can solve the differential equation (16) on the

interval Xb ∈ [−0.35, 0.35] without occurence of singular-

ities6, where the inital ball postion is Xb(0) = 0.35 m and

Xb(TR) = −0.35 m is the ball positon at the release line.

Further, we choose an initial control torque τq1
(0) = 2 Nm

determining φ′(x0) as depicted in Fig. 2(a). The effect of

varying the initial conditions φ′′(x0) and φ(3)(x0) on the

solution7 of (16) is visualized in Fig. 2(b) in terms of the

final ball velocity Ẋb(TR) at the release line8, which can be

computed solving (9). Singularities occur for φ′′(x0) > 0 ,

which is the reason why the grid in Fig. 2(b) ends there;

varying φ(3)(x0) is obviously insignificant to the solution.

Here we illustrate the two cases of possible initial condi-

tions (17) shown in Fig. 2:

6Recall that the change of generalized coordinates (7) is local along the
optimal motion (4), so singularities are likely to occur for (16).

7The solution is the function φ(·) that defines the geometric relation (5).
8Note that the ball is accelerated against the direction of the x–coordinate,

i.e. the final ball velocity is negative.
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(b) Final ball velocity Ẋb(TR) at the
release line with respect to initial condi-
tions φ′′(x0) and φ(3)(x0) . The final
ball velocity is negative.

Fig. 2. Choice for initial conditions of (16).

(A) The magnitude of the final ball velocity is small,

Ẋb(TR) = −1.67 m/s:
[

0.35, 1.421, −1.716, −9, −200
]

.

(B) The magnitude of the final ball velocity is about max-

imum, Ẋb(TR) = −3.61 m/s:
[

0.35, 1.421, −1.716, 0, 0
]

.

The function φ(·) that defines the geometric relation (5),

obtained as solution of (16), is shown in Fig. 3 for initial

conditions (A) and (B). Both curves have the same value for

Xb(0) but diverge significantly within the interval, which is

a result of mainly varying the initial condition φ′′(x0) . The

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
1.4

1.6

1.8

2

2.2

2.4

X
b
 [m]

q
1
 :

=
 φ

(X
b
) 

[r
a

d
]

 

 

VHC − A

VHC − B

Fig. 3. Geometric relation (5) obtained as solution of the differential
equation (16) for initial conditions (A) and (B), respectively.

corresponding pitching motion of the robot is schematically

shown in Fig. 4. We can see that in case (B) the magnitude

of the final velocity is much bigger compared with (A). The

coordination pattern of the links looks also different, which

is expected from Fig. 3.

The state space of Xb –dynamics (8) is depicted in

Fig. 5(a) for the invariant geometric relations (5) found

for cases (A) and (B), initialized at [Xb(0), 0] . Thus, the

time evolution of Xb is automatically given, which, in fact,

generates the motion of the robot through (5)–(6) within the

interval Xb ∈ [Xb(0), Xb(TR)] . Here we see that velocity

profiles for the ball are different for different configuration

patterns. In Fig. 5(b) we finally depict the nominal torque

profiles τq1(q1) of the actuated joint9, which are required to

9Revisit Step 2 in Section III for details about computation of the control
torque.
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generate the individual pitching motions (A) and (B). In this

representation one can also observe that the torque profile of

case (A) could be generated by a passive spring.
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(a) Soluton for initial condition (A).
The time span is TR,A = 1.09 s .
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Fig. 4. Time instants of the robot configuration along the motion. The
tangential velocity at the end of the second link is illustrated as arrow.
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(a) Phase portrait of reduced dynam-
ics (8). The final ball velocity is
negative.
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(b) Torque profile τq1 of the actu-
ated joint w.r.t. q1 computed along
the motion.

Fig. 5. Reduced dynamics and torque profile of the actuated joint found
for the virtual holonomic constraint of the cases (A) and (B).

V. DISCUSSION AND CONCLUDING REMARKS

Let us comment the problem formulation and the content

of Theorem 1:

1) It might be unusual that, instead of requesting to maximize

the magnitude of the ball velocity at the release point along

a particular direction, we search for the maximal projection

onto a horizontal line. The reason for this is that the double

pendulum can be always equipped with a wrist, which will

allow to pitch a ball (or throw a javelin) along the prescribed

direction such as athletes do. Solving both problems of

maximizing the velocity and controlling the direction of the

pitch appears to be too heavy for an underactuated robot.

