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Abstract— A new approach to planning and goal-directed be-
havior has recently been proposed using probabilistic inference
in a graphical model that represents states, actions, constraints
and goals of the future to infer appropriate actions and controls.
The approach has led to new algorithms on the control and
trajectory optimization level as well as for high-level rule-based
planning in relational domains. In this paper we integrate these
methods to a coherent control, trajectory optimization, and
action planning architecture, using the principle of planning
by inference across all levels of abstractions. Our scenario is a
real blocks world: using a 14DoF Schunk arm and hand with
tactile sensors and a stereo camera, the goal is to manipulate a
set of objects on the table in a goal-oriented way. For high-
level reasoning, we learn relational rule-based models from
experience in simulation.

I. INTRODUCTION

Autonomous robots deal with information on different

levels of abstraction: they process low-level sensory input to

gain the perceptual information they are interested in, reason

about their high-level goals and actions, and translate abstract

actions into low-level motor control. A central problem of

modern robotics is how to integrate these different levels of

abstraction for decision-making, planning and control, which

requires a coherent principle of information processing.

A general framework for information processing is pro-

vided by inference in graphical models which provides a

principled way to define the couplings of variables with

the corresponding uncertainties. Over the recent years, a

new approach to reasoning and goal-directed planning has

emerged which is based on probabilistic inference in such

models. Using graphical models to specify the dependencies

of variables across multiple time-steps, one can reason about

the effects of actions in the now and the future. Inference

can be viewed as internal simulation for control, planning

and decision making. In previous work, we have applied this

approach on different levels of abstraction, in low-level motor

control [1], [2], [3] as well as in high-level planning [4],

[5], where we performed successful experiments in simulated

environments. In this paper, we integrate these methods to

a full control architecture across levels of abstraction. We

show the feasibility of this approach in a real-world scenario

where an autonomous robot manipulates multiple objects in

a goal-directed way.

Our target scenario is a real blocks-world (Fig. 1): a

14DoF Schunk arm and hand with tactile sensors and a stereo
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Fig. 1. The robot has successfully put objects with green and red labels into
separate piles, using probabilistic inference on different levels of abstraction
for planning and control.

camera manipulates objects on top of a table. By addressing

this scenario we want to bring the blocks-world, perhaps the

most popular scenario in classical A.I. since the 1970s, to real

life. We decompose the problem of acting in the real blocks-

world according to the different levels of abstraction and

apply appropriate algorithms based on approximate inference

on the level of motor control, trajectory optimization, as well

as for high-level planning.

After discussing related work in the next section, we

describe our target scenario in more detail in Section III.

We introduce the different components of our approach in

Section IV. In Section V, we present our experiments on

a real robot, before we conclude and give an outlook to

future research in the last section. A video of the exper-

iments is accompanying this paper and additional mate-

rial such as source code can be found at the web-page

http://cs.tu-berlin.de/∼mtoussai/10-ICRA/.

II. RELATED WORK

Research in the blocks world scenario has a great tradition

in the A.I. planning and reinforcement learning community

[6]. Over the last years, the blocks world has been made

more interesting by incorporating stochastic actions and

investigating generalization over situations, which has led

to the emerging field of relational reinforcement learning

[7], [8]. Realistic simulations of the blocks world have only

very recently been approached. [9] were the first to employ

a simulator of the blocks world using a physics engine, for

which they developed a rule-based world model which can

be learned from experience. We introduced a goal-directed
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planning approach based on approximate inference using

learned rules [4] in such a realistically simulated blocks

world. This work aims to demonstrate such A.I. methods

in the real world.

A core problem within the blocks world is grasping ob-

jects. Most existing literature on grasp optimization focuses

on the grasp itself, isolated from the reaching movement.

