
Coordinating Collective Locomotion in an Amorphous Modular Robot

Chih-Han Yu∗†
chyu@fas.harvard.edu

Justin Werfel†
justin.werfel@wyss.harvard.edu

Radhika Nagpal∗†
rad@eecs.harvard.edu

∗School of Engineering and Applied Sciences
†Wyss Institute for Biologically Inspired Engineering

Harvard University, Cambridge, MA, USA

Abstract— Modular robots can potentially assemble into a
wide range of configurations to locomote in different envi-
ronments. However, designing locomotion strategies for each
configuration is often tedious and has generally relied on a
priori known connection geometry. Here we present a frame-
work for 2D modular robots made of square modules assembled
with arbitrary geometry, which achieve collective and directed
locomotion with no centralized controller. Individual modules
communicate locally and provably achieve consensus in coordi-
nating movement in a common travel direction. In experiments
with simulations and hardware prototypes, we show that robots
achieve effective locomotion, irrespective of the number of
modules and their connectivity which can be highly asymmetric.

I. INTRODUCTION

Modular robots, built from many identical and inter-
changeable components, have many potential advantages
over traditional robots in flexibility, robustness, and adap-
tiveness. However, their reconfigurability raises a control
problem: how can modules find a controller appropriate
for any given configuration? Designing a control strategy
for each possible configuration can be tedious and difficult,
and even if this can be achieved, autonomously determining
the proper controller can remain a challenge for the robot.
Typically such robots are put together by hand with known
geometry [1], [2], or determine their geometry and choose
a corresponding set of module controllers from a fixed
repertoire [3], [4], [5]. In many cases the controller is
centralized, with a leader module that directs the actions of
the others [4]. Furthermore, it is often hard to generalize
controllers from one configuration to another.

On the other hand, many natural systems consisting of
many interchangeable agents have no predetermined geome-
try and no centralized leader [6]. Cellular slime molds, a clas-
sic example, have a stage in their life cycle in which many
individual amoebae aggregate into single multicellular slugs
of variable morphology, which can then crawl as though
a single coordinated unit [7]. Such examples lead us to
consider modular robots with units connected in any arbitrary
geometry (i.e., amorphous robots), and distributed controllers
that allow for coordinated movement in a direction arrived
at by the group as a whole.

In this work we describe hardware and control schemes
for an amorphous modular robot whose unit modules are
2D squares made from telescoping links and compliant
connectors [8], [9], [10] (Fig. 1). Each single module can

independently travel in any of the four cardinal directions,
using a simple periodic actuator (discrete CPG). When
multiple modules assemble to form an aggregate robot, local
communication suffices for the group to agree on a common
direction of travel and to coordinate their actuation cycles to
travel in that direction.

A key feature of our approach is that the proposed al-
gorithm is completely decentralized—there is no leader that
determines coordination or direction. Instead the algorithm
uses a strictly local and decentralized consensus process to
coordinate among modules. The proposed approach does
not rely on prior knowledge of module connectivity and
can be easily applied to any configuration of modules.
We analytically prove that all modules will converge to a
coordinated locomotion pattern and a common direction to
move, regardless of connectivity. This makes the approach
robust and adaptive: modules are capable of performing
locomotion however they are assembled.

In addition to our theoretical results, we also present hard-
ware and simulation experiments. Using real robots, we show
that modules can achieve coordinated and directed locomo-
tion, even with initially conflicting goal directions among
modules. Using physics-based simulations, we show that our
coordination method can generate efficient locomotion in
complex assemblies. Coordination is essential for effective
locomotion: robots composed of ineffectively coordinated
modules trying to travel in the same direction can barely
move, while those using our method can travel at least as
fast as individual modules. We also show our algorithms are
scalable with robot size, with convergence time for direction
agreement and locomotion coordination being proportional
to connectivity graph diameter and number of modules,
respectively.

II. RELATED WORK

One major advantage of modular robots is they can poten-
tially transform to different shapes and locomotion patterns
when encountering different environments. The associated
challenge is that for each configuration, the robot needs to
find an effective locomotion pattern, determining how to
actuate each module such that the system as a whole can
locomote efficiently.

