
Trajectory Prediction in Cluttered Voxel Environments

Nikolay Jetchev and Marc Toussaint

Abstract— Trajectory planning and optimization is a fun-
damental problem in articulated robotics. It is often viewed
as a two phase problem of initial feasible path planning
around obstacles and subsequent optimization of a trajectory
satisfying dynamical constraints. There are many methods that
can generate good movements when given enough time, but
planning for high-dimensional robot configuration spaces in
realistic environments with many objects in real time remains
challenging. This work presents a novel way for faster move-
ment planning in such environments by predicting good path
initializations. We build on our previous work on trajectory
prediction by adapting it to environments modeled with voxel
grids and defining a frame invariant prototype trajectory space.
The constructed representations can generalize to a wide range
of situations, allowing to predict good movement trajectories
and speed up convergence of robot motion planning. An
empirical comparison of the effect on planning movements with
a combination of different trajectory initializations and local
planners is presented and tested on a Schunk arm manipulation
platform with laser sensors in simulation and hardware.

I. INTRODUCTION

Movement generation, one of the most basic robotic tasks,

is often viewed as an optimization problem that aims to

minimize a cost function. There are many different methods

for local trajectory optimization which uses the cost gradient

information for minimization. Popular approaches use spline-

based representation and gradient descent in [1], covariant

gradient descent in [2], Differential Dynamic Programming

(DDP) [3] [4], also known as iterated Linear Quadratic

Gaussian [5], and Bayesian inference [6].

Another approach for finding good movement trajectories

is sampling to find obstacle free paths in the configuration

and work space of the robot, i.e. finding an appropri-

ate initialization of the movement plan. Popular methods

for planning feasible paths without collisions are Rapidly-

exploring Random Trees (RRT) [7] and probabilistic road

maps [8], where random sampling is used to build networks

of feasible configuration nodes. These methods are powerful

and can find difficult solutions for motion puzzles, but also

have the disadvantage to be too slow for some manipulation

problems. Building an RRT takes some time, and a path

to the target in such a network often requires additional

optimization to derive an optimal robot trajectory.

In our previous work [9] we introduced trajectory predic-

tion as a way to speed up movement generation with initial-

ization using knowledge of successfully optimized movement

trajectories. Gathering such data allows to create a mapping

N. Jetchev and M. Toussaint are with TU Berlin, Machine Learning and
Robotics Group, Franklinstrasse 28/29, 10587 Berlin, Germany.

{ jetchev,mtoussai}@cs.tu-berlin.com

Fig. 1. The Schunk arm with the Hokuyo laser sensor mounted, in a
scenario with a table and 3 other block obstacles. The goal is to reach the
target, a point behind the cylinder in the middle.

between the situation and an initial path likely to quickly

lead the local optimizer to converge to a good movement.

There are also other methods for reusing feasible path

databases, e.g. with RRT path repairing a subset of no longer

feasible edges [10], reusing paths between situations [11],

and biasing RRT search to promising regions [12]. These

methods differ from our approach to trajectory prediction in

that they do not use machine learning for a mapping from

situation to movement, and are too slow to be appropriate

for real time movements.

Another interesting way to exploit a database of previous

motions is to learn a “capability map”, i.e., a representation

of a robot’s workspace that can be reached easily [13].

Laser range finders are a cheap and reliable way to add

sensor capabilities to robots. They are often used for naviga-

tion and of mobile manipulation [14]. Voxel representations

and the use of laser range information for manipulation are

examined in [15], where the sensor model is coupled with a

sampled road map describing space connectivity. Our work

has a similar sensor model, but we use this information as

input to various motion planning algorithms.

The main contribution of this paper is the new trajectory

prediction algorithm with novel representations for situations

and invariant trajectories in cluttered voxel scenes, as well

as the analysis of the effect of initialization on different

trajectory optimizers. In the next sections we will overview

our previous work on trajectory prediction, then proceed to

describe our new sensor model in section III and combine

it with a modification of trajectory prediction from [9] in

section IV. Finally we will present empirical results from

simulations of movement generation with different initial-

izations and local optimizers.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2523

II. BACKGROUND: MOVEMENT PLANNING

A. Optimizing Trajectories and Movement Generation

Let us describe the robot configuration as qt ∈ ℜN ,

the joint posture vector. We define q = (q0, .., qT) as

a movement trajectory with time horizon T . In a given

situation x, i.e., for a given initial posture q0 and the positions

of obstacles and targets in this problem instance (we will

formally define descriptors for x in section IV-B), the motion

generation problem is to compute a trajectory which fulfills

different constraints, e.g. an energy efficient movement not

colliding with obstacles.