For instance, [10] reviews the various literature on defining

grasp quality measures, [11] learn which grasp positions are

feasible for several objects, [12] efficiently compute good

grasps depending on how the objects shall be manipulated,

and [13] simplify the grasp computation based on abstracting

objects into shape primitives. The coupling to the problem of

reaching motion optimization is rarely addressed. A recent

approach [14] makes a step towards solving the coupled

problem by including a “environment clearance score” in the

grasp evaluation measure. In that way, grasps are preferred

which are not prohibited by immediate obstacles directly

opposing the grasp. In [15] a method for simultaneous grasp

and reach trajectory optimization was presented based on a

sequence of attractor representations. The method we use is

similar but based on a new trajectory optimization method

involving probabilistic inference.

Concerning the trajectory optimization, recently there has

been growing interest in the possibility to frame the general

stochastic optimal control problem as an inference problem

[16], [17], [18], [3]. In practice, the resulting algorithms are

closely related to differential dynamic programming (DDP)

[19], [20], [21], [22] but differ in computational aspects. For

instance, in [3] a message passing scheme is used instead

of iterated Ricatti sweeps to find a posterior distribution

over the trajectories. To our knowledge, this work is the first

to demonstrate such inference based trajectory optimization

methods on real and high-dimensional hardware. The way

we formulate the control and trajectory optimization in terms

of multiple concurrently active task variables is very similar

to the Whole Body Control concept of [23]. Further related

work is discussed in the context of the methods’ descriptions

in Section IV.

III. TARGET SCENARIO

Our overall goal is autonomous goal-directed manipulation

in environments with multiple objects. In [4] we presented

methods for planning in stochastic relational worlds and

demonstrated these methods in physically simulated blocks

world problems like clearing the desktop or building towers

from objects of different sizes and shapes. In this paper we

want to address similar scenarios, but on a real robotic plat-

form. To solve the scenario we require a series of methods

for learning, perception, planning and control: Eventually,

the robot will need to

1) learn a high-level stochastic model of the effects of

actions like grabbing and placing an object,

2) use vision to identify and localize objects,

3) use a stochastic relational planner to compute a se-

quence of actions,

4) use trajectory optimization to compute dynamically

smooth reaching and pre-grasp motions,

5) use a controller to follow the computed trajectories,

6) and use a tactile feedback controller to execute the

grasp.

A. Hardware

Our robotic platform is shown in Figure 1 and includes

the following hardware components:

• Schunk Light Weight Arm (LWA) with 7DoF

• Schunk Dextrous Hand (SDH) with 7DoF

• 6× 14 tactile arrays on each of the 6 finger segments

• Bumblebee stereo camera

The arm and hand use different control protocols: We control

the LWA arm by sending positioning commands at 100Hz.

These positions determine the reference point of the on-

board PID controller in each of the 7 motor modules of

the LWA. The exact behavior and parameters of these on-

board PID controllers are not known to us – but they

behave approximately like a position smoothing with half-

decay time about 20 msecs. We control the SDH hand by

sending velocity commands and querying actual velocities

and positions at about 10Hz (the CAN interface currently

does not allow for a higher control rate). The SDH on-board

velocity controller tries to reach these velocities with con-

stant acceleration. Concerning the tactile sensor, we neglect

the spatial resolution of the signal and compute 6 scalar

values yi for each finger segment. For the ith finger segment

we use the equation yi = (integral over ith array)0.7; the

effect of taking the power 0.7 is higher sensitivity to small

pressure contacts. The Bumblebee stereo camera provides

images at resolution 1024×768 pixels at approximately 2–4
frames per second. We downscale these images by a factor

2 before processing.

IV. METHODS

A. Control

Our control framework follows in detail the approach

presented in [24]. We control the robot on a dynamic level.

That is, let qt ∈ R
14 be the vector of all joint angles in the

LWA arm and SDH hand at time t. The control operates on

the phase state

xt = (qt, q̇t) ∈ R
28 (1)

comprising joint angles and velocities.

The control framework is based on having many task
variables concurrently active with various precisions: We

assume we have m different task variables y1, .., ym, where

the dimension of the ith task variable is di. A basic example

is the 3D endeffector position yi ∈ R
3 in world coordinates.

