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Abstract— This research addresses a method for mobile
robots that simultaneously performs map building and path-
planning on line. A graph representation of a workspace with
variable resolutions is constructed using measurement data
obtained by omni-directional distance sensors. At the same time,
a real-time search for a feasible path to the goal is executed on
the constructed graph-map. The proposed method is evaluated
through experiments using an omni-directional mobile robot
equipped with laser range finders.

I. INTRODUCTION

In path-planning of mobile robots, precise self-localization

and map-building of the surrounding environment is of

crucial importance. Off-line approach, which generates and

stores these information a priori, is not applicable in dy-

namically changing environments. The framework of Simul-

taneous Localization And Mapping (SLAM) was proposed

by Dissanayake [1]. In SLAM, a mobile robot (or a troop

of mobile robots) executes self-localization and map-building

simultaneously on line. Until today, there have been extensive

studies on this topic.

One issue that has been somewhat overlooked in SLAM

is path-planning. In most SLAM-related works, a mobile

robot is either tele-operated or merely traces a prescribed

route. When a mobile robot is required to reach a goal

autonomously in a purely unknown environment, it has to

not only execute SLAM but also plan a proper path to the

goal using an incomplete map. Efficient path-planning is also

important even when map-building is the robot’s primary

task. Motivated by this background, apart from SLAM, this

work focuses on simultaneous execution of map-building and

path-planning.

In online map-building, a map representation that can

be updated incrementally based on sensor information is

needed. Existing methods for the representation and creation

of maps are mainly categorized into partitioning-based meth-

ods and roadmap-based methods. Partitioning-based methods

([3][4][5]) subdivides the workspace into cells, often in a

hierarchical manner, and marks each cell either collision-

free or occupied. On the other hand, roadmap methods

constructs a graph structure in the collision-free region of the

workspace[6]. Among various roadmap methods, the Prob-

abilistic Roadmaps method (PRM) [7] has been popular in

recent years. Roadmap methods are suitable for incremental-

map building, because maps can be expanded simply by

adding new nodes and connecting them by links with the
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existing map. However, most existing techniques seem to

have a common shortcoming that it requires some geometric

representation of the workspace a priori.

In online path planning, the robot should determine

what action to make next in a limited amount of time.

Path-planning methods are categorized into two groups:

local planning and global planning. Local planning methods

such as potential-field-based techniques [2] execute planning

purely based on local information and thus does not require

a map. As a drawback, there is a fear of being caught in

a dead-end. In contrast, global planning methods make full

use of map information to obtain an optimal path. However,

most of them give no performance guarantee when search

time is limited.

This research addresses a problem in which a mobile

robot tries to reach a goal in an unknown but bounded 2D

workspace with obstacles. For this problem, we propose a

map-building method that constructs a variable-resolution

roadmap based on omni-directional distance sensor infor-

mation. Generated roadmaps have variable-resolution in the

sense that graph-nodes are densely distributed in the neigh-

borhood of obstacles, while minimum number of nodes are

used to express free-spaces. This reflects the fact, from

a perspective of safety, that precise movement is required

near obstacles. It also makes sense from the viewpoint of

sensing; that is, distance sensors have an inherent variable-

resolution characteristic. If the sensor samples in all angles

with a uniform spacing, in the Cartesian coordinate, close

regions are sampled with high resolutions and far regions are

sampled with low resolutions. Moreover, the method consists

of a small set of rules, and therefore is quite reasonable

for real-time application. In addition, it requires no a priori

information about the geometry of the workspace.

For path-planning, we employ the Real-time A∗ (RTA∗)

search method ([12]). The RTA∗ search can produce a

solution under a limit computation time by adjusting the

search depth. At the same time, thanks to its special cost

update rule, it prevents the agent from being caught in a

dead-lock or a live-lock.

The proposed method has been implemented in a

omni-directional mobile robot equipped with Laser Range

Finder(LRF)s and has been tested in indoor experiments.

