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Abstract—This research addresses a method for mobile
robots that simultaneously performs map building and path-
planning on line. A graph representation of a workspace with
variable resolutions is constructed using measurement data
obtained by omni-directional distance sensors. At the same time,
a real-time search for a feasible path to the goal is executed on
the constructed graph-map. The proposed method is evaluated
through experiments using an omni-directional mobile robot
equipped with laser range finders.

I. INTRODUCTION

In path-planning of mobile robots, precise self-localization
and map-building of the surrounding environment is of
crucial importance. Off-line approach, which generates and
stores these information a priori, is not applicable in dy-
namically changing environments. The framework of Simul-
taneous Localization And Mapping (SLAM) was proposed
by Dissanayake [1]. In SLAM, a mobile robot (or a troop
of mobile robots) executes self-localization and map-building
simultaneously on line. Until today, there have been extensive
studies on this topic.

One issue that has been somewhat overlooked in SLAM
is path-planning. In most SLAM-related works, a mobile
robot is either tele-operated or merely traces a prescribed
route. When a mobile robot is required to reach a goal
autonomously in a purely unknown environment, it has to
not only execute SLAM but also plan a proper path to the
goal using an incomplete map. Efficient path-planning is also
important even when map-building is the robot’s primary
task. Motivated by this background, apart from SLAM, this
work focuses on simultaneous execution of map-building and
path-planning.

In online map-building, a map representation that can
be updated incrementally based on sensor information is
needed. Existing methods for the representation and creation
of maps are mainly categorized into partitioning-based meth-
ods and roadmap-based methods. Partitioning-based methods
([31[4]1[5]) subdivides the workspace into cells, often in a
hierarchical manner, and marks each cell either collision-
free or occupied. On the other hand, roadmap methods
constructs a graph structure in the collision-free region of the
workspace[6]. Among various roadmap methods, the Prob-
abilistic Roadmaps method (PRM) [7] has been popular in
recent years. Roadmap methods are suitable for incremental-
map building, because maps can be expanded simply by
adding new nodes and connecting them by links with the
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existing map. However, most existing techniques seem to
have a common shortcoming that it requires some geometric
representation of the workspace a priori.

In online path planning, the robot should determine
what action to make next in a limited amount of time.
Path-planning methods are categorized into two groups:
local planning and global planning. Local planning methods
such as potential-field-based techniques [2] execute planning
purely based on local information and thus does not require
a map. As a drawback, there is a fear of being caught in
a dead-end. In contrast, global planning methods make full
use of map information to obtain an optimal path. However,
most of them give no performance guarantee when search
time is limited.

This research addresses a problem in which a mobile
robot tries to reach a goal in an unknown but bounded 2D
workspace with obstacles. For this problem, we propose a
map-building method that constructs a variable-resolution
roadmap based on omni-directional distance sensor infor-
mation. Generated roadmaps have variable-resolution in the
sense that graph-nodes are densely distributed in the neigh-
borhood of obstacles, while minimum number of nodes are
used to express free-spaces. This reflects the fact, from
a perspective of safety, that precise movement is required
near obstacles. It also makes sense from the viewpoint of
sensing; that is, distance sensors have an inherent variable-
resolution characteristic. If the sensor samples in all angles
with a uniform spacing, in the Cartesian coordinate, close
regions are sampled with high resolutions and far regions are
sampled with low resolutions. Moreover, the method consists
of a small set of rules, and therefore is quite reasonable
for real-time application. In addition, it requires no a priori
information about the geometry of the workspace.

For path-planning, we employ the Real-time A* (RTA*)
search method ([12]). The RTA* search can produce a
solution under a limit computation time by adjusting the
search depth. At the same time, thanks to its special cost
update rule, it prevents the agent from being caught in a
dead-lock or a live-lock.

The proposed method has been implemented in a
omni-directional mobile robot equipped with Laser Range
Finder(LRF)s and has been tested in indoor experiments.