We formulate this task as an optimization problem by

defining a cost function F (q;x) that characterizes the quality

of the joint trajectory in the given situation and task con-

straints. A local optimizer, like DDP and the other algorithms

mentioned in the introduction, will try to find the best

movement for a given situation:

q
∗ = argmin

q

F (q;x) (1)

To arrive at the optimal trajectory q
∗ (or one with a very

low F value), most local optimizers start from an initial

trajectory q̃ and then improve it (e.g. by using the cost

function gradient). We call L the local optimizer operator

and write q
∗ = L(q̃).

Optimizing F is a challenging high-dimensional nonlinear

problem. Many of the movement optimization methods are

sensitive to initial conditions and their performance depends

crucially on it. For example, initial paths going straight

through multiple obstacles are quite difficult to improve on,

since the collision gradients provide confusing information

and try to jump out of collision in different conflicting

directions, as mentioned by [2].

B. Trajectory Prediction

Humans and animals execute complex motions constantly,

without stopping for a long time to plan. A person can look

at a table cluttered with bottles and glasses and immediately

take what he needs, without building mentally a network

of all accessible paths like a sampling-based planner. This

suggests some kind of goal-oriented “reactive trajectory

policy” and such an approach can be useful in robotics to

design algorithms to generate movement instantaneously, or

at least fast enough to have fluid interaction (a few seconds

at most).

The lifetime of an autonomous robot consists of sensing

its environment, calculating proper movements and executing

them. Environments encountered by robots are often highly

structured, and good movements can be reused and trans-

ferred between situations. We aim to improve the conver-

gence time of local optimizers by learning a mapping from

a situation to a proper initialization of the optimizer in task

space:

x 7→ φ−1

x ỹ = q̃ (2)

Here φ−1
x is the inverse kinematics (IK) transfer in a situation

x, and ỹ ∈ ℜT×3 is the predicted task space trajectory of

the 3D coordinates of the robot endeffector. As defined in

[9], such IK transfer takes a path in the endeffector task

space from a previous situation and transforms it into a

joint trajectory in the new situation x, roughly following

the previous path and correcting for collisions and other

constraints. For the mapping φ−1 we use the IK method

of [16] to include multiple task constraints with precisions.

Our goal is to use a descriptor of the situation x to quickly

find a good initial solution q̃ . We restrict ourselves to

choose movements from a predefined prototype set C which

are ”appropriate” for the given situation and likely to have

low cost. We need to predict this cost through a function

f(x, y) ≈ F (L(φ−1
x y);x). Trajectory prediction through cost

prediction can be defined as the following mapping:

x 7→ y∗ = argmin
y∈C

f(x, y) ≈ argmin
y∈C

F (L(φ−1

x y);x) (3)

C is a set of task space movements (actions) over a longer

time horizon, the whole T .

By constructing an appropriate representation of x, we can

approximate the cost of a movement in a situation, without

actually making that movement in the simulator (via IK) and

calculating the joint posture, body positions and collisions

of the robot. The complexity of IK and local planning scale

with the number of joints N and time horizon T . Using a

learned approximation f is almost simultaneous regardless

of the system parameters. and can be trained to make good

movement choices out of a proper set of alternatives C.

In the next sections we will explain our sensor model and

define the representations of situations and prototypes used

for trajectory prediction in cluttered situations.

III. SENSOR MODEL

A. Laser Point Cloud

We need a sensor model to provide an accurate collision

gradient for obstacle avoidance, a necessary part for any local

optimizer of the cost function F . A 2D laser scanner is often

used in robotics to provide data in the form of point cloud

measurements. This sensor type makes a sweep in a 2D plane

and reports where the rays hit an object. In order to get

3D information for the world and allow range-vision based

motion planning, the sensor needs to be moved to cover the

3D space. We use a simple heuristic to gather information

for the scene. Before movement planning, the arm-mounted

laser is rotated by moving the robot joint of the arm segment

carrying it. A full rotation in 20 steps between the joint limits

covers practically the whole workspace with rays. This is a

good approximation for the obstacles in the cluttered scenes

we examine, and it takes less than a second to make such

20 scanner planner sweeps.