The rest of this paper is organized as follows: The problem

of online map building and path-planning will be described in

Section II. In Section III, the entire workflow of the method

will be shown. In Section IV, the map-building rules will be

explained in detail. The algorithm of the RTA∗ search will be

briefly reviewed in Section V. In Section VI, we will show
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Fig. 1. Mobile robot for experiment

Fig. 2. Workspace of the robot

the results of indoor experiments using an omni-directional

mobile robot. Concluding remarks will be made in Section

VII.

II. PROBLEM SETTING

First of all, we explain the details of the mobile robot

used in this research. Fig. 1 shows the mobile robot Omnia.

The robot propels with three omni-directional wheels, each

of them driven by a DC motor. The nominal speed of the

robot is 500mm/s. The robot is equipped with two laser range

finder(LRF)s, one in front and one in the back, and one omni-

directional camera attached to the center.

Fig. 2 shows an example of a workspace, in which the

robot is required to move to a specified goal position in a

fully autonomous manner. We assume that the workspace is

bounded and can be split into obstacles and free-space. The

robot can freely move around in free-space, while it cannot

enter inside obstacles. Moreover, the robot can measure the

relative distance and direction to the goal using its omni-

directional camera. Initially, the robot has no information

about the obstacle configuration. But it can measure the

distance towards surrounding obstacles in any direction using

its LRFs.

III. BRIEF OVERVIEW OF THE METHOD

As mentioned earlier, the proposed method utilizes the

RTA∗ search method for path-planning. RTA∗ is a type of

graph-search techniques with real-time property. In order to

apply graph-search techniques including RTA∗, the robot

constructs a roadmap, a graph-based representation of the

free-space expressed in the so-called configuration space (C-

space), based on LRF measurements. The C-space is a space

of all possible states (positions and orientations) of the robot.

If a point in the C-space corresponds to a configuration of the

robot in which the robot’s body intersects with an obstacle

in the workspace, we say the point is a part of configuration

obstacles. Otherwise, the point is in the configuration free-

space.

Normally, the configuration of a mobile robot in 2D

workspace is expressed by (x, y, θ); x-coordinate, y-

coordinate and orientation. But in the case of omni-

directional mobile robots that can move and sense in all

directions, we can omit θ. In this case, a graph-map con-

structed in the C-space can be seen as a map for the physical

workspace itself.

All discussions hereafter will be made in the C-space and

configuration obstacles (free-space) may be simply called

obstacles (free-space). We denote the start position by pS =
(xS, yS) and the goal position by pG = (xG, yG). A graph is

a collection of nodes and links. Each node represents a point

in the C-space and each link represents a connection between

two nodes. If a pair of nodes are connected by a link, then the

robot can move from one node to the other along a straight

line without colliding with obstacles. Moreover, each node

is accompanied with a cell. A cell is a region composed

of points within a certain distance from the corresponding

node but not inside a (configuration) obstacle. The maximum

distance from the node to a point inside the cell is called the

radius of the cell.

The work flow of the proposed method is shown in

Fig. 3(a). At the beginning, a node is created in the starting

position, where the robot is initially located. Next, a cell

is created and attached to it. Here, the radius of the cell

is determined by a rule described in Section IV-A. If the

goal is included in that cell, the process terminates. If not,

one or more new nodes are created on the boundary of the

cell of current node, according to a set of rules described

in Section IV-B. After that, path-planning is executed by the

RTA∗ search over the graph constructed so far. The robot

then starts moving towards the adjacent node on the obtained

path. After the robot successfully arrives at the next node, the

whole process is repeated until the robot eventually reaches

the goal. The robot travels between two nodes in a constant

period, regardless of the distance between them. As a result,

the robots moves slowly when nodes are densely distributed

around it, and moves rapidly in regions where a relatively

small number of nodes are placed.

IV. GRAPH CONSTRUCTION PROCEDURE

In this section, we will explain the graph-map construction

method in detail. Although the method is best suited to
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Fig. 4. Measured distance Dn(θ) and cell radius Rn

mobile robots equipped with full-range distance sensors

(most typically, LRFs), it is still applicable to general types

of robots as long as they are capable of obtain distance

information by other means (e.g., stereo cameras).