Several groups have proposed gait look-up table ap-
proaches: the modules first determine their configuration,
then choose a corresponding set of controllers from a library

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2777

(A) (B) (C) (D)
Fig. 1. Modules of different configurations can achieve efficient locomotion with our framework: (A) L-shape configuration (B) Ladder-like configuration
(C) Single hardware module (D) Two linked hardware modules.

Fig. 2. A single robot module hardware prototype. Each link consists of
a pair of linear actuators (1). Each actuator is connected to an interfacing
sphere (2) via a flexible connector (3), which consists of a ball-and-socket
joint inside a foam tube that gives it restoring force to maintain a preferred
position.

[3], [4], [5]. This approach has been shown to allow specific
robot configurations to locomote effectively in environments
with obstacles. However, designing gaits manually for all
robot configurations is laborious.

Other groups have studied locomotion strategies for chain-
based robots based on central pattern generators (CPGs) [2],
[11]. Environmental feedback can be incorporated into a
CPG controller, such that the robot autonomously adjusts its
gait while encountering new environments. One major draw-
back to the CPG approach is the dependence on the robot’s
geometry; the controller designed for a specific configuration
is generally hard to translate to other configurations.

Our approach is inspired by behaviors of cellular systems.
In these systems, each cell acts adaptively based on simple
rules, and the whole group can nevertheless exhibit coherent
and efficient locomotion, as in cellular slime molds [7].
Based on this observation, our control law for each module is
based on simple feedback from neighbors and can be applied
to arbitrary module connectivity. By making a connection
with distributed consensus algorithms [12], [13], we can
further prove its correctness. Our approach is also inspired by
Shimizu et al. [14]; the major difference is that their work
focuses on achieving collective locomotion from modules
that are incapable of independent movement, while we
focus on coordinating movement of many linked self-mobile
modules. We further address that modules can naturally have
different initial objectives, e.g. intended traveling direction;
our approach allows modules to arrive at a coherent decision
and coordinate locomotion efficiently.

III. MODULE OVERVIEW

In this section, we provide an overview of a single robot
module in our system, including discussion of its mechanical
design, communication, and control algorithm.

A. Mechanical Design and Communication of a Single Unit

A single module consists of four telescoping links con-
nected in a square configuration by four nodes (Fig. 2).
Compliant connections at the corner nodes let the frame
deform and return to its original shape. Four spherical
connectors at the corners of the square connect telescoping
links together. Each link consists of a pair of linear actuators,
bound together and pointing in opposite directions so as
to achieve approximately a 3:1 extension capability if both
actuators are extended simultaneously. This node/link design
is inspired by previous deformable modular robots that have
used such components to form other architectures such as
tetrahedra [8], [9], [10].

As is typical for modular robotic systems [2], [8], we as-
sume each module can exchange messages with its physically
connected neighbors. While cells in multicellular systems
may not necessarily communicate with arbitrary real-valued
messages, this capability allows robot modules to achieve
coordinated locomotion efficiently, as we show below.

B. Single Module Directed Locomotion Algorithm

The asymmetry available by extending only one actuator
or the other in a link opens up the possibility of using such
elements for locomotion in a desired direction. The following
sequence of actions for the top and bottom links moving in
unison produces net movement to the right, for instance (Fig.
3 (B)): extend the right arm only (1); retract the right arm
while simultaneously extending the left one (2); retract the
left arm (3). The cycle starts and ends with a configuration in
which all actuators are retracted (4). At each step, elements
pushed to the right are fewer and correspondingly lighter than
those pushed to the left, and so net motion is to the right.
Movement in any other cardinal direction can be achieved
analogously.

Here we describe the controller formally. Each link is
identified by a numerical index, which also corresponds to
a robot-relative direction (Fig. 3 (A)). The actuation state
(length) of each of the two linear actuators in a link is
denoted by xi,j , where i is the index number of the link
and j is the index of the neighboring link. This index scheme
allows us to uniquely specify the state of each linear actuator.

