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Abstract— This paper describes a sensor for autonomous
surveillance capable of continuously monitoring the environ-
ment, while acquiring detailed images of specific areas. This is
achieved by exploiting an omnidirectional camera and a PTZ
camera, assembled together on a single mount. The two cameras
form a single vision sensor, since data obtained processing the
two images are used in a cooperative way. This system solves
the problem affecting systems based on PTZ cameras only,
since it does not exist a tracking system working reliably on
PTZ images: the problem is solved here by performing the
tracking in the omnidirectional image. This vision sensor is
used in a surveillance application, that detects moving objects,
and records all the faces of the people walking close to the
sensor. It could be used to navigate or instruct a security or a
service mobile robot.

I. INTRODUCTION

Video surveillance is a topic that has been deeply studied
by artificial vision researchers since several years. Improve-
ments in both artificial vision algorithms and video sensors
led to high quality intelligent video surveillance systems.

As long as systems that analyse video streams become
smarter, it emerges the need for smarter sensors, that can
be controlled by the surveillance systems themselves. Pan-
Tilt-Zoom (PTZ) cameras are an example of this trend, since
they can be controlled by an automated surveillance system
in order to better investigate areas where, for instance, alerts
have been issued. Topics like focus of attention [1] or how
to manage multiple sensors [2], [3], [4] have been deeply
studied.

This paper presents an innovative sensor, called
Omnidome R©1, suited for intelligent video surveillance
systems, and its application in the field of motion detection
and face detection. The sensor, shown in fig. 1 (a), is
composed by two cameras, mounted one on the top of
the other. The upper one is an omnidirectional camera,
i.e., a camera looking at an omnidirectional mirror, which
provides a 360◦ view around the sensor. The lower camera
is a common PTZ camera, whose zoom, pan, and tilt angles
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Fig. 1. A prototype of the Omnidome sensor (a). The two cameras –
omnidirectional, upper, and PTZ, lower – are visible. Example of an image
acquired by the omnidirectional camera (b), and the result of the unwarping
process (c).

can be electronically controlled. Omnidome was licensed
for commercialization to IT+Robotics srl2.

This sensor can be seen as an integrated master-slave cam-
era system, having an omnidirectional master camera, like
in [5], [6], [7], [8], [9]. The master and slave cameras are put
together to form a single “multiple view” sensor. However,
the master-slave model is slightly modified here, and tends
to a cooperative agent, because, on one hand, the master
camera issues commands to the slave, but, on the other hand,
the latter sends reports back to the former, influencing its
behaviour. They can be said to be two interacting intelligent
vision agents.

In this paper, the sensor described above is used together
with a video-surveillance application, whose aim is to mon-
itor people walking around, and to record their faces.

The paper structure is as follows: section II describes the
processing performed on the images acquired by the omnidi-

2www.it-robotics.it

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2568



rectional camera: it is presented a new technique for fusing
together background subtraction and frame differencing, that
often considered as alternatives. In section III, the problem
of the calibration between the two cameras is tackled: unlike
other works, this issue is solved here without the need of
transformations to the world coordinates, which offers the
sensible advantage that a complete camera calibration is not
required. Section IV explains how images coming from the
PTZ camera are processed in order to perform face detection,
while in section V the experiments that were carried out are
described. Finally, in section VI some conclusions are drawn.

II. OMNIDIRECTIONAL IMAGE PROCESSING

The goal of the omnidirectional camera for this application
is to monitor the environment by detecting motion. Moving
objects could then be further analysed, depending on their
appearance. In order to meet this goal, acquired frames
are unwarped, and then a motion detector based on frame
differencing and background subtraction is used.

A. Image unwarping

The omnidirectional camera acquires images like that
shown in fig. 1 (b). Even if it is possible to work directly on
this kind of images, the omnidirectional image is unwarped
into the corresponding panoramic cylinder, and all further
processing operates on images that are like that in fig 1 (c).
Some examples of image unwarping can be found in [5], [6],
[10]. This choice is meant to ease the comparison between
images acquired by the two cameras, at the cost of additional
computational load, that can anyway be made negligible, like
it will be described later.