Below we will define in detail all the task variables that we

use for control in our scenario. Generally, a task variable

is defined by its kinematic mapping φi : q → yi and its

Jacobian Ji(q) = ∂φi(q)
∂q such that ẏi = Ji(q)q̇. For each

task variable we assume we have a desired state yi,t ∈ R
di

and state precision �i,t ∈ R and a desired velocity ẏi,t ∈ R
di
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and velocity precision νi,t ∈ R at time t. We also assume

to know the state xt-1 at time t-1. The problem of control

is to compute a new state xt which accounts for all the

constraints of the system dynamics, all the desired task

variables, and the control costs. The new state xt implies the

positioning commands qt sent to the LWA arm as well as the

velocity commands q̇t sent to the SDH hand. We compute

x∗
t such that it corresponds to optimal “pseudo-dynamic”

control accounting for all task variables. Let us explain what

we mean by “pseudo-dynamic”: Generally, we assume the

discrete time system dynamics

xt = Axt-1 + a + But + ξ , 〈ξξ�〉 = Q , (2)

A =
0
B@
1 τ
0 1

1
CA , B =

0
B@
τ2M -1

τM -1

1
CA , a =

0
B@
τ2M -1F
τM -1F

1
CA , (3)

where M is the system inertia tensor and F the force vector

in state xt-1, τ the time discretization interval, ut ∈ R
14 the

control signal, and ξ Gaussian noise with covariance matrix

Q. Since our hardware does not allow for torque control

anyway, we make the simplifying assumption of “pseudo-

dynamics”: namely M = 1 and F = 0. In other words,

we assume that the control signal ut corresponds directly

to joint angle accelerations. Under these assumptions on the

dynamics we compute a new state x∗
t using the following

equations,

r =
m∑

i=1

0
BB@
�i,tJ

�
i (yi,t − φi(qt-1) + Jiqt-1)

νi,tJ
�
i ẏi,t

1
CCA , (4)

R =
m∑

i=1

0
BB@
�i,tJ

�
i Ji 0

0 νi,tJ
�
i Ji

1
CCA , (5)

S = Q + BH-1B� , (6)

s = a + Axt-1 , (7)

x∗
t = (S-1 + V -1 + R)-1(S-1s + V -1v + r) . (8)

The matrix H defines a quadratic cost u�tHut (or, in other

terms, a Gaussian prior) on the control signal (namely, accel-

erations). The matrix V and vector v are explained in the next

section and may comprise terms that are related to following

a pre-computed optimal trajectory. We refer to [24], [25] for a

derivation of these equations. Our control method is strongly

related to many well-known classical control methods: If

we have only one task variable, m = 1, and take the

limit of infinite precisions, � → ∞, ν → ∞, one can

show that our control law is equivalent to optimal dynamic

control (and thereby operational space control for a certain

choice of H) [25], [26]. If we have multiple task variables,

m > 1, and take a hierarchical limit of infinite precisions,

our control law corresponds to prioritized inverse kinematic

control [27]. For m = 1, having non-infinite precisions

is equivalent to introducing a regularization for singularity

robust inverse kinematics [28]. When all precisions are non-

infinite, our control equation is singularity free even for many

concurrent task variables, m � 1. Equation (8) might seem

computationally expensive due to the matrix inversions in 28

dimensions. However, all matrices are symmetric and (when

using appropriate LAPACK routines) these computational

costs are fully negligible compared to the cost of collision

detection.
1) Task variables used for control: The control, the grasp-

ing, and the trajectory optimization algorithm are all based

on defining a set of relevant task variables and conditioning

them appropriately for the task. For our scenario we define

the following task variables:

• yEFF ∈ R
3 is the endeffector position (the center of the

hand) in world coordinates.

• yCOL ∈ R is the collision cost: a scalar task variable

which measures collision danger. More precisely, if dj

is the shortest distance between a pair j of collidable

geometric shapes, then yCOL =
∑

j θ(dj − ε)2, with the

heavy-side function θ and margin ε = 0.03 meter. We

use SWIFT++ to compute the mapping φCOL : q →
yCOL.