2) Searching an optimal pitching motion for the underactu-

ated mechanical system (1)–(2), as formulated in Section II,

is a problem that requires a procedure for identifying a

function of time: an external (control) torque τq1(t) defined

for a finite but unknown time interval. This function must

generate the optimal trajectory with maximal velocity at the

end when started from a given robot configuration at rest.

Theorem 1 states another characterization of such a par-

ticular class of optimal motions. Instead of searching the op-

timal trajectory through computation of an external (control)

signal τq1
(t) , we converted the problem into a search of

a finite vector of initial conditions (17) for the dynamical

system (15) or (16) that describes a synchronization of

the joint angles. Its solution satisfies the optimal pitching

motion by necessity, provided it exists. As seen from the

numerical study, at most two parameters are free for solving

the problem: the first and second time derivatives of the

external (control) torque at t = 0 . However, due to possible

singularities related to the parameterization of the optimal

trajectory, it might be needed to partition the motion into

sub-intervals. We have obtained an optimal solution for one

of such intervals.

3) It is important to note that Theorem 1 is not limited to the

studied two-link robot and can be generalized to mechanical

systems with underactuation degree one.

4) Moreover, all the derivation steps would be almost

identical for the case of a spring with a known nonlinear

characteristic instead of a linear one.

5) Solving numerically the nonlinear equations (15) or (16)

is a challenging task. However, the symbolic expressions

have been obtained from straightforward computations using

standard software.

6) The problem of maximizing the projection of the ball

velocity onto another than horizontal line can be solved

similarly. For example, if we are interested to pitch a ball

(or throw a javelin) on the longest distance, then we should

maximize the projection of the velocity along a certain

elevation angle at a certain release point. The only difference

in the derivations would be in parameterizing the motion in

terms of this newly defined projection.

APPENDIX

A. Lagrangian and Equation of Motion

The Lagrangian L = (K1+K2+Kb)−(Π1+Π2+Πb) of

(1) is formed by the kinetic and potential energies of 1st and

2nd link and ball, respectively. Thus, the equation of motion

for the planar two-link pendulum can be written as [7]:

M(q)

[

q̈1

q̈2

]

+ C(q, q̇)

[

q̇1

q̇2

]

+ G(q) =

[

τq1

τq2

]

,

where G(q) =
[

p4 cos(q1), p5 cos(q2)
]T

,

M(q)=

[

p1 p3 cos(q1−q2)
p3 cos(q1−q2) p2

]

,

C(q, q̇)=

[

0 p3 sin(q1−q2)q̇2

−p3 sin(q1−q2)q̇1 0

]

.

The physical parameters which have been used for the

numerical study (see Table I) are combined to

p1 = l21m2 + l21mb + l21cm1 + I1

p2 = m2l
2
2c + mbl

2
2 + I2

p3 = m2l1l2c + mbl1l2
p4 = m1gl1c + m2gl1 + mbgl1
p5 = m2gl2c + mbgl2 .
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TABLE I

PHYSICAL PARAMETERS OF THE PENDUBOT WITH SPRING-ARTICULATED ELBOW JOINT.

Parameter First Link Second Link Ball

Length (m) l1 = 0.4 l2 = 0.48 —
Mass (kg) m1 = 2 m2 = 1.8 mb = 0.1
Distance to CoM (m) l1c = 0.2 l2c = 0.24 —

Inertia about CoM (kg m2) I1 = m1l21/12 I2 = m2l22/12 —

Gravitational constant g = 9.81 m/s2

Spring constant K = 6 Nm/rad

Spring offset qoff = 0

TABLE II

SCALAR COEFFICIENT FUNCTIONS OF THE REDUCED DYNAMICS (8).

α =

{

p3 cos
(

φ (Xb)−arccos
(

Xb−l1 cos(φ(Xb))
l2

))

−
p2 l1 sin(φ(Xb))

√

l2
2
−[Xb−l1 cos(φ(Xb))]2

}

φ′ (Xb) −
p2

√

l2
2
−[Xb−l1 cos(φ(Xb))]2

β =

{

p3 cos
(

φ (Xb)−arccos
(

Xb−l1 cos(φ(Xb))
l2

))

−
p2 l1 sin(φ(Xb))

√

l2
2
−[Xb−l1 cos(φ(Xb))]2

}

[

φ′′ (Xb)
]