To test our methods we need large amounts of data gener-

ated offline in simulation, so we implemented an accurate

geometric simulator of the laser rays, which is a good

approximation of the real laser range finder, see Figure 2.

B. Voxel Occupancy Grid World Model

Given a set of laser cloud points P = {pi}, we construct a

3D grid system V = {vi} of voxels. Each voxel is identified

2524

Fig. 2. An illustration of the arm-mounted laser range sensor. A single
laser sweep covers 270 degrees in the 2D plane of the sensor module.

with its coordinates and its occupancy probability p(vi) ∈
[0, 1]. The procedure for calculating p(v) is straightforward:

1) Loop through all available measurements pi

2) Loop through all voxel vj

3) If pi ⊂ vj set p(vj) = 1 − 0.9 ∗ (1 − p(vj))

Intuitively, for every measurement point within some voxel

bounds the occupied space probability of the voxel increases.

Other papers [15] [17] use sensor models with state distribu-

tions for free, unknown and occupied voxel space, but for our

tests just the occupied space probability suffices for collision

avoidance. We add each occupied voxel where p(vi) > 0
as a solid body to our simulator, and these voxels can be

used to estimate potential collisions and plan movements. We

modelled each voxel as a cube of size 5cm, allowing accurate

collision measurements and avoiding too many voxels that

can slow down calculations.

IV. DATA REPRESENTATIONS FOR TRAJECTORY

PREDICTION

In this section we will present the modifications of trajec-

tory prediction required to generalize to voxel models.

A. Invariant Prototype Movement Set

Trajectory prediction as defined in section II-B requires a

set C of task space movements that represent feasible paths

to the target in any possible world configuration. Similar to

our previous work [9], we generate data of situations and

optimal endeffector trajectories (obtained via offline DDP

optimization until convergence) and then cluster them with

the k-Means algorithm in c clusters. The cluster centroids

represent averaged movements and are useful movement

prototypes, retaining the variety and characteristics of good

movements in previous situations.

In the current work we improve the movement prototype

database generalization ability by defining the averaged

prototypes in an invariant space, a novel geometric technique

to deal with variance in trajectory databases. We define a 3D

frame where the initial hand position is always (0, 0, 0), the

target and final position is (0, 0, 1). To define this uniquely,

we use a frame rotation such that the hand-target line is

the (0, 0, 1) axis in the new frame. Finally, we rotate the y

axis of this frame to be perpendicular to the original (0, 0, 1)
world axis (thus uniquely defined), and we scale so that the

hand-target distance is unit distance. We write Γx to define

the projection in this invariant frame, since it is uniquely

(a) World frame trajectories

−0.5
0

0.5

−0.4 −0.2 0 0.2 0.4

−0.5

0

0.5

1

1.5

(b) Invariant frame Γ trajectories

Fig. 3. World frame trajectories yi and invariant frame projections zi

of hand endeffector paths in different situations. The trajectories go from
the green start locations to the red target destinations. The graphic shows
visually why the invariant frame is so useful for generalization.

defined for each world situation x by the hand and target

positions.

The procedure to obtain C is summarized as follows:

1) Get a set of optimized endeffector trajectories

{xi, yi}
1000

i=1
(in world coordinates)

2) Get projections Γxi
yi = zi (in invariant frame)

3) Cluster zi in c clusters

4) The set of prototype movements consists of the cluster

centroids C := {z̄i}
c
i=1

5) Given a novel situation x, ȳi = Γ−1
x z̄i for z̄i ∈ C will

be a movement from the endeffector to the target (in

world coordinates)

We constructed a set of c possible paths from the hand to

the target that can adapt to any situation, regardless of the

relative positions and orientations of the current situation, see

Figure 3. In every situation x we derive from the invariant

prototypes z̄i ∈ C the world frame prototypes ȳi ∈ Γ−1
x C.