• yLIM ∈ R is the limit cost: a scalar task variable which

measures the danger of violating joint limits. Similar

to the collision costs we define yLIM =
∑

j θ(dj − ε)2,

summing over all joints j, where dj is the distance to

the joint limit and ε = .1 radians is the margin.

• yVEL ∈ R
14 are the joint angles: that is, a task vector that

is directly equal to the joint angles themselves, φVEL =
Id. We will use this to penalize high velocities.

• yTAC ∈ R
6 are the 6 scalars of the tactile sensors (see

section III-A). We do not have a kinematic function

φTAC : q → yTAC explicitly, but can query the state yTAC

from the hardware. We approximate the Jacobian JTAC

by setting the rows equal to the normal vector of each

tactile sensor array. See section IV-C for more details.

• yUP1 ∈ R and yUP2 ∈ R are two scalars which measure

the declination of the hand (or object in hand) with

respect to the horizontal. For instance, conditioning both

to zero will align the object vertically.

• Furthermore, control variables represent features of the

finger configuration, namely two scalars which measure

whether the normals of opposing fingers are aligned.

The general control equation (8) together with these defi-

nitions of multiple task variables provides great flexibility.

In practice, setting precisions �i and νi to zero means to

deactivate a task variable since it drops out of Eq. (8).

Depending on the overall task we can turn on and off task

variables as desired and associate variable precisions with

them. In a typical control mode, we always condition yCOL,

yLIM and ẏVEL to zero and impose high precisions �COL, �LIM

and low but non-zero velocity precision νVEL.

B. Trajectory Planning

In [3] we presented an algorithm called Approximate
Inference COontrol (AICO) for solving a stochastic optimal

control problem based on probabilistic inference. The algo-

rithm is closely related to differential dynamic programming

(DDP) [19], [20], [21], [22], but uses a message passing

scheme to compute a posterior over the whole trajectory

conditioned on all desired task variables. The method is

introduced in exactly the same framework we described in

the previous section – in fact, Eq. (8) is the solution to
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a stochastic optimal control problem with a 1-step time

horizon T = 1; the quantities (s, S) correspond to the

forward message, (r, R) to the task message, and (v, V ) to

the backward message [3].

Stochastic optimal control means to find a control law that

minimizes the expectation of the cost

C(x0:T , u0:T ) =
T∑

t=0

ct(xt, ut) (9)

over the time interval t = 0, .., T under the stochastic process

(2). In general, the cost terms ct(xt, ut) are arbitrary cost

functions in each time step. In our case we assume that these

costs comprise the quadratic cost u�tHut of control and cost

terms for each conditioned task variable. With the definitions

made in the previous section, a local quadratic approximation

of the task costs induced by all task variables is given by

ct(xt, ut) = x�tRtxt − 2r�txt + u�tHut , (10)

where rr and Rt are defined in (8) and comprise all costs

implied by the conditioned task variables.

1) Following an Optimized Trajectory: All the stochastic

optimal control methods (AICO, DDP) compute a quadratic

potential function Jt(x) = x�Vtx− 2v�tx in each time slice

t. This potential (classically the cost-to-go or value function;

in the probabilistic framework the log backward message)

implies the optimal (feedback) control law xt-1 �→ ut in time

step t. In our case, we use AICO to compute the quantities

(vt, Vt) for a given time interval t = 0, .., T . Once AICO

has converged we use these quantities in Eq. (8) to compute

control signals for the real robot. Executing the control law

in Eq. (8) for T time steps with the potentials (vt, VT ) will

make the robot “trace” approximately the trajectory that was

implicitly optimized by AICO (the MAP trajectory computed

by AICO). However, note that the potentials (vt, Vt) really

only define a (usually low-gain) feedback control law, that is,

we do not replay a deterministic optimal trajectory with high

gains. Also, Eq. (8) implies that even when “tracing” a pre-

computed trajectory the controller will additionally account

for all currently active task variables, in particular yCOL and

yLIM to avoid collisions and joint limits.