2778

(A) (B) (C)
Fig. 3. (A) Indexing scheme. The four links, and corresponding cardinal directions, are indexed numerically. Linear actuators within each link are indexed
by the labels of their own link and the adjacent link. (B) Rightward movement steps: Locomotion in any of the four cardinal directions can be achieved
by a cycle of actuations like this one for rightward movement. (C) The corresponding phases of linear actuators in each link. X axis indicates phase and
Y axis indicates the length of actuator extension.

Let d indicate the index of the desired traveling direction
and d′ indicate the opposite direction. Γ is a set of two links
that enables the module to move while being actuated. For
instance, if the desired traveling direction is 1 (d = 1), then
d′ is 2 and Γ contains two links that are parallel to the
traveling direction (Γ = {3, 4}). The links that are not in
Γ remain static. The actuation state function for links in Γ
can be written as follows:

∀i ∈ Γ, xi,d(t) = f(θ mod 2π) (1)
xi,d′(t) = f((θ − π/2) mod 2π) (2)

where θ = ω · t is the phase of the actuator; ω is a parameter
determined by actuation speed; and actuation function f (Fig
3 (C)) is formally defined as follows:

f(z) =

 λ · z if z ≤ π
2

λ · (π − z) if π
2 < z ≤ π

0 otherwise
(3)

where λ = 2L/π, with L the maximal actuation length. The
two actuators in a link go through the same cycle with phase
difference π/2. Fig. 3 (C) shows the sequence of phases
corresponding to the locomotion cycle described above. In
§V, we show real robot experiments and simulations to
validate this mode of locomotion.

Module’s direction of travel may be chosen based on
sensor feedback; for instance, a module equipped with light
sensors may exhibit phototaxis by choosing the direction
with highest light level.

C. Simulation Environment

In addition to the hardware prototype, we also construct a
physics-based simulation (shown in Fig. 3) with Open Dy-
namics Engine (ODE). This simulator allows us to examine
the behavior of our control approach for large numbers of
modules. The dimensions and mass of each simulated com-
ponent are set based on the real robot. Several environmental
parameters, e.g., parameters for the ground contact model,
are optimized based on real robot behavior to provide high
fidelity simulation.

(A)

Fig. 4. 1: An asymmetric assembly of modules, with different initial
preferred traveling directions. 2: Modules communicate with local neighbors
and reach a global agreement on a traveling direction. 3: Modules start
traveling toward the agreed direction with uncoordinated movement cycles.
4: Modules achieve coordinated movement and locomote efficiently. Color
blocks represent locomotion phase of the modules. Each module maintains
the same phase as its horizontally-connected neighbors; phase in adjacent
rows differs by π.

IV. ASSEMBLIES OF MODULES

In this section, we describe how modules coordinate their
movements when they are aggregated together. A key aspect
of the approach is that it does not assume any specific con-
nectivity. Initially, each module has some preferred traveling
direction (Fig. 4 (1)). Next, modules communicate with local
neighbors to reach agreement on a common direction (Fig.
4 (2)). Finally, modules start coordinating their movement
cycles until they achieve an efficient traveling wave (Fig. 4
(3, 4)). In this work, we do not address how modules come
together and attach to form aggregate robots, which is itself
an important topic of research [15], [16]; instead we focus on
coordinating the resulting collective: how does an arbitrary
assembly of modules act as a single unified unit?

In the following subsections we present our approaches

2779

(A) (B)
Fig. 5. Graph representation (B) of a robot assembly configuration (A).

associated with the above coordination process: assumptions
about connections (§IV-A), agreement regarding common
direction of travel (§IV-B), and coordination of movement
cycles (§IV-C).

A. Module linkages

An aggregate robot is composed of modules attached edge-
to-edge, so as to effectively occupy sites on a square grid to
form a contiguous structure of arbitrary geometry. In our
simulations, we implement a shared edge as a single link
with doubled mass, rather than doubling the links along
each edge by literally putting two modules side by side.
Our framework does not rely on modules to assemble into
specific configurations, and allows arbitrary robot assembly
configurations to achieve coordinated movements.

Each module in the aggregate robot maintains an inde-
pendent controller,1 and is able to communicate real values
bi-directionally with its physically connected neighbors. We
assume that the two controllers of a pair of modules that
share an edge can agree on a common value for extension
of the corresponding linear actuators. We use an undirected
graph G to represent such communication topology by
representing a module with a node and a communication
link as an edge (Fig. 5).