The rest of this paper is organized as follows: The problem
of online map building and path-planning will be described in
Section II. In Section III, the entire workflow of the method
will be shown. In Section IV, the map-building rules will be
explained in detail. The algorithm of the RTA* search will be
briefly reviewed in Section V. In Section VI, we will show
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the results of indoor experiments using an omni-directional
mobile robot. Concluding remarks will be made in Section
VIIL

II. PROBLEM SETTING

First of all, we explain the details of the mobile robot
used in this research. Fig. 1 shows the mobile robot Omnia.
The robot propels with three omni-directional wheels, each
of them driven by a DC motor. The nominal speed of the
robot is 500mm/s. The robot is equipped with two laser range
finder(LRF)s, one in front and one in the back, and one omni-
directional camera attached to the center.

Fig.2 shows an example of a workspace, in which the
robot is required to move to a specified goal position in a
fully autonomous manner. We assume that the workspace is
bounded and can be split into obstacles and free-space. The
robot can freely move around in free-space, while it cannot
enter inside obstacles. Moreover, the robot can measure the
relative distance and direction to the goal using its omni-
directional camera. Initially, the robot has no information
about the obstacle configuration. But it can measure the
distance towards surrounding obstacles in any direction using
its LRFs.

III. BRIEF OVERVIEW OF THE METHOD

As mentioned earlier, the proposed method utilizes the
RTA* search method for path-planning. RTA* is a type of
graph-search techniques with real-time property. In order to
apply graph-search techniques including RTA*, the robot
constructs a roadmap, a graph-based representation of the
free-space expressed in the so-called configuration space (C-
space), based on LRF measurements. The C-space is a space
of all possible states (positions and orientations) of the robot.
If a point in the C-space corresponds to a configuration of the
robot in which the robot’s body intersects with an obstacle
in the workspace, we say the point is a part of configuration
obstacles. Otherwise, the point is in the configuration free-
space.

Normally, the configuration of a mobile robot in 2D
workspace is expressed by (z,y,0); x-coordinate, y-
coordinate and orientation. But in the case of omni-
directional mobile robots that can move and sense in all
directions, we can omit . In this case, a graph-map con-
structed in the C-space can be seen as a map for the physical
workspace itself.

All discussions hereafter will be made in the C-space and
configuration obstacles (free-space) may be simply called
obstacles (free-space). We denote the start position by pg =
(zs,ys) and the goal position by pg = (zg, yc)- A graph is
a collection of nodes and links. Each node represents a point
in the C-space and each link represents a connection between
two nodes. If a pair of nodes are connected by a link, then the
robot can move from one node to the other along a straight
line without colliding with obstacles. Moreover, each node
is accompanied with a cell. A cell is a region composed
of points within a certain distance from the corresponding
node but not inside a (configuration) obstacle. The maximum
distance from the node to a point inside the cell is called the
radius of the cell.

The work flow of the proposed method is shown in
Fig.3(a). At the beginning, a node is created in the starting
position, where the robot is initially located. Next, a cell
is created and attached to it. Here, the radius of the cell
is determined by a rule described in Section IV-A. If the
goal is included in that cell, the process terminates. If not,
one or more new nodes are created on the boundary of the
cell of current node, according to a set of rules described
in Section I'V-B. After that, path-planning is executed by the
RTA* search over the graph constructed so far. The robot
then starts moving towards the adjacent node on the obtained
path. After the robot successfully arrives at the next node, the
whole process is repeated until the robot eventually reaches
the goal. The robot travels between two nodes in a constant
period, regardless of the distance between them. As a result,
the robots moves slowly when nodes are densely distributed
around it, and moves rapidly in regions where a relatively
small number of nodes are placed.

IV. GRAPH CONSTRUCTION PROCEDURE

In this section, we will explain the graph-map construction
method in detail. Although the method is best suited to
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mobile robots equipped with full-range distance sensors
(most typically, LRFs), it is still applicable to general types
of robots as long as they are capable of obtain distance
information by other means (e.g., stereo cameras).