2) Optimizing the Reach and Pre-Grasp Trajectory: To

optimize a trajectory we need to specify the desired task

variables and precisions for the respective problem. In the

case of the reaching and pre-grasp motion we consider T =
400 time steps with τ = 0.01sec and condition the task

variables as follows: The collision and limit variables yCOL,

yLIM are conditioned to zero throughout the trajectory; the

endeffector variable yEFF is conditioned to be at the object

position at the end of the trajectory; the joint angles yVEL

are conditioned to zero-velocity at the end of the trajectory;

opposed fingers are conditioned to be aligned at the end of

the trajectory and with sufficient distance to the object. The

optimized trajectory is dynamically smooth and generates a

reaching motion which at the same time ends in a good pre-

grasp posture. Figure 3 (left) shows some illustrations of start

and end postures of such reach and pre-grasp motions.

3) Optimizing the Place Trajectory: Once the object is

grasped we need to generate a motion to place it onto another

object. Again, we assume T = 400 and τ = 0.01sec and

constantly conditioned yCOL, yLIM. For the placing movement

we do not condition any finger features but keep the hand

posture constant. We condition yEFF and yVEL as above and in

addition a task variable which measures whether the object

in hand is upright. Figure 3 (right) shows some illustrations

of start and end postures of such “place object” motions.

C. Grasping and Releasing the Object

The pre-grasp posture in which the reach motion ends is

already very close to the object, wrapping the fingers around

the object with about ∼ 3cm distance. The grasping itself

can then easily be executed using a tactile feedback loop. In

our control framework we can realize this by conditioning

the tactile task variable yTAC to a desired non-zero pressure

value and then iterate the control (8) (without (vt, Vt)) until

this task variable reaches its desired state. We condition the

pressure on the three finger tips to be a non-zero constant

which results in the closing of the hand until the object is

grasped. Figure 5 displays the change in tactile signals yTAC

during such a closing of the hand.

Similarly, when releasing the object after the optimized

placing motion we condition the yTAC variable to zero which

results in the opening of the hand until no pressure is

measured. In addition, we condition yCOL to zero which leads

to further opening of the hand until fingers have distance to

the object below the collision margin of ε = 3cm.

D. Vision

The identification and localization of objects is based

on SURF interest points and descriptors [29] using the

OpenSURF library [30]. Prior to our experiments, for each

object O we took several sample images from different view

angles and pre-computed a set FO of SURF features. Given

a new stereo image from the Bumblebee camera we compute

sets FL and FR of keypoints and SURF descriptors for the

left and the right image, respectively. The identification and

localization of objects is now based on finding subsets of de-

scriptors in FO, FL, and FR which match (using approximate

nearest neighbor (ANN library)1) and which are consistent

with respect to a homography from the left to the right

image (using the RANSAC homography implementation of

OpenCV2). The homography constraint implies that only

keypoint subsets are detected which have similar disparity on

the stereo image. If, for a given object identifier O, we find

keypoints in FO, FL, and FR which are consistent, we use

the average disparity of the matched keypoints in FL and FR

to estimate the distance of the object and the center of mass

of these keypoints to estimate the object coordinates within

the image. Using the camera calibration we can compute

the 3D position of the object in world coordinates. For each

stereo image we loop over all possible object identifiers O
to see if we can find and localize the object in the image.

1http://www.cs.umd.edu/mount/ANN/
2http://opencv.willowgarage.com/wiki/
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Fig. 2. Identifying and locating objects using SURF interest points and a
stereo camera. Each row depicts the recognition of an object. The left and
right column correspond to the left and right camera, respectively.

Since computer vision is not the primary scope of this

work, we tried to simplify the general problem by keeping

lighting conditions constant (as far as possible) and use

objects with significant textures.

E. High-level Relational Planning

An autonomous robot needs to reason about its potential

actions to achieve its overall goals. Similarly as in our low-

level motor control, we pursue a model-based approach based

on inference in graphical models for high-level planning.

Symbolic action models are a common approach in A.I. to

describe how the world changes with the execution of actions

[31]. In a real environment, such models need to account

for uncertain action outcomes, e.g., a tower of blocks may

topple over when trying to place an object on its top.