B. Choosing a direction

In order for the robot to locomote effectively, all modules
must agree on a single direction. Modules may have their
own initial preferences, e.g., based on sensor feedback as
above; and the goal for the aggregate robot may be to travel
in the direction of the most intense stimulus sensed by any
unit, so that the robot exhibits a behavior like collective
phototaxis or chemotaxis based on distributed sensing.

In such a case, each module will have an initial preferred
direction with associated confidence level. A simple algo-
rithm can be used to reach global agreement: each module
repeatedly updates its direction and confidence to match that
of the highest-confidence unit in the set consisting of itself
and its neighbors. If a module has the same confidence
as a neighbor but a different preferred direction, it can
break the tie by adding a small random value to its own
confidence (with mean 0 so that either direction is equally
likely to win). Such an algorithm will reach global agreement

1The hardware prototype actually simulates a decentralized set of inde-
pendent controllers using a single centralized controller.

in a number of iterations equal to the maximum distance
between the highest-confidence non-outlier module and any
other module—i.e., worst-case the graph diameter, best-
case half the graph diameter. If updates are asynchronous,
fewer iterations may be required, as a value may be able to
propagate through multiple modules in a single iteration if
the updates happen to take place in the right order.

Because sensed quantities of interest are generally likely to
change slowly over space compared to the distance between
modules, neighboring modules will typically start with con-
fidence values not too dissimilar. Thus a value much higher
than any neighboring values is likely to reflect a sensor
malfunction rather than a highly localized phenomenon of
interest, and should accordingly be discarded. This can be
implemented as follows: if a module finds that its confidence
value is much higher than any of its neighbors, it ignores its
own state and adopts that of its highest-confidence neighbor;
if a module finds that exactly one of its neighbors has a
very high confidence that may indicate an error, it waits
one update cycle before adopting its neighbor’s state, to see
whether that state persists or is discarded.

An implementation of the above algorithm, omitted here
for space reasons, is given online [17]. While its correctness
is tedious to prove formally, it is supported empirically by
its success in thousands of trials (§V).

C. Coordinating movements

Here we present the algorithm that allows modules to
achieve coordinated movement after agreeing on a common
traveling direction. We first consider the following two-
module locomotion case: Consider a “passive” edge shared
by two modules, that is, one perpendicular to the direction of
locomotion, that does not move during the locomotion cycle.
It is clear that for best coordination and minimal interference
between the two modules, the cycles should be coordinated
so that one module pulls this edge forward while the other
pushes it in the same direction (Fig. 6 (A)).

Thus, the two modules’ locomotion phases need to be
offset by π (front module being ahead of back module) if
the modules are connected along their traveling direction. We
modify the link actuation function (Eqs. 1 and 2) by replacing
θ with θ + φi, where φi is module i’s phase variable:

∀i ∈ Γ, xi,d(t) = f((θ + φi) mod 2π) (4)
xi,d′(t) = f((θ + φi − π/2) mod 2π) (5)

We define φ∗ij as the desired phase offset between module
i and its neighbor j. If two modules i and j are connected
along their traveling direction (Fig. 6 (A)), then φ∗ij = φj −
φi = π. Modules that are connected perpendicular to their
traveling direction should maintain synchronized locomotion
phases (φ∗ij = 0). Fig. 6 (B) shows an example of the desired
relationships between a single module and its neighbors.

The challenge is for modules to coordinate to set φi such
that all φj − φi = φ∗ij are satisfied, when each module has
only a local view and its choice of φi can potentially affect
all other modules. We denote the set of module i’s neighbors
as Ni. Alg. 1 shows a fully decentralized approach for each

2780

(A) (B)
Fig. 6. (A) The cycles of two linked modules need to be offset so that both move the “passive” edge they share at the same time. (B) The desired phase
differences between module 1 and its neighbors. Red arrow indicates the robot’s traveling direction. Module 1 needs to achieve φ∗12 = π with its front
neighboring module, φ∗13 = −π with its back neighboring module, and φ14 = φ15 = 0 with other modules.