B. Descriptor for Trajectory Prediction

We want to define the descriptor of a given world situation

x and prototype movement ȳ using only information that

is available before IK transfer and local optimization, i.e.

variables that can be read instantly without calling time

expensive routines like collision checks and internal robot

control simulation. This information consists of the point

cloud data from the laser, the current robot position, the

target destination and the task space trajectory ȳ itself.

We combine this information in the following situation and

planned movement descriptor:

ξxȳ = (vȳ, dȳ) (4)

The first component vȳ represents information from the

laser sensor point cloud describing the scene according to

section III-B. We define a set of voxel grids, 9 voxels across

each dimension, where each voxel is a cube with side 5cm

long. Each such grid is centered on a point from the task

space path ȳ. Since each grid state is of dimension 93 = 729,

it is advantageous to reduce its dimension via a simple PCA

transform, and retain the 15 dimensions capturing almost

the whole data variance. The interpretation of these lower

2525

Fig. 4. Several volume contour slices of 9x9 voxels, corresponding to
different PCA components. Red areas are more likely to be occupied, and
blue areas are probably free.

dimensional components is of typical volume slices in the

blocks world we used, see Figure 4. One can find analogies

with work on classification of terrain into passable and

nonpassable regions, see [18].

The second feature component dȳ consists of pairwise

distance measurements between the robot immobile base, the

target location, and the samples of the task space movement

ȳ ∈ C. For each point of ȳ, we calculated pairwise 3D offset

vector and distance to the robot body immobile base, the

reach target, and the previous task space point sample, a

total of 12 measurements per point sample.

To ease computation, we use a resampled version to follow

the movement ȳ. We chose a fixed coarser resolution for the

descriptor with a small number of point samples. Concretely,

in our experiments we had 11 samples, each with 15+12 =
27 features, concatenated in ξxȳ ∈ ℜ297. Such descriptors

with voxels are flexible and can adapt to any terrains and

number of objects, an extension on our previous work [9]

which only had pairwise object distances.

C. Regression for Cost Prediction f

The final component we need for trajectory predic-

tion, as defined in Equation 3, is a regressor f(ξxȳ) for

F (L(φ−1
x ȳ);x). It should be trained to predict the potential

cost of initializing a local optimizer with ȳ transferred in

situation x. Given a set of movement prototypes C and

situations x, we can choose the action that minimizes the

cost f(ξxȳ) and execute it. We gather a training dataset D :=
{ξxiȳj , L(F (ȳj ;xi))}, i.e. pairs of descriptors and costs after

optimizing locally with DDP for different situations xi and

each prototype ȳj ∈ C.

We will use D to learn the regression f . We use Support

Vector Regression (from the SHOGUN package [19]) with

linear kernel and train a separate cost regression model for

each of the c prototypes.

The policy we use when presented with a new situation

x to arrive at an optimized joint trajectory q
∗ can be

summarized like this:

1) ỹ = argmin
ȳ∈Γ

−1
x C

f(ξxz̄) (select best prototype)

2) q̃ = φ−1
x ỹ (IK transfer to joint initialization)

3) q
∗ = L(q̃) = argmin

q

F (q;x) (optimize)

V. EXPERIMENTS

A. The Task: Reaching in a Cluttered Table

The scenario we examine is reaching in a cluttered en-

vironment, namely a blocks world with a different number

of obstacles placed on a large table. We generate different

scenarios by randomly changing the reach target locations

across the table, the position and sizes of the obstacles. This

task has a cost function F that is a sum of terms for collision

avoidance, joint limit avoidance, smooth joint transition, and

reaching a specified target in the last step of the movement.

We use a Schunk LWA3 arm, a SDH hand and an

arm-mounted Hokuyo URG-04LX laser sensor1. The robot,

shown in Figure 1, has 14 joints. The first 7 joints corre-

sponding to the arm posture are the most critical for this

application, the other 7 hand joints have only minor effect

on the motions and collisions. We also set in our experiments

T = 200, a time horizon of 200 slices of 0.01 seconds each.

This means that q ∈ ℜ200×14, i.e. we have a challenging

trajectory optimization problem of dimension 2800. The

simulator and robot control were compiled in C++ and run

on a PC running Ubuntu, with 2GB RAM and 2.4 GHz CPU.