A. Variable-resolution Cell Decomposition

As illustrated in Fig. 4, we denote the maximum measur-
able distance by R, ax. For a node n, the position of the node
n is denoted by p™ and the radius of the cell attached to the
node n is denoted by R™. Moreover, we express the relative
angle of a point with respect to the robot’s orientation by 6.

The function D™(#) returns the distance to an obstacle from
the node n in the direction 6. Using this notation the cell of
node n, denoted by C", is formally defined as a set in the
following equation:

C"={p|lp—p" < min(D"(arg(p — p")), R")}. (1)

Here, arg(v) returns the direction of the vector v.Since the
node position p" is fixed when the node is created and D" (0)
is obtained by sensor measurements, C"" is determined when
the remaining parameter R", the cell radius, is specified. The
cell radius R"™ is chosen to satisfy the following criterion:

27
R — = [ min(D"0), R")d6 < R, ()
2m Jo
which means that the difference between R" and the average
of min(D"™ (), R™) is below the threshold Ryy,. The param-
eter Ry, should be specified a priori. If Ry is set as 0, R™
is given as
R™ = min(D"(9)) (3)

and therefore is equivalent to the distance to the nearest
obstacle. The intention of this criterion is to vary the cell
radius according to the distance towards the nearest obsta-
cle. In addition, cell radius should be chosen so that the
configuration of surrounding obstacles can be captured from
the shape of the cell boundary. As we can see in Fig.4, a
cell boundary is composed of arcs that indicate no obstacle
is detected in the corresponding directions, and portions of
obstacle boundaries measured by the distance sensor. Since
the inequality (2) is difficult to solve directly, we calculate
R™ by an iterative procedure explained below. First, we
approximate the second term in the left-hand-side of (2) as
follows:

m—1
L e > min(D™(k x Af), R™)
- in( D" n ~ k=0
o7 J, min(D"(0), R™)dY p-

4)
Here, m denotes the number of discrete angles and Af
denotes the spacing width. Given A6, m is given by m =
[27/ Af] where [] denotes the largest integer not exceeding
*. Using this approximation, (2) is transformed into
m—1
> min(D™(k x Af), R™)
R _ k=0

< Rin. 4)
m

Using (5), we calculate R™ in the following three steps:
STEP1 (Initialization): Set R as

0 = Rmax- (6)
STEP2 (Update): Given R} ., calculate R} by
m—1
S min(D" (k x A0), Ry )
R} = 4= . 7)
m
STEP3 (Terminate): If
m—1
> min(D™(k x Af), R}")
R} — =0 < R ®)
m
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holds, terminate with R™ = R}. Otherwise set ¢ < % + 1
and go to STEP2.
Since

min(D"(0), D"(A0),...,D"((m—1)x Af)) < R} < R} ,

©))
holds, R} decreases monotonically with respect to ¢. There-
fore, we can obtain I’ satisfying (8) in finite iterations. The
procedure terminates also when R goes below Rpin, the
minimum cell radius.

B. Node Creation Rules

After a cell is created at the current position, new nodes
are created on the boundary of the current cell, based on a
set of rules listed below:

A-1 Create a node on the intersection point of the cell
boundary and a straight line connecting the current
position and the goal, unless the intersection point
is inside an obstacle.

Create nodes on the cell boundary where two
different kinds of line segments intersect; an arc
indicating free-space and an obstacle boundary.

For each dead-angle, create nodes on both end-
points of the straight line-segment of the cell
boundary.

A—4 Do not create a node inside the intersection of the
cell and other existing cells.

Notice that only rule A-4 is an inhibition rule. Therefore, a
node is created on a point at which either rule A-1, A-2 or
A-3 is applied and rule A-4 does not.