Algorithm 1 Pseudocode for modules to achieve coordinated
movement. Initially, each module i has a random φi and
starts by identifying the desired phase offsets φ∗ij between it
and and its neighbors. Each module then iteratively modifies
its phase φi until all φ∗ij are satisfied. In line 11, α is a
damping factor and needs to be set as: 0 < α < 1

maxi |Ni| .

// Each module i initializes desired phase offsets with
neighbors
for all j ∈ Ni do

if module j is in front of i in the traveling direction
then
φ∗ij = π

5: else if module j is at back of i then
φ∗ij = −π

else
φ∗ij = 0

// Each module i iteratively communicates with its
neighbors and updates its phase φi

10: loop
φi ← φi + α ·

∑
j∈Ni

(
φj − φi − φ∗ij

)

module to iteratively modify φi based on feedback from
neighbors such that all φ∗ij are eventually satisfied.

At every time step, each module computes the differences
between current and desired phase offsets to its neighbors
and acts proportionally to the summation of all such differ-
ences. In fact, the update function of φi (Line 11) shares
similarity with distributed consensus (DC) algorithms in
multi-agent systems. Our case is that of the subclass called
biased consensus, in which φ∗ij 6= 0 for some i and j. By
establishing this connection, we can construct a convergence
guarantee for Alg. 1.

Theorem 1: Let φi be the phase of module i and φ∗ij be the
desired phase offset between i and its neighbor j. If module
i updates φi based on Alg. 1 and the communication graph
G is connected, φi will eventually converge to a value such
that φj − φi = φ∗ij for all modules i and j ∈ Ni.

Proof: see Appendix.
Our movement coordination algorithm applies not only to

the “traveling wave” locomotion strategy that we describe
in this section, but can potentially be generalized to other
coordinated locomotion patterns that can be formulated as
inter-module relationships. This class of algorithms has also

been demonstrated previously for static modular robot appli-
cations, such as environmentally-adaptive structure formation
[13]. Here we have shown that the approach can be extended
to dynamic tasks, such as coordination of periodic actuation.

V. EXPERIMENTAL RESULTS

In this section, we present various experimental results
from applying this framework in both real and simulated
robots:
• We use hardware robots to test the efficiency of our

locomotion strategy with one and two modules. In the
two-module case, we also compare locomotion effi-
ciency with and without coordinated phase offsets.

• We use physics-based simulators to test our coordinated
locomotion algorithm in several complex and irregular
assemblies, evaluating: (a) how coordination scheme
affects locomotion efficiency; (b) how shape of the robot
affects locomotion speed; (c) how locomotion efficiency
changes with number of modules.

• We test the convergence speed of both direction con-
sensus and module movement coordination algorithms
as the number of modules increases.

Our results show that our approach allows modules of
various different connectivities to achieve efficient locomo-
tion in both simulated and real robots. In addition, the
module movement coordination algorithm is scalable to the
number of modules in the system. When more modules
are aggregated together, locomotion efficiency in aggregated
modules is as or more efficient than individual modules.

A. Real Robot Experiments

Here we use the hardware prototype we previously de-
scribed in Section III. The length of each link is 16 cm
when it is fully contracted. We set linear actuators’ speed to
their maximal speed 2.3 cm/s. We use traveling speed as a
metric to evaluate modules’ locomotion efficiency. To define
a measure that is invariant to the scale of the modules, we
define our speed as percentage of a module’s body length that
the robot can travel in each locomotion cycle. To evaluate the
effectiveness of our algorithm, we first assemble two modules
together to compare their locomotion capability with and
without phase coordination. The modules start with random
desired traveling directions, and they reach agreement on
a common direction in two communication cycles. After

2781

(A) (B)

Fig. 7. Hardware experiments: (A) Comparison of robot locomotion speed with different module phase coordination schemes. Locomotion speed is
significantly greater when modules achieve phase coordination with Alg. 1 (left). When two modules have synchronized phases or maintain random phases,
the modules can barely move. (B) The robot’s locomotion speed becomes more consistent if a second module is attached to the first (reduced variance,
left vs middle and right bars). We can also see from this result that an additional module attached along the traveling direction can also help to increase
the robot’s locomotion speed (middle vs right bar). Bottom: A sequence of steps in a locomotion cycle with coordinated phase offsets for a two-module
robot.