B. Background subtraction and frame differencing

Once the panoramic cylinder is created, we extract the
background with a combination of background subtraction
and frame differencing. These two techniques are usually
alternative to create the background. However, by combining
them, it is possible to obtain the advantages of both, and
compensate their drawbacks. The frame differencing is a
technique that presents a number of negative aspects, like
the high noise sensitivity, and the reduced capability of
detecting the inner parts of large objects. However, the frame
differencing is very robust to illumination changes, that is the
weak point of background subtraction.

Background subtraction is performed by comparing the
current frame with a reference image. The reference image
changes slowly with time, and it is slowly updated in those
regions where objects are not moving. Typically, an object
needs to appear in the same position for minutes before
becoming part of the background.

Frame differencing is performed by comparing the current
frame with the previous two, and selecting the areas that are
substantially different in at least one of the comparisons. A
time window of three frames is used here in order to better
extract moving objects, since this technique generates blobs
which are better connected with respect to those obtained
when only one frame in the past is considered. Blobs found

by frame differencing are then filtered using the background
image, by eliminating those portions that are similar to the
background: in this way it is possible to discard all the
regions where a change happened, but for which the last
image contains the background.

C. Blob extraction and multi-target tracking

Starting from the image obtained with the above pro-
cessing, blobs of motion are extracted: for each blob, basic
descriptors are evaluated, like position, dimensions, aspect
ratio, and pixel content. These descriptors are exploited for
tracking objects. We adopt a voting scheme strategy for deter-
mining the matches, based on the aspect ratios, positions and
vertical histograms of the blobs. Superimposition between
the two blobs is not considered, because, at a frame rate of
7-10 Hz, and at certain distances, a person that walks fast can
appear in two consecutive positions that have no overlap.

At this point it should be noted that, when comparing
features of different blobs, the choice of working on the
panoramic cylinder sensibly eases the task, which can exploit
algorithms developed for perspective cameras, without the
need for specific processing for omnidirectional images.

As long as a blob is being tracked for a long observation
time, the tracker gets more information about its motion, and
begins exploiting this information: coherence with previously
observed motion is also considered when evaluating associa-
tions. Such coherence is calculated by considering the mean
motion vector, referred to the X-Y plane of the unwarped
image, observed in the most recent frame transitions, and
comparing it with the motion vector that would result by the
association being evaluated. Experimentations suggest that
by considering the last 5 frames good results are achieved.

This way of processing motion information turns out to be
very light from a computational point of view. Sometimes
this method causes wrong blob associations, if compared
with other techniques adopting more precise data filtering,
but the number of wrong associations is negligible with
respect to the obtained speed-up.

D. Image unwarping with CUDA

Usually, omnidirectional image unwarping is a task whose
computational time is not negligible. Using an efficient
method exploiting look-up tables provided by OpenCV, the
algorithm needs roughly 10-20 ms to be completed. We
propose the use of the CUDA technology [11] in order
to sensibly reduce the CPU-time needed for the unwarping
process. CUDA technology exploits the highly-parallel ar-
chitecture of the graphic processor: the advantage in terms
of computational speed depends on the particular graphic
card being used, but is in any case outstanding, like it was
observed also for other applications.

In our case, the unwarped image dimension is 1280×156.
Choosing a bilinear interpolation method, that provides the
best time-performance balance, the CPU needs 13 ms to
obtain the unwarped image, while a Nvidia 9200 GS graphic
card obtains the same result in only 1.4 ms, and a 8800 GTS
card needs only 0.2 ms.
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III. INTER-CAMERA CALIBRATION

The two cameras composing the sensor need to be cali-
brated in order to be able to exchange information about what
they are observing. In our case, the system should be able
to detect moving people, recognize their faces, and record
some shots of each one.

The proposed camera system takes advantage of being
one single, self-contained sensor. Unlike [5], [6], there is
a direct relationship between the position of a blob in the
omnidirectional image, and the pan-tilt angles of the PTZ
camera needed to point it.

The whole system is said to be a single sensor because it
knows about its geometry, and it should be able to convert
information referred to the omnidirectional image coordinate
system, directly to pan-tilt angles for the moving camera. The
calibration is called “inter-camera” because it provides only
information on reciprocal positions and orientations, without
connection with the world coordinate system.