B. Method Comparison Setup

We will test three different initialization methods. Linear

path initialization (LI) is the default option, where the start

and goal endeffector positions are connected with a straight

line path IK. The more interesting methods are an RRT

path planner (RRT), and trajectory prediction (TP). Both

trajectory prediction and straight line initialization require an

IK operator from the endeffector path to joint space, which

costs around 0.6s. RRT requires to construct a tree of sample

positions locally accessible from each other, and for a tree

of 500 nodes this costs already more than 8 seconds.

The prototype set C used by TP is obtained by clustering

a set of 1000 movements optimized with DDP in random

situations. We chose c = 20 clusters as a good tradeoff for a

compact set that can react adequately in most situations. If c

is too large, gathering train data D would be more expensive.

To learn the mapping from situation and prototype to cost f

we used a dataset D with d = 1000 scenarios, for each of

which all 20 prototypes were evaluated. All training data is

generated in worlds with 5 random blocks in the world. The

evaluation of f(ξxȳ) for all 20 prototypes ȳ ∈ Γ−1
x C takes

less than 0.01s, which is a great advantage of our chosen

compact descriptors and simple linear predictor, and allows

to deal with potentially larger and more diverse sets C.

We also test three popular local optimizers - DDP [4],

AICO [6] and direct gradient descent in joint space with the

RPROP general optimization algorithm [20]. This makes for

a total of 9 initialization-optimizer pairs, which are shown

in the result tables with a name indicating the initialization

and the optimization method.

1A video of our robot reaching its target, as well as the datasets used for
trajectory prediction, are available at http://user.cs.tu-berlin.
de/˜jetchev/TrajectoryVoxel.html

2526

(a) 5 obstacles (b) 8 obstacles

Fig. 5. Examples of different simulated scenes: random positions and sizes
of rectangular obstacles. The goal is to reach the red point target.

The different scenarios generated by randomizing objects

are of greatly varying difficulty; some of them are trivially

easy and others are impossible to solve, but the statistics

of the average performance still allows to compare the

different algorithms. Note that all the results are for test

sets of situations not encountered during the train phase, but

generated by the same random distribution.

We measure total computation time (initialization and lo-

cal optimization) on two simulated test sets of 500 situations

each, one with 5 and the other with 8 objects. We measure the

convergence of the costs after initialization and optimization

for 30 iterations. Each optimizer iteration costs 0.5s, with

the most expensive operation being collision detection.

A cost margin ǫ = 0.5 implies a feasible solution without

collisions, whereas a smaller margin corresponds to solutions

which are near the optimum. # stands for the proportion of

the situations where the particular method did not reach level

ǫ, i.e. convergence failure. µ is the average time to reach

level ǫ, calculated on the situations where all of the methods

reached the corresponding level. With ± the Standard Mean

Error of our estimate of µ is shown. Small values of µ and

indicate better performance.Such a setup for µ allows to

compare convergence speed for all 9 methods on the same

set of situations, but has a bias for situations which can be

solved for all methods.

We present results for convergence on the voxel world

models. Despite the sensor noise and imprecision from the

voxel grid resolution, the costs of trajectories calculated in

the voxel model highly correlate with costs in the real world

situation.

C. Results

Tables I and II show that trajectory prediction improves

over the default initialization LI for all optimization methods,

both in fast convergence times µ and low failure rate #.

The combination TP-DDP has very good # and the fastest

µ, requiring less than 2 iterations of DDP usually, which

makes it a great choice for repetitive motion in real time.

In a situation like Figure 6, the prototype set C offers a

range of paths to the target, and the learned cost approxima-

tion f will prefer paths within the reach of the robot avoiding

the obstacles in front of it. A human can look at this image

and immediately choose an action, and our SVR regression

learns such a model. Optimization techniques like RPROP

Fig. 6. The cluster set C with 20 possible endeffector trajectories leading
to the red target.

Fig. 7. The jagged trees built typically by RRT trees.

and DDP depend greatly on good initialization. If they start

distant from a good minimum, they are more likely to fall in

a bad local optimum, and stay there. AICO uses probabilistic

inference, which has a different way of incorporating prior

information, but a good initialization has positive influence

on this algorithm as well, with better # values, though with

more time necessary for convergence.