(A) (B)
Fig. 8. Simulation experiments: (A) Comparison between different ways of setting phase offsets between modules. If phase offsets are computed based
on Alg. 1 (coordinated phase), it leads to much more efficient locomotion for the robot. On the other hand, the robot can move very limited distances with
synchronized and random phase offsets. (B) Different shapes and traveling directions vs speed: If the robot’s center of mass is at the front, locomotion is
faster (first and third bars).

modules decide on their phases, they start locomoting in the
agreed traveling direction.

Fig. 7 (A) shows a comparison of different phase offsets
between modules. The modules’ locomotion speed is aver-
aged over 12 locomotion cycles, and the error bars show
standard deviation of the speed among cycles. When modules
use Alg. 1 to compute their phase offsets, they can locomote
effectively (left bar). When modules have the same phases or
maintain random phase offsets (the data is averaged from 6
random phases), the modules show very limited locomotion
abilities, even though each executes an actuation cycle that
would let it move effectively if on its own.

We also evaluate speed of locomotion with one and two
modules and in different traveling directions. Fig. 7 (B)

shows that a single module’s locomotion speed has higher
variability (error bars) compared to two-module configura-
tions. The intuition behind this is that an additional module
can help the robot stabilize its movement. We can also
see that if two modules are attached along their traveling
direction, the robot’s locomotion speed is also higher than
the speed of travel in the orthogonal direction.

B. Arbitrary Connectivities

With the ODE simulator, we investigate modules’ loco-
motion efficiency in a wide range of robot configurations.
Again, we compare modules’ locomotion efficiency with and
without our movement coordination (Fig. 8 (A)). For coor-
dinated and synchronized phase experiments, results show

2782

mean and standard deviation from 40 locomotion cycles. For
random phase experiments, the graph shows results from 5
different random initializations and 20 locomotion cycles in
each case (100 cycles in total). The most efficient locomotion
results when all modules compute their phases based on Alg.
1. This is consistently true for different irregular module
connectivities.

C. Efficiency vs Shape

From Fig. 8 (A), we can also see that the robot’s mov-
ing speed varies with different shapes. This inspired us
to further explore how shape might potentially affect the
robot’s locomotion. Fig 8 (B) shows how varying robot
shape and traveling direction affects locomotion efficiency.
In these experiments, when front rows of the robot have
more modules than back rows, the robot travels faster (bars
1 and 3). This suggests that a robot’s locomotion speed may
improve when its center of mass is closer to the front end.

D. Efficiency vs Module Aggregation

The independent modules that make up an aggregate robot
have the potential to act in conflict, interfering with their
collective locomotion, as Fig. 7 (A) makes clear. We thus
next investigate how the attainable traveling speed is affected
as the number of modules increases. Ideally, one would like
for self-mobile modules not to lose speed when they join a
larger robot.

Fig. 9 shows the speed of robots comprising one to four
modules with coordinated phases, for both real and simulated
robots. Simulations tested varying levels of ground friction
to explore different terrain conditions.

In all cases, the speed of robots with two or more modules
was at least as great as that of single modules. Simulations
showed that under some conditions, adding a second module
significantly increased the speed of the robot; even in the
high-variance cases where the increase was not significant,
the data suggest an overall increase rather than decrease. The
mechanism appears to involve the fact that some components
can slide backwards during parts of the movement cycle;
the second module provides increased stability and reduces
sliding away from the travel direction. Adding modules
beyond the second had no significant further effect on speed.

While Alg. 1 leads to effective locomotion, there may well
exist locomotion patterns that produce still greater speed,
potentially attainable only with larger assemblies or with
heterogeneity among module controllers. In future work we
intend to investigate the possibility of such patterns.

E. Scalability Experiments

Here we explore how the direction agreement and move-
ment coordination algorithms of §IV-B and §IV-C scale with
the size of the system.

(a) Consensus direction: Fig. 10 shows the number of iter-
ations required for randomly generated, randomly initialized
robots to come to global agreement on direction using an
implementation [17] of the algorithm outlined in §IV-B, with
asynchronous updating. Tie-breaking random values were

Fig. 9. Number of modules vs. robot speed. Adding a second module
to the first can increase net travel speed; adding further modules has no
significant effects.