Each newly created node is then connected by a link with
the current node. Based on the rules explained above, the
robot incrementally explores and builds a graph-map of the
workspace.

C. Features of the proposed method

Some map-representations with variable level-of-details
already exist in the literature ([8][9]). However, these meth-
ods require a priori knowledge of the geometry of the

workspace. On the other hand, the proposed method deter-
mines the resolution of map representation based purely on
sensor information. The Generalized Voronoi Graph (GVG)
[10] is also known as a sensor-based mapping method.
However, it is reported in [11] that GVG is sensitive to sensor
noise because it directly uses the range data. The Thinning-
based Topological Map (TTM) [11] improves the robustness
of GVG against noise, but it fails when there is no obstacle
within the sensing range. On the other hand, the proposed
method does not suffer from this problem because it creates
nodes on the cell boundary. Moreover, the measurement
noise of LRF is proportional to the measured distance. Thus,
we can reduce the effect of sensor noise by setting R4z,
the maximum cell radius, appropriately small.

V. PATH-PLANNING BASED ON RTA* SEARCH

There are mainly the following requirements in the path-
planning of a single mobile robot:

1) Limited search-depth; the robot cannot search the

workspace in an arbitrary depth.
2) Limited search-time; the robot should decide its next
action in a limited amount of time.

Most graph-search methods (e.g., depth-first, breadth-first,
A* and so forth) are off-line techniques; they guarantee
to output an optimal path if the search-time is unlimited
but there is no performance guarantee if the search-time is
limited. On the other hand, the Real-time A* (RTA*) search
method proposed by Korf [12] is a real-time method. Its
computation time can be adjusted by changing the search-
depth. Thanks to its unique cost-update rule, it still guaran-
tees that the agent (the mobile robot) will never be caught in
an infinite loop, and therefore will eventually reach the goal.
The RTA* search consists of two phases: the search phase
and the execution phase (Fig.3(c)).
(1) Search phase
Let n be the current node and let d be the search depth.
Moreover, let {ny} be a set of nodes that are reachable from
the node n in exactly d steps. Find a path (n,...,7g4) (g €
{nq}) that minimizes the cost function

f(na nd) = g(nand> + h(ndapG) (10)

(Fig.6). In (10), g(n,ng) denotes the cost of the path from
n to ng. On the other hand, the function h(ng, pg) serves as
a heuristic estimate of the cost from the node n, to the goal
pg, similar to those used in the ordinary A* search. The cost
estimate h(ng, pg) is initialized with the Euclidean distance
between ng = [r4,y4]T and pg = [ra,yc]™:

h(ng,pc) = v/ (xc — a)2 + (Y — ya)?

and it is updated at the execution phase.
(2) Execution phase

The robot moves to an adjacent node on a path that
minimizes

(11

f(n7 ﬁd) =

min n,nq)-
anin | f(n, fg)

(12)

If there exists more than one path with the same cost, one
node is chosen at random. Before moving, the heuristic cost
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Fig. 6. Cost function of RTA* search

of the node n, h(n, pg), is update according to the following
rule:

f(n,nh) (13)

Mmpa) = R
This update rule replaces the heuristic cost of n with the
second minimum path cost. As an effect of this update rule,
the heuristic cost of each node monotonically increases each
time the robot arrives at that node. Consequently, the robot
will get out of a loop after a finite number of cycles and start
exploring other nodes.

VI. EXPERIMENTS

In this section, experimental results using the omni-
directional mobile robot Omnia (Fig. 1) are presented. The
proposed algorithm needs distance information to the nearby
obstacles measured from the center of the robot. Actual
measurement data, however, are distance from the center of
LRFs. To transform the measurement data to body-centered
polar coordinate, the data are first converted to the Cartesian
coordinate by

Xr | | X1 0
EANEINEY
and then it is converted to the body-centered polar coor-
dinate. Here, (Xg, Yr) denotes the body-centered Cartesian
coordinate and (X7, Y7) denotes the LRF-centered Cartesian
coordinate. The constant dj, is the offset between the body
center and each LRF.