RRT is good at finding narrow passages and often manages

to converge in more situations (lowest #). However, its

random sampling and jagged initial paths, see Figure 7,

makes it difficult to optimize to a smooth trajectory, and

it is always much slower in µ than TP or even LI in local

optimizer convergence time. When one also considers the 8

seconds required to build the tree of accessible configurations

for RRT, the other methods like TP seem much better suited

for real time interaction and manipulation.

Regardless of the initialization, DDP had the best con-

vergence times, closely followed by AICO, and RPROP was

worst. This is to be expected, since gradient descent on such a

high dimensional problem is at great disadvantage, not using

the structure of the problem, unlike techniques which were

specifically designed with trajectory and control optimization

in mind, like AICO.

The effect of adding 3 more obstacles on Table II is

to make all methods slower and less likely to find an

optimum, since situations with blocked paths happen more

2527

TABLE I

RESULTS FOR 5 OBSTACLE SCENARIO. µ IS AVERAGE TIME IN SECONDS,

IS PROPORTION OF FAILURES. INITIALIZATION TIME IN SECONDS IN

BRACKETS.

Method ǫ = 0.5 ǫ = 0.2 ǫ = 0.1 ǫ = 0.05

TP-DDP µ 0.70± 0.02 0.86 ± 0.04 1.06 ± 0.09 1.52 ± 0.42

(0.6 sec) # 0.020 0.034 0.064 0.112

LI-DDP µ 0.90 ± 0.02 1.35 ± 0.05 1.77 ± 0.09 2.65 ± 0.35

(0.6 sec) # 0.036 0.074 0.122 0.252

RR-DDP µ 3.12 ± 0.06 3.43 ± 0.07 3.62 ± 0.09 3.97 ± 0.20

(8 sec) # 0.010 0.020 0.040 0.076

TP-AICO µ 1.03 ± 0.07 1.35 ± 0.10 1.70 ± 0.19 2.62 ± 0.59

(0.6 sec) # 0.022 0.032 0.038 0.072

LI-AICO µ 1.01 ± 0.06 1.12 ± 0.06 1.33 ± 0.11 2.23 ± 0.31

(0.6 sec) # 0.024 0.078 0.094 0.136

RR-AICO µ 5.07 ± 0.20 5.34 ± 0.23 6.05 ± 0.30 6.72 ± 0.67

(8 sec) # 0.010 0.028 0.056 0.112

TP-RPROP µ 1.18 ± 0.10 2.30 ± 0.18 2.85 ± 0.30 2.87 ± 0.55

(0.6 sec) # 0.070 0.158 0.316 0.582

LI-RPROP µ 2.31 ± 0.11 4.14 ± 0.15 4.73 ± 0.20 6.17 ± 0.36

(0.6 sec) # 0.126 0.224 0.368 0.536

RR-RPROP µ 12.46 ± 0.21 13.62 ± 0.28 14.88 ± 0.40 16.12 ± 0.65

(8 sec) # 0.360 0.570 0.748 0.904

TABLE II

RESULTS FOR 8 OBSTACLE SCENARIO. µ IS AVERAGE TIME IN SECONDS,

IS PROPORTION OF FAILURES. INITIALIZATION TIME IN SECONDS IN

BRACKETS.