A. Variable-resolution Cell Decomposition

As illustrated in Fig. 4, we denote the maximum measur-

able distance by Rmax. For a node n, the position of the node

n is denoted by pn and the radius of the cell attached to the

node n is denoted by Rn. Moreover, we express the relative

angle of a point with respect to the robot’s orientation by θ.

The function Dn(θ) returns the distance to an obstacle from

the node n in the direction θ. Using this notation the cell of

node n, denoted by Cn, is formally defined as a set in the

following equation:

Cn = {p |‖ p − pn ‖≤ min(Dn(arg(p − pn)), Rn)} . (1)

Here, arg(v) returns the direction of the vector v.Since the

node position pn is fixed when the node is created and Dn(θ)
is obtained by sensor measurements, Cn is determined when

the remaining parameter Rn, the cell radius, is specified. The

cell radius Rn is chosen to satisfy the following criterion:

Rn −
1

2π

∫ 2π

0

min(Dn(θ), Rn)dθ ≤ Rth, (2)

which means that the difference between Rn and the average

of min(Dn(θ), Rn) is below the threshold Rth. The param-

eter Rth should be specified a priori. If Rth is set as 0, Rn

is given as

Rn = min(Dn(θ)) (3)

and therefore is equivalent to the distance to the nearest

obstacle. The intention of this criterion is to vary the cell

radius according to the distance towards the nearest obsta-

cle. In addition, cell radius should be chosen so that the

configuration of surrounding obstacles can be captured from

the shape of the cell boundary. As we can see in Fig. 4, a

cell boundary is composed of arcs that indicate no obstacle

is detected in the corresponding directions, and portions of

obstacle boundaries measured by the distance sensor. Since

the inequality (2) is difficult to solve directly, we calculate

Rn by an iterative procedure explained below. First, we

approximate the second term in the left-hand-side of (2) as

follows:

1

2π

∫ 2π

0

min(Dn(θ), Rn)dθ ≃

m−1
∑

k=0

min(Dn(k × ∆θ), Rn)

m
(4)

Here, m denotes the number of discrete angles and ∆θ
denotes the spacing width. Given ∆θ, m is given by m =
[2π/∆θ] where [∗] denotes the largest integer not exceeding

∗. Using this approximation, (2) is transformed into

Rn −

m−1
∑

k=0

min(Dn(k × ∆θ), Rn)

m
≤ Rth. (5)

Using (5), we calculate Rn in the following three steps:

STEP1 (Initialization): Set Rn
0 as

Rn

0 = Rmax. (6)

STEP2 (Update): Given Rn
i−1

, calculate Rn
i

by

Rn

i =

m−1
∑

k=0

min(Dn(k × ∆θ), Rn
i−1

)

m
. (7)

STEP3 (Terminate): If

Rn

i −

m−1
∑

k=0

min(Dn(k × ∆θ), Rn
i
)

m
≤ Rth (8)
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Fig. 5. Node production rules

holds, terminate with Rn = Rn
i

. Otherwise set i ← i + 1
and go to STEP2.

Since

min(Dn(0), Dn(∆θ), ...,Dn((m−1)×∆θ)) ≤ Rn

i ≤ Rn

i−1

(9)

holds, Rn
i

decreases monotonically with respect to i. There-

fore, we can obtain Rn
i

satisfying (8) in finite iterations. The

procedure terminates also when Rn
i

goes below Rmin, the

minimum cell radius.

B. Node Creation Rules

After a cell is created at the current position, new nodes

are created on the boundary of the current cell, based on a

set of rules listed below:

A–1 Create a node on the intersection point of the cell

boundary and a straight line connecting the current

position and the goal, unless the intersection point

is inside an obstacle.

A–2 Create nodes on the cell boundary where two

different kinds of line segments intersect; an arc

indicating free-space and an obstacle boundary.

A–3 For each dead-angle, create nodes on both end-

points of the straight line-segment of the cell

boundary.

A–4 Do not create a node inside the intersection of the

cell and other existing cells.

Notice that only rule A-4 is an inhibition rule. Therefore, a

node is created on a point at which either rule A-1, A-2 or

A-3 is applied and rule A-4 does not.