Furthermore, action models have to generalize over situations

and objects to enable planning in unseen situations with new

objects. Recent work in A.I. has led to the development of

abstract stochastic action models using relational representa-

tions which account for these requirements. In our work,

we use a rule-based model, namely noisy indeterministic

rules [9] which are particularly appealing, as they can be

learned effectively from experience. Although abstract action

models capture the world dynamics compactly, using them

for planning is challenging: the state space in relational

domains is exponential in the number of objects, the search

space of action sequences is huge, and reasoning about

actions is aggravated by the their stochasticity. We apply

the PRADA planning algorithm presented in [4], [5], which

tackles these difficulties by converting abstract stochastic

relational rules into partially grounded dynamic Bayesian

networks and applying approximate inference to find suitable

action sequences.

We employ the same symbolic representation as in [4]

to describe our domain, consisting of predicates such as

inhand(·), upright(·), on(·, ·) and functions such as size(·)
to describe world states and predicates such as grab(·) and

puton(·) to describe actions. A major challenge in develop-

ing intelligent robots is how to couple high-level reasoning

with sensors and low-level motor control. We approach

the first problem by a set of simple heuristics to translate

object information from vision and tactile sensors into our

symbolic representation. For instance, we derive on(a, b) if

the x/y-coordinates of objects a and b are sufficiently similar

while b’s z-coordinate is slightly smaller, and inhand(b)
if b is closest to the robot’s fingers and we get significant

tactile feedback. To translate the high-level action symbols

to concrete robot action, we set them to trigger execution of

the corresponding low-level motor control routines described

above.

V. EXPERIMENTS

We evaluate our approach in the real blocks world scenario

described in Section III. Our experiments are designed to

focus on qualitative aspects: we investigate whether the

different methods can indeed be successfully applied in a real

world domain and our approach is suitable to fully control an

autonomous robot to achieve its goals. For quantitative stud-

ies with respect to the individual methods, we refer the reader

instead to the respective papers, i.e., for a comparison and

discussion of different low-level robot control approaches

to [3], [1] and of different high-level relational planning

approaches to [4], [5].

In our experimental setup, the Schunk robot is placed in

front of a table with cylindric objects of two different sizes

and colors. In the scenario of the video accompanying this

article, the goal is to “clear up” the desktop: to stack objects

of the same color onto each other. There are two big and

one small red object and two big green objects stacked in

three piles, where two piles contain two objects of different

colors. To achieve the goal of a cleared desktop, the robot

needs to grab and place 3 objects in total.

The first problem is to localize the objects using the stereo

camera which is placed next to the robot arm. The objects

have individual patterns which are used to identify them,

see Fig. 2 for an example. Once the objects are recognized,

their coordinates are calculated and a symbolic world state

representation is derived. Then, the robot uses the PRADA

algorithm to derive a high-level plan of actions to achieve

a cleared desktop. PRADA is based on stochastic relational

rules. A set of 11 abstract rules has been learned beforehand

using the algorithm of [9] with the same parameter settings

from a set of 500 experiences of state transitions. We have

generated these experiences in a 3D rigid-body dynamics

simulator (ODE) of the scenario including the robot, the

objects and the table by performing random actions with a

slight bias to build high towers.

After a suitable action plan has been found, the single

abstract actions trigger the respective low-level motor control

routines, namely AICO, to generate grasp and placing trajec-

tories. Fig. 3 (left) illustrates the start posture (central hand

position) and the end posture of an optimized reach and pre-

grasp trajectory. The pictures are taken from the simulator

that is internally used by AICO. The red distance markers
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Fig. 3. Visualization of start and end postures of calculated trajectories.
The blue bars are the stereo camera (to the right of the robot) and a laser
scanner (not used in these experiments, mounted on the arm close to the
hand). (left) A grab action moving the hand from the center to the right pile.
(right) A place action moving the hand with the object from the left to the
center pile. The red distance markers indicate critical proximities between
collidable objects.

illustrate the output of the collision (distance proximity)

detection engine. The end posture is a good pre-grasp with

the fingers wrapping around the object with about ∼ 3cm

distance. The large number of critical distance proximities in

such a pre-grasp movement makes the optimization computa-

tionally expensive (the collision engine queries generate the

major computational cost). This can be seen in Fig. 4; it takes

about 10 seconds to find a dynamically smooth trajectory

which at the same time does not violate the collision margin

of 3 centimeters but still ends wrapping the fingers around

the object.