Given a certain blob in the omnidirectional image, and a
point on it, the process of recovering the pan and tilt angles
that let the PTZ camera to frame it, is as follows.

A. Pan angle

To determine the pan angle, α, the sensor should know
Xref , the x-coordinate of the unwarped image corresponding
to the reference 0◦ pan position of the PTZ camera. Then, to
frame a point having a x-coordinate value of Xobj, it suffices
to evaluate:

α =
Xobj −Xref

WImage
× 360◦ , (1)

where WImage is the width of the unwarped image. After
evaluating the above equation, the system verifies that the
position is compatible with the movement limits of the PTZ
camera, and with the angle range that is accepted by the
control interface (for instance, [-90;90] or [0;180]).

B. Tilt angle

The evaluation of the tilt angle, β, is more complicated,
and needs a precise knowledge of the mirror geometry. Other
works empirically measured the angle [5], [6], and created
a table of tilt angles, each one corresponding to a range of
y-coordinates in the unwarped image. However, this method
requires an empirical calibration procedure for each mirror
type, and introduces errors.

Since the mirror shape is known, it is possible to ana-
lytically determine the angle of each incoming light ray.
Consider the scheme in fig. 2, where a hyperbola is depicted,
representing the hyperbolic omnidirectional mirror of the
system. The points A and B are the focal points, and the
camera is placed so that the optical center coincides with
A, pointing at the omnidirectional mirror. In the scheme, the
camera and the mirror are perfectly aligned, and the optical
axis of the camera intersects the mirror perpendicularly. In
a 2-dimensional domain, the equation of the mirror is:

x2

a2
− y2

b2
= −1 , (2)

Fig. 2. Scheme of the omnidirectional camera, obtained by using a common
camera looking at a hyperbolic mirror, and placed so that the optical centre
coincides with one of the foci of the hyperbola.

where a = 29.00 mm and b = 40.73 mm for our system.
Geometrically, b is the length of the segment OK. The
distance between the two foci, that is the length of the
segment AB, is 2c =

√
a2 + b2. Finally, c = AO = BO.

Now, consider the problem of determining the direction
of a light ray that appears, in the image, at a distance r
to the center of the mirror, knowing that the mirror itself
has a maximum radius R in the image domain. We call
D the distance between the optical center A and the plane
containing the largest section of the mirror, that is, the back
part of the mirror; L is the maximum radius of the mirror,
the one appearing with radius R in the image domain. Then
the angle θ under which the point is seen will be:

θ = arctan
(

rL
RD

)
. (3)

Once the angle θ is known, it is possible to evaluate the
direction of the light ray that is incident on the mirror: this is
angle ϕ in fig. 2. Similar problems have already been tackled
in other works, see [12] for an exhaustive reference. Those
general works, however, lack a simple formula expressing
the relationship between angles θ and ϕ. Such a simple
formula can be found in [13], but without demonstration.
In the following, the demonstration is reported, since it is
not trivial.

First of all, note that a hyperbola is the locus of points
where the difference between the distances to the foci is a
constant. Since both C and K belong to the hyperbola, then
the following equality holds:

AC −BC = AK −BK . (4)

Since:
• AK = AO +OK = b+ c, and
• BK = BO −OK = c− b,

then:
AC −BC = 2b . (5)
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The cosine law applied to the triangle ABC states that:

BC
2

= AB
2

+AC
2 − 2AB ·AC cos θ : (6)

by substituting (5) into the above equation, and recalling that
AB = 2c, the following relationship results:

AC =
b2 − c2

b− c cos θ
, (7)

therefore:

CH = AC sin θ =
b2 − c2

b− c cos θ
sin θ , (8)

BH = 2c−AC cos θ =
2bc sin θ −

(
b2 + c2

)
b sin θ − c

. (9)

The angle ϕ can be finally calculated:

ϕ = arctan
(
BH

CH

)
= arctan

(
2bc−

(
b2 + c2

)
cos θ

(b2 − c2) sin θ

)
.