Each newly created node is then connected by a link with

the current node. Based on the rules explained above, the

robot incrementally explores and builds a graph-map of the

workspace.

C. Features of the proposed method

Some map-representations with variable level-of-details

already exist in the literature ([8][9]). However, these meth-

ods require a priori knowledge of the geometry of the

workspace. On the other hand, the proposed method deter-

mines the resolution of map representation based purely on

sensor information. The Generalized Voronoi Graph (GVG)

[10] is also known as a sensor-based mapping method.

However, it is reported in [11] that GVG is sensitive to sensor

noise because it directly uses the range data. The Thinning-

based Topological Map (TTM) [11] improves the robustness

of GVG against noise, but it fails when there is no obstacle

within the sensing range. On the other hand, the proposed

method does not suffer from this problem because it creates

nodes on the cell boundary. Moreover, the measurement

noise of LRF is proportional to the measured distance. Thus,

we can reduce the effect of sensor noise by setting Rmax,

the maximum cell radius, appropriately small.

V. PATH-PLANNING BASED ON RTA∗ SEARCH

There are mainly the following requirements in the path-

planning of a single mobile robot:

1) Limited search-depth; the robot cannot search the

workspace in an arbitrary depth.

2) Limited search-time; the robot should decide its next

action in a limited amount of time.

Most graph-search methods (e.g., depth-first, breadth-first,

A∗ and so forth) are off-line techniques; they guarantee

to output an optimal path if the search-time is unlimited

but there is no performance guarantee if the search-time is

limited. On the other hand, the Real-time A∗ (RTA∗) search

method proposed by Korf [12] is a real-time method. Its

computation time can be adjusted by changing the search-

depth. Thanks to its unique cost-update rule, it still guaran-

tees that the agent (the mobile robot) will never be caught in

an infinite loop, and therefore will eventually reach the goal.

The RTA∗ search consists of two phases: the search phase

and the execution phase (Fig. 3(c)).

(1) Search phase

Let n be the current node and let d be the search depth.

Moreover, let {nd} be a set of nodes that are reachable from

the node n in exactly d steps. Find a path (n, . . . , n̂d) (n̂d ∈
{nd}) that minimizes the cost function

f(n, nd) = g(n, nd) + h(nd, pG) (10)

(Fig. 6). In (10), g(n, nd) denotes the cost of the path from

n to nd. On the other hand, the function h(nd, pG) serves as

a heuristic estimate of the cost from the node nd to the goal

pG, similar to those used in the ordinary A∗ search. The cost

estimate h(nd, pG) is initialized with the Euclidean distance

between nd = [xd, yd]
T and pG = [xG, yG]T:

h(nd, pG) =
√

(xG − xd)2 + (yG − yd)2. (11)

and it is updated at the execution phase.

(2) Execution phase

The robot moves to an adjacent node on a path that

minimizes

f(n, n̂d) = min
n̂d∈{nd}

f(n, n̂d). (12)

If there exists more than one path with the same cost, one

node is chosen at random. Before moving, the heuristic cost
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Fig. 6. Cost function of RTA* search

of the node n, h(n, pG), is update according to the following

rule:

h(n, pG) = min
n′

d
∈{nd}\{n̂d}

f(n, n′
d) (13)

This update rule replaces the heuristic cost of n with the

second minimum path cost. As an effect of this update rule,

the heuristic cost of each node monotonically increases each

time the robot arrives at that node. Consequently, the robot

will get out of a loop after a finite number of cycles and start

exploring other nodes.

VI. EXPERIMENTS

In this section, experimental results using the omni-

directional mobile robot Omnia (Fig. 1) are presented. The

proposed algorithm needs distance information to the nearby

obstacles measured from the center of the robot. Actual

measurement data, however, are distance from the center of

LRFs. To transform the measurement data to body-centered

polar coordinate, the data are first converted to the Cartesian

coordinate by
[

XR

YR

]

=

[

XL

YL

]

+

[

0
dlr

]

(14)

and then it is converted to the body-centered polar coor-

dinate. Here, (XR, YR) denotes the body-centered Cartesian

coordinate and (XL, YL) denotes the LRF-centered Cartesian

coordinate. The constant dlr is the offset between the body

center and each LRF.