−











p2

(

l1 cos(φ(Xb))+
[Xb−l1 cos(φ(xb))]l2

1
sin

2(φ(Xb))

l2
2
−[Xb−l1 cos(φ(Xb))]2

)

√

l2
2
−[Xb−l1 cos(φ(Xb))]2

+ p3 sin
(

φ (Xb) − arccos
(

Xb−l1 cos(φ(Xb))
L2

))











[

φ′ (xb)
]2

−
2 p2[Xb−l1 cos(φ(xb))]l1 sin(φ(xb))

3

√

l2
2
−[Xb−l1 cos(φ(Xb))]2

[

φ′ (Xb)
]

−
p2[Xb−l1 cos(φ(xb))]

3

√

l2
2
−[Xb−l1 cos(φ(Xb))]2

γ = p5
Xb−l1 cos(φ(Xb))

l2
+ K

(

arccos
(

Xb−l1 cos(φ(Xb))
l2

)

− φ (Xb) − qoff

)

TABLE III

REWRITING THE PERFORMANCE INDEX (11) INDEPENDENT OF φ′′(·) .

exp

{

2
s
∫

Xb(R)

β
(

τ,φ(τ),φ′(τ),φ′′(τ)
)

α
(

τ,φ(τ),φ′(τ)
) dτ

}

= exp

{

2
s
∫

Xb(R)

ρ1(τ,φ(τ))·φ′′(τ)+ρ3(τ,φ(τ),φ′(τ))
ρ1(τ,φ(τ))·φ′(τ)+ρ2(τ,φ(τ))

dτ

}

= exp

{

2
s
∫

Xb(R)

[

ρ1(τ,φ(τ))φ′(τ)+ρ2(τ,φ(τ))
]

′

−ρ′

1
(·)φ′(τ)−ρ′

2
(·)+ρ3(·)

ρ1(τ,φ(τ))φ′(τ)+ρ2(τ,φ(τ))
dτ

}

= exp

{

2
s
∫

Xb(R)

ρ3(τ,φ(τ),φ′(τ))−ρ′

1
(τ,φ(τ))φ′(τ)−ρ′

2
(τ,φ(τ))

ρ1(τ,φ(τ))φ′(τ)+ρ2(τ,φ(τ))
dτ

}

×

[

ρ1

(

s,φ(s)
)

·φ′(s)+ρ2

(

s,φ(s)
)

ρ1

(

Xb(0),φ(Xb(0))
)

·φ′(Xb(0))+ρ2

(

Xb(0),φ(Xb(0))
)

]2

B. Coefficients of the Reduced Dynamics

The scalar coefficient functions of (8) are listed in Table II.

C. Rewriting the Performance Index Independent of φ′′(·)

We can rewrite the first factor of the performance in-

dex (11) independent of φ′′(·) as shown in Table III.

REFERENCES

[1] R. Alexander, “Three uses for springs in legged locomotion,” The

International Journal of Robotics Research, vol. 9, no. 2, pp. 53–61,
1990.

[2] V. Arnold, Mathematical Methods of Classical Mechanics (Graduate

Texts in Mathematics), 2nd ed. New York: Springer, 1989.
[3] S. Ichinose, S. Katsumata, S. Nakaura, and M. Sampei, “Throwing

motion control experiment utilizing 2-link arm passive joint,” in Proc.

2008 SICE Annual Conference, Tokyo, Japan, Aug. 2008, pp. 3256–
3261.

[4] S. Katsumata, S. Ichinose, S. Nakaura, and M. Sampei, “Throwing
motion control based on output zeroing utilizing 2-link underactuated
arm,” in Proc. 2009 American Control Conference, St. Louis, Missouri,
USA, June 2009.

[5] A. Shiriaev, J. Perram, A. Robertsson, and A. Sandberg, “Periodic
motion planning for virtually constrained Euler–Lagrange systems,”
Systems and Control Letters, vol. 55, pp. 900–907, 2006.

[6] T. Shoji, S. Nakaura, and M. Sampei, “Dexterous throwing motion con-
trol for an underactuated arm based on the analysis of zero dynamics,”
in Proc. ICROS-SICE International Joint Conference 2009, Fukuoka,
Japan, Aug. 2009.

[7] M. Spong and D. Block, Pendubot user manual, University of Illinois,
Urbana-Champaign, USA, 1996.

[8] C. Zone, “Baseball pitching robot,” Patent 3 009 451, Nov., 1961.
[Online]. Available: http://www.freepatentsonline.com/3009451.html

5014