(10)
The angle ϕ determines the direction of the incident light

referred to the omnidirectional camera, which is mounted
close to the PTZ camera. Considering that the distance
between the sensor and the observed objects is large with
respect to the displacement between the two cameras, the
PTZ camera can be set to have the aforementioned tilt angle
β equal to the angle ϕ.

IV. IMAGE PROCESSING FOR THE PTZ CAMERA

The PTZ camera is exploited to acquire detailed images of
a chosen object, selected among the moving blobs tracked by
the omnidirectional camera. In this work, images provided
by the moving camera are processed using a face detection
algorithm. The face detector is used to classify whether the
blob is a person or not; if the face is detected, it is recorded.

The face detection phase is carried on exploiting the well-
known cascade of Haar-like features suggested by Viola and
Jones, [14], [15]. The Viola-Jones object detection technique
is based on the AdaBoost (Adaptive Boosting, [16]) learning
algorithm applied to a set of Haar-like features, efficiently
extracted from the images using the so-called integral image.
Such technique has been chosen because of its speed and
high performance.

A. Data fusion

As it has been described, the omnidirectional camera
controls the PTZ unit by setting its pan and tilt angles, i.e., by
choosing which moving blob should be framed. The system
then uses data provided by the face detector to integrate
information stored in the tracker: when a face is found, the
tracking system is updated with this information. For each
tracked blob it is therefore known if it has been framed by
the PTZ camera, and if a face was found in the detailed
images.

Information about past results of the face detection module
becomes important when the tracking system is targeting
multiple moving elements. In this case, a policy for moving
the PTZ camera on the subjects should be chosen: this

policy aims at framing the highest number of moving objects,
ideally all of them. The policy gives priority to the objects
that are located far from the camera, or that are moving fast,
because in both cases the object may become hard to view
after few time. The dimensions of the blobs are also taken
into account, and too small blobs are discarded, since they
would be hard to analyze.

Once the system chooses which object the PTZ camera
should be pointed to, it lets the face detector work for few
seconds, and records all the recognized faces; multiple shots
of the same person can be taken. When the observation time
is elapsed, the tracker is notified whether a face was found,
or not: in the first case, the corresponding blob is assigned
the lowest priority, because it has already been successfully
observed, and, in principle, there is no need to go back again
to it. When no face is detected, the subject either is not a
person, or the person is seen in a way that does not make
the detection possible (e.g. the back of the head is seen). In
this case, the blob is assigned a low priority, in order to let
the system focus on other objects; but further investigations
on it are scheduled, trying to frame the subject after some
time, when it might be seen in a different way.

V. EXPERIMENTS

System performance measurement was obtained by plac-
ing the sensor in several environments, and calculating how
many faces were detected with respect to the total number
of people that appeared in the field of view. There are two
main factors that influence performance: the capability of the
system to detect moving objects, and point the PTZ camera
so that it can frame people, and the performance of the
face detector. In almost all cases observed during the testing
phase, however, the face detector was able to detect the faces
appearing in the images: in some cases the detection turned
out to be very stable; in some others it appeared weaker.

In order to keep the influence of the face detector per-
formance low, and considering that the final goal of the
application is to acquire shots of the face of each person
walking in the field of view, the system performance was
calculated as the ratio between the number of people for
which at least one image of the face was recorded, with
respect to the total number of people that walked close to
the sensor.

It was considered acceptable the case when, for a person,
not only the face, but also some other wrong object was
found by the face detector, given that at least one correct shot
of the face was taken. This choice corresponds to neglecting
the problem of false positives of the face detector, that is
fair, since this work is not focused on face detection, but
rather, exploits a face detector. False positives were anyway
measured, and ranged from 0.03 to 0.4 false positives per
frame, in the easiest and most complicated environment,
respectively. The value of 0.4 is quite high; however, we
chose not to care about it, as long as the face detector could
at the same time record all the faces in the image.
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A. Test scenarios
The sensor was tested in different environments. The most

easy one was a corridor with few people walking: in this case,
every person was correctly detected by the tracking system,
framed by the PTZ camera, and at least one shot of the face
was recorded. We do not report these experiments due to
space limitations.