Self-localization is done by dead-reckoning using encoders

attached to the wheels. Moreover, an LED landmark is placed

at the goal. The robot can detect this landmark using its

omni-directional camera to know the direction to the goal

from its current position. This information can be utilized to

compensate severe drifts caused by the dead-reckoning. The

LED landmark is placed in an altitude high enough so that

it will always be in the robot’s sight.

In the following experiments, the step-size ∆θ used for the

cell-radius calculation is set as 0.36◦, the cut-off threshold

Rth is set as 20mm, the minimum cell radius Rmin is set as

400mm and the maximum cell radius Rmax is 2000mm.

The first result highlights the effect of node creation rules

and that of RTA∗ search. It also demonstrates that the map

can be reused in different trials. The workspace for this

experiment is shown in Fig. 7. The workspace is surrounded

(a) First trial

(b) Second trial

Fig. 7. Environment for experiment and Graph-map constructed by the
mobile robot

by walls so that the robot will never go out of it (walls are

detected by the robot as obstacles). A triangle in each figure

depicts the initial position and direction of the robot. Note

that all graphs and trajectories in Fig.7 and Fig.8 are drawn

using actual measurement data. In the first trial (Fig. 7(a)),

the robot creates a map while it moves towards the goal. The

search depth of the RTA∗ search d is set as 1, Black dots

depict the nodes of the graph-map and solid lines depict

the links. The movement trajectory of the robot is shown

by arrows. Since the robot starts with no information about

the obstacle configuration, it first chooses left (up w.r.t. the

paper) by chance, which leads to a dead-end. After several

steps, it detects the dead-end and then comes back to the

node where it first turned left. Then it tries the other direction

and this time it successfully reaches the goal. The dead-end

detection and avoidance is accomplished by the following

mechanism: When the robot reaches a dead-end, the creation

of new nodes will be suppressed after a certain point of time.

This is the effect of Rule A-4, which inhibits the creation

of new nodes inside existing cells. Then, as an effect of the

cost update rule of RTA∗, the cost of nodes near the dead-

end will increase monotonically. As a result, the robot will

be pushed away from the dead-end.

In the second trial, the robot starts from the same initial

position but this time it already has a map information.

Moreover, the search depth of RTA∗ is set as 5. As a result,

the robot chooses the optimal path, which leads to the goal

while avoiding the dead-end. Thus, it has been shown that a

map can be stored and reused to facilitate efficient planning

for different trials.

The next experiment tests the variable-resolution feature

of the proposed map building method, in a larger-scale

environment (Fig. 8). A graph-map created by the robot
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Fig. 8. Environment for experiment and Graph-map constructed by the mobile robot

after a trial is shown in Fig. 8(b). The cells are depicted

by gray regions. Thanks to the variable-resolution feature

of the method, we can observe that large cells are created

during a few steps after the robot has started off and when

the robot travels through a free-space between the first and

second obstacles. In particular, the cell radius of the second

node is 1300mm. In contrast, when the robot goes through an

obstacle and a wall, cells are created with smaller radius or

sometimes with the minimum radius (400mm). As a result,

the robot realizes precise and safe motion near obstacles

while it makes more agile movement when obstacles are far

enough.

VII. CONCLUSION

In this paper, a method for simultaneous map-building

and path-planning for mobile robots has been presented,

and its has been tested through experiments. The proposed

method enables the construction of a graph-map with vari-

able resolutions based on distance sensor measurements by

simply applying a small set of rules. Future work includes the

extension of rules for map construction, especially rules for

creating links between nodes. Extension of link creation rules

will enable creating loops, connecting several existing maps

together, cope with changing environments, and more. Other

important issues are to provide a theoretical guarantee that

the robot will eventually reach the goal, to incorporate self-

localization, to consider other possible criteria for deciding

the cell radius, and to compare the proposed method with

different methods through both simulations and real experi-

ments.
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