Fig. 10. Number of iterations n required for randomly generated robot
to reach global agreement on direction, as a function of diameter d of its
connectivity graph. Results show 5000 trials using asynchronous updating,
with best-fit line minimizing squared error n = 0.50d+ 2.8.

chosen to be small compared to the discretization of con-
fidence values. In 5000 out of 5000 trials, the robot reached
global agreement on the direction associated with the highest
non-outlier confidence. The typical number of iterations n
was proportional to the graph diameter d, with best-fit line
n = 0.50d + 2.8. When modules execute the algorithm
synchronously, convergence to the appropriate direction is
still reliably correct but somewhat slower (n = 0.86d+ 2.5),
since unlike the asynchronous case values can propagate at
most one module per time step.

(b) Movement coordination: We define ε(t) =∑
i

∑
j∈Ni

|φij(t) − φ∗ij | as a measure of convergence
to coordinated movements, where φij(t) is the phase
offset between modules i and j at time t. The number
of iterations required for convergence is defined as
tmin = mint

ε(t)
ε(0) < 5%. Fig. 11 shows averaged

tmin versus number of modules in configurations with
square connectivity (100 different initializations) and
random connectivity (100 different connectivities and
initializations). We can see tmin is linearly proportional to
size of the system. Further, square connectivities on average
require fewer iterations than random connectivities. Since
square connectivities generally have smaller diameters than
random connectivities, these results coincide with theories
presented in [13].

2783

Fig. 11. Convergence speed vs. number of modules. We sequentially
increase the number of modules in both square (top) and random (bottom)
connectivities. Each point is computed from 100 random initializations.
The average number of iterations required for convergence is linearly
proportional to the number of modules.

VI. CONCLUSIONS

In this work we have presented distributed coordination
schemes by which the modules of an amorphous modular
robot can agree on a travel direction and synchronize their
movement to achieve effective group locomotion. No central
controller, global knowledge, or a priori known connectivity
is required. We have investigated the correctness and effec-
tiveness of these schemes analytically and experimentally, in
both simulation and hardware.

The biological inspiration for this work is the cellular
slime molds that spend part of their life locomoting as
individual cells and part as a multicellular slug [7]. For
future applications, we envision developing a decentralized
robotic system of self-mobile modules which can both act
independently (e.g., for effective coverage of a large area)
and join together into an aggregate robot at need (e.g., for
more effective movement). Such a system would require the
capabilities we have discussed in this paper, and this work
represents a first step toward that larger goal.

VII. ACKNOWLEDGEMENT

This research is supported by an NSF EMT Grant (CCF-
0829745) and Wyss Institute for Bio-inspired Engineering.

APPENDIX: PROOF OF THEOREM 1
Let φi(t) be module i’s phase offset variable at time step t. We

first collect all φi(t) into a column vector:

X(t) = [φ1(t), φ2(t), · · · , φn(t)]′

The update equation in Alg. 1 can be rewritten as:

φi(t+ 1) = φi(t) + α ·
∑

j∈Ni

(φj(t)− φi(t)− φ∗ij)

Aggregating all modules’ update equations, we can write the
collective dynamics of phase offset variable updates in matrix form:

X(t+ 1) = A ·X(t) + b̃ (6)
where A = [aij], an n× n matrix with element aij defined by:

aij =

 α if j ∈ Ni and i 6= j
1− α · |Ni| if i = j
0 otherwise

and where b̃i = α ·
∑

j∈Ni
φ∗ij is a bias vector. We note that A is a

stochastic matrix since each row sums to 1. In addition,
∑

i b̃i = 0,
since φ∗ij = −φ∗ji for all i, j. We can write the optimality condition
(when all φj − φi = φ∗ij) as:

X∗ = A ·X∗ + b̃⇒ α · L ·X∗ = b̃

where L = 1/α(I − A) is a Laplacian matrix with rank(L) =
n − 1 and null(L) = 1. Since