When this pre-grasp posture has been reached the grasp is

executed based on the tactile feedback loop. Fig. 5 displays

the three relevant components of the yTAC task variable, that

is, the integrated pressure feedback from the sensor arrays at

the tip of the three fingers. As described before, we generate

the grasp by conditioning the yTAC to be non-zero, namely

(0.2, 0.2, 0.2), and iterating the control equation (8). The

pressure curves show how this task variable behaves during

the closing of the hand.

Finally, Fig. 3 (right) displays the start posture (hand at

left pile) and end posture (hand at center pile) of an object

placing movement. As can be seen in Fig. 4, this movement is

much easier to optimize (in about 2 seconds) since collisions

and finger movement do not play a critical role.

The video shows a complete demonstration to solve the

clearing up task with five objects. PRADA found the correct

sequence of actions necessary to stack the two objects with

green labels on one pile. To reach this state, two objects with

red labels first have to be removed from them by placing

them on the center pile for the red-labeled objects. Fig. 1

shows the end posture after the whole trial.

For simplicity, in this demonstration, all computations and

control are done on a single 2-processor laptop. This has a

number of limitations. For instance, we found that the paral-

lel communication with all four hardware components slows

down the communication with the LWA to a level that in

10% of the control steps the 100Hz control frequency is not

met. Further, for safety we always optimized trajectories until

full convergence. Given the limited computational power
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using AICO for a typical grasp and a place action. The reaching motion
of the grasp action is more difficult to compute due to the many critical
distance proximities in the pre-grasp posture.
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the object is fixed in hand, indicated by the maximum signals of all fingers.

we performed this optimization before executing the whole

movement. A better computational infrastructure and heuris-

tics to start the movement immediately when the quality of

the trajectory is sufficient (e.g., the cost below a threshold)

might allow to parallelize the trajectory optimization and

movement execution in the future. The same is true for the

object localization, given the significant computational cost

of the computation and processing of the image features.

The experiment also revealed limitations on the precision of

our kinematic model of the arm and the object localization,

causing some placed objects not to align as perfectly as they

do in the simulation.

VI. CONCLUSIONS

The general aim of this work is to bridge the gap between

methods and theory developed in the context of Machine

Learning and A.I. and their application in real-world au-

tonomous robotics. Given the recent work on probabilistic

inference methods as a tool not only for sensor information

processing but also for reasoning about actions and control

under uncertainty, we believe that these methods have the

potential to provide a more coherent and integrated view

on motor control, motion planning and decision making on

all levels of abstraction. In this work we demonstrated the

feasibility of approximate inference methods for control and

trajectory optimization on the motor level as well as high-

level planning in an integrated real-world robotics problem.

We chose the block-world scenario in analogy to typical
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A.I. benchmarks to demonstrate that the methods, such as

PRADA, can be transferred to real world.

We mentioned limitations of our current architecture in

the previous section. Beyond these technical issues, in future

work we intend to apply our approach to scenarios that

are more challenging for both the high-level planning as

well as the low-level control: scenarios which require longer

action sequences, include different types of objects and more

cluttered scenes with big obstacles the robot has to avoid.

In principle, inference in graphical models provides a

natural way to account for sensor uncertainty. In this paper,

this has not been investigated yet as so far the perceptual

modalities (vision, tactile sensing) are not fully integrated

in the probabilistic framework. Future work will examine

how our approach can handle perceptional uncertainty which

could lead to movement failures such as accidentally pushing

objects off piles. In particular, we will work on more

tightly coupling uncertainties across modalities and levels,

e.g. between the object localization and grasp planning.

The source code for low level motor control as well as

high level planning used in this paper are publicly available

at http://cs.tu-berlin.de/∼mtoussai/10-ICRA/.
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