Self-localization is done by dead-reckoning using encoders
attached to the wheels. Moreover, an LED landmark is placed
at the goal. The robot can detect this landmark using its
omni-directional camera to know the direction to the goal
from its current position. This information can be utilized to
compensate severe drifts caused by the dead-reckoning. The
LED landmark is placed in an altitude high enough so that
it will always be in the robot’s sight.

In the following experiments, the step-size Af used for the
cell-radius calculation is set as 0.36°, the cut-off threshold
Ry, is set as 20mm, the minimum cell radius R, is set as
400mm and the maximum cell radius R, is 2000mm.

The first result highlights the effect of node creation rules
and that of RTA* search. It also demonstrates that the map
can be reused in different trials. The workspace for this
experiment is shown in Fig. 7. The workspace is surrounded

(14)

(b) Second trial

Fig. 7. Environment for experiment and Graph-map constructed by the
mobile robot

by walls so that the robot will never go out of it (walls are
detected by the robot as obstacles). A triangle in each figure
depicts the initial position and direction of the robot. Note
that all graphs and trajectories in Fig.7 and Fig.8 are drawn
using actual measurement data. In the first trial (Fig.7(a)),
the robot creates a map while it moves towards the goal. The
search depth of the RTA* search d is set as 1, Black dots
depict the nodes of the graph-map and solid lines depict
the links. The movement trajectory of the robot is shown
by arrows. Since the robot starts with no information about
the obstacle configuration, it first chooses left (up w.r.t. the
paper) by chance, which leads to a dead-end. After several
steps, it detects the dead-end and then comes back to the
node where it first turned left. Then it tries the other direction
and this time it successfully reaches the goal. The dead-end
detection and avoidance is accomplished by the following
mechanism: When the robot reaches a dead-end, the creation
of new nodes will be suppressed after a certain point of time.
This is the effect of Rule A-4, which inhibits the creation
of new nodes inside existing cells. Then, as an effect of the
cost update rule of RTA*, the cost of nodes near the dead-
end will increase monotonically. As a result, the robot will
be pushed away from the dead-end.

In the second trial, the robot starts from the same initial
position but this time it already has a map information.
Moreover, the search depth of RTA* is set as 5. As a result,
the robot chooses the optimal path, which leads to the goal
while avoiding the dead-end. Thus, it has been shown that a
map can be stored and reused to facilitate efficient planning
for different trials.

The next experiment tests the variable-resolution feature
of the proposed map building method, in a larger-scale
environment (Fig.8). A graph-map created by the robot
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after a trial is shown in Fig.8(b). The cells are depicted
by gray regions. Thanks to the variable-resolution feature
of the method, we can observe that large cells are created
during a few steps after the robot has started off and when
the robot travels through a free-space between the first and
second obstacles. In particular, the cell radius of the second
node is 1300mm. In contrast, when the robot goes through an
obstacle and a wall, cells are created with smaller radius or
sometimes with the minimum radius (400mm). As a result,
the robot realizes precise and safe motion near obstacles
while it makes more agile movement when obstacles are far
enough.

VII. CONCLUSION

In this paper, a method for simultaneous map-building
and path-planning for mobile robots has been presented,
and its has been tested through experiments. The proposed
method enables the construction of a graph-map with vari-
able resolutions based on distance sensor measurements by
simply applying a small set of rules. Future work includes the
extension of rules for map construction, especially rules for
creating links between nodes. Extension of link creation rules
will enable creating loops, connecting several existing maps
together, cope with changing environments, and more. Other
important issues are to provide a theoretical guarantee that
the robot will eventually reach the goal, to incorporate self-
localization, to consider other possible criteria for deciding
the cell radius, and to compare the proposed method with
different methods through both simulations and real experi-
ments.
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