∑
i b̃i = 0 and A is a stochastic

matrix, the summation of state variables is conserved over time:∑
i φi(t) = C, ∀t. This additional constraint falls in the nullspace

of L. We define L′ as the matrix whose first n rows are L and whose
last row is the new constraint; we can then show rank(L′) = n and
there exists a unique solution X∗ for αL′X∗ = b̃. Therefore, there
is a unique optimal solution X∗ (satisfying φj − φi = φ∗ij , ∀i and
j ∈ Ni) for any initial condition X(0). Subtracting the optimality
condition X∗ = AX∗ + b̃ yields the following dynamics:
X(t+ 1)−X∗ = A · (X(t)−X∗)⇒ Y (t+ 1) = A · Y (t) (7)

Eq. 7 has the same form as average consensus [12]; we can then
follow the proof procedure in [12]. Let X∗ = [φ∗1, φ

∗
2, · · ·φ∗n] with

φj − φi = φ∗ij for all i and j ∈ Ni. We define Lyapunov function
V (t) =

∑
i(φi(t)−φ∗i)2 = (X(t)−X∗)T (X(t)−X∗). Following

the same procedure as Theorem 4 in [13], we can show:
V (t+ 1) < (µ2(A))2V (t)

where µ2(A) is the 2nd largest eigenvalue of A. Using the
theory of graph Laplacians, we have 0 ≤ µ2(A) < 1 if the
module communication graph G is connected. We can then show
limt→∞ V (t) = 0 and X(t) converges to X∗ with exponential
rate.

REFERENCES

[1] W.-M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein,
and J. Venkatesh, “Multimode locomotion for reconfigurable robots,”
Autonomous Robots, vol. 20, no. 2, pp. 165–177, 2006.

[2] A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, and
S. Kokaji, “Distributed adaptive locomotion by a modular robotic
system, M-TRAN II,” in Proc. IROS, 2004.

[3] B. Salemi and W.-M. Shen, “Distributed behavior collaboration for
selfreconfigurable robots,” in Proc. ICRA, 2004.

[4] M. Park, S. Chitta, and M. Yim, “Isomorphic gait execution in ho-
mogeneous modular robots,” in RSS Workshop on Self-Reconfigurable
Modular Robots, 2006.

[5] M. Yim, C. Eldershaw, Y. Zhang, and D. G. Duff, “Limbless conform-
ing gaits with modular robots,” in Proc. ISER, 2004.

[6] I. Couzin, J. Krause, N. Franks, and S. Levin, “Effective leadership
and decision making in animal groups on the move,” Nature, vol. 433,
2005.

[7] J. T. Bonner, The Social Amoebae. Princeton University Press, 2009.
[8] A. Lyder, R. Garcia, and K. Støy, “Mechanical design of Odin, an

extendable heterogeneous deformable modular robot,” in Proc. IROS,
2008.

[9] C. Yu and R. Nagpal, “Self-adapting modular robotics: A generalized
distributed consensus framework,” in Proc. ICRA, 2009.

[10] S. Curtis et al., “Tetrahedral robotics for space exploration,” IEEE
Aerospace and Electronic Systems Magazine, 2007.

[11] A. Ijspeert, D. Crespi, Ryczko, and J.-M. Cabelguen, “From swimming
to walking with a salamander robot driven by a spinal cord model,”
Science, vol. 315, no. 5817, pp. 1416–1420, 2007.

[12] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation
in networked multi-agent systems,” in Proc. IEEE, 2007.

[13] C.-H. Yu and R. Nagpal, “Sensing-based shape formation tasks on
modular multi-robot systems: A theoretical study,” in Proc. AAMAS,
2008.

[14] M. Shimizu, A. Ishiguro, and T. Kawakatsu, “Slimebot: A modular
robot that exploits emergent phenomena,” in Proc. ICRA, 2005.

[15] R. Groß, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous self-
assembly in swarm-bots,” in IEEE Transactions on Robotics, 2006.

[16] S. Murata, K. Kakomura, and H. Kurokawa, “Docking experiments of
a modular robot by visual feedback,” in Proc. IROS, 2006.

[17] Online Appendix URL: http://www.fas.harvard.edu/∼chyu/icra10-
appendix.pdf.

2784