A more difficult situation was encountered when a person
appeared already close to the sensor: for instance, while
coming out of a room whose door was very close to the
sensor. In this case, the system was quickly alerted by
the omnidirectional camera, but, depending on the actual
position of the PTZ camera, the latencies introduced by
mechanical movements could make the system unable to
frame the person.

The most difficult case was observed while testing the
sensor during a fair exhibition. A lot of people were mov-
ing: some walking, some other staying in the same place,
but generating minor movements. Experiments performed
in this scenario were particularly useful to tune the target
selection policy: at the beginning, the sensor got confused,
and switched too often between the several moving objects
that were correctly detected in the omnidirectional images.

The system was then better tuned, depending also on the
features of the specific PTZ unit. The sensor should, in fact,
adopt a policy that knows how fast the moving camera is,
and, for each target, know in advance how long it will take
to point it, comparing this time with the speed of the target
itself.

In the last, more complicated, scenario, the sensor was able
to detected and point 93% of the people walking around.
Groups of people did not create any problem, apart from
occlusions, since they generated a big motion pattern, were
pointed by the PTZ camera, and all the faces were detected.

All faces missed by the system belonged to people
detected by the tracking system, but not framed by the
moving camera, because of the mechanical latencies: when
the camera turned out to point the subject, the face was not
visible anymore, because of the subject’s movement.

Some examples of the system results can be seen in fig. 3.
In (a), a sample of the omnidirectional image processing:
each rectangle identifies a region where movement was
detected; it can be seen that the person on the right generates
multiple motion patterns. In (b) it is shown the image of the
PTZ camera acquired when observing the scene in (a): the
person walking around the sensor has been correctly framed;
it should also be noted that the shot was taken while the
camera was rotating: the walking person appears still in the
image, while other people standing in the background appear
blurred, due to the camera motion.

In (c), two people partially overlapping are recognized by
the face detector: groups are not an issue, as long as all the
faces are visible. In (d), the effect of motion blur when the
PTZ camera is changing its position. When this happens,
faces are detected in some cases, but the resulting dumped
image would not be useful, because of the poor quality
of the blurred image. In (e), an example of false positive

that is difficult to eliminate, because the advertisement sign
actually does have a face depicted on it. Since the whole
system also tracks movement, however, it would be possible
to filter this kind of false positive, given that the inter-camera
calibration and the positioning system of the PTZ camera are
both extremely precise.

B. Computational time

The described algorithm needs an average time of 222 ms
to process each frame on a Core2 Duo processor working
at 2.10 GHz. This time includes image unwarping (13 ms),
omnidirectional image processing (30 ms), the GUI (4 ms)
and the face detection algorithm, which is the slowest part,
and needs 175 ms. This leads to the conclusion that if the
face detection algorithm is not run on the whole PTZ image,
but rather on a subwindow, the overall processing time can
be substantially decreased. This would be possible if both
the inter-camera calibration and the PTZ camera positioning
were extremely precise.

Moreover, the face detection algorithm needs not be run
on every frame, but rather, only when a moving object needs
to be investigated. The task of looking for possible targets is
therefore performed in 43 ms, that can be reduced to 31 ms
(-28%) by performing the unwarping on the GPU, that takes
1 ms only.

C. Future developments

Some ideas about future developments of the system
include the quality check of the images obtained by the face
detection algorithm working on images acquired by the PTZ
camera. In the current implementation, once the shot is taken,
it is simply stored: a more efficient system should be capable
of evaluating whether the quality of the image containing the
face is good or not.

VI. CONCLUSIONS

In this paper, a sensor composed of two cameras has been
presented, together with a video-surveillance application for
detecting and recording the faces of the people moving
around. The sensor is composed by two cameras presenting
complementary advantages and drawbacks, and is capable of
monitoring all the surrounding area, while, at the same time,
concentrating on some details where an interesting event is
occurring. The two cameras are considered as a single sensor,
since processing results of both cameras are fused together
to obtain better performance: in this sense, none of the two
cameras can be considered the master, completely controlling
the other one.

An application for detecting the faces of the people
moving around the sensor has also been described; results
were reported of experiments of successful real-time motion
tracking and face recognition in wide environments, where
data provided by the two cameras are combined together.
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