Method ǫ = 0.5 ǫ = 0.2 ǫ = 0.1 ǫ = 0.05

TP-DDP µ 0.81 ± 0.02 1.07 ± 0.05 1.54 ± 0.14 2.53 ± 0.73

(0.6 sec) # 0.034 0.074 0.094 0.164

LI-DDP µ 1.10 ± 0.04 1.61 ± 0.06 2.32 ± 0.15 3.55 ± 0.50

(0.6 sec) # 0.048 0.102 0.168 0.300

RR-DDP µ 3.31 ± 0.06 3.69 ± 0.08 4.18 ± 0.12 5.03 ± 0.36

(8 sec) # 0.026 0.042 0.066 0.114

TP-AICO µ 1.19 ± 0.07 1.53 ± 0.11 2.19 ± 0.27 2.92 ± 0.91

(0.6 sec) # 0.032 0.056 0.084 0.114

LI-AICO µ 1.21 ± 0.08 1.35 ± 0.08 1.51 ± 0.14 2.71 ± 0.43

(0.6 sec) # 0.056 0.102 0.146 0.194

RR-AICO µ 4.94 ± 0.20 5.66 ± 0.25 6.83 ± 0.39 7.82 ± 0.96

(8 sec) # 0.040 0.064 0.094 0.160

TP-RPROP µ 1.58 ± 0.12 2.77 ± 0.24 3.76 ± 0.39 3.59 ± 0.77

(0.6 sec) # 0.122 0.248 0.420 0.678

LI-RPROP µ 2.98 ± 0.16 4.84 ± 0.21 5.87 ± 0.43 6.70 ± 0.62

(0.6 sec) # 0.182 0.316 0.472 0.644

RR-RPROP µ 11.40 ± 0.21 12.67 ± 0.26 14.01 ± 0.37 15.57 ± 0.76

(8 sec) # 0.406 0.602 0.758 0.926

often. However, trajectory prediction remains the fastest

initialization even with this more cluttered setup, a transfer

of useful behavior from the training database setup with 5

blocks. This shows that the descriptors ξxȳ and the predictor

f can transfer knowledge to a more diverse set of scenarios

without modification. On the other side, when considering

the potential effect of adding even more objects (e.g. more

than 20), RRT has the best chance to solve such puzzles. The

design of the scenario has big effect on performance.

In addition to simulation, we also did hardware tests as

in Figure 1, and had robust performance in real scenes with

different obstacles on tables.

VI. CONCLUSIONS AND FUTURE WORK

We tested extensively in simulation 9 combinations of

diverse path initialization and local optimization methods

to plan reaching trajectories in cluttered scenes. The gain

in convergence speed when using trajectory prediction, our

method for path initialization, makes it a good choice to im-

prove performance in conjunction with various optimization

algorithms, at no additional computation cost.

The trajectory prediction framework is simple to imple-

ment, but has potential for future research. The movement

policy we used can be modified: instead of choosing only

once an action from C - a start-to-goal movement - and

executing it for the time horizon T , we can follow just the

first few time steps of the chosen prototype and then predict a

next action with a newly calculated situation descriptor. The

prototypes invariant space can easily handle different time

resolutions and starting robot configurations. The predicted

actions can be used in a parallel CPU framework to explore

different solution sequences simultaneously.

VII. ACKNOWLEDGMENTS

This work was supported by the German Research Foun-

dation (DFG), Emmy Noether fellowship TO 409/1-3.

REFERENCES

[1] J. Zhang and A. Knoll, “An enhanced optimization approach for
generating smooth robot trajectories in the presence of obstacles,” in
Proc. of the European Chinese Automation Conf., 1995, pp. 263–268.

[2] J. A. B. Nathan Ratliff, Matthew Zucker and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), May 2009.

[3] P. Dyer and S. R. McReynolds, The Computation and Theory of

Optimal Control. Elsevier, 1970.
[4] C. G. Atkeson, “Using local trajectory optimizers to speed up global

optimization in dynamic programming,” in NIPS, 1993, pp. 663–670.
[5] E. Todorov and W. Li, “A generalized iterative LQG method for

locally-optimal feedback control of constrained nonlinear stochastic
systems,” in Proc. of the American Control Conf., vol. 1, 2005, pp.
300–306.

[6] M. Toussaint, “Robot trajectory optimization using approximate in-
ference,” in 26th Int. Conf. on Machine Learning (ICML), 2009, pp.
1049–1056.

[7] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated
approach to inverse kinematics and path planning for redundant
manipulators,” in IEEE Int. Conf. on Robotics and Automation (ICRA),
2006, pp. 1874–1879.

[8] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan, “Ran-
domized query processing in robot path planning,” in Twenty-seventh

annual ACM Symposium on Theory of Computing (STOC), 1995, pp.
353–362.

[9] N. Jetchev and M. Toussaint, “Trajectory prediction: Learning to map
situations to robot trajectories,” in 26th Int. Conf. on Machine Learning

(ICML), 2009, pp. 449–456.
[10] J.-M. Lien and Y. Lu, “Planning motion in environments with similar

obstacles,” in Proceedings of Robotics: Science and Systems, Seattle,
USA, June 2009.

[11] M. Branicky, R. Knepper, and J. Kuffner, “Path and trajectory di-
versity: Theory and algorithms,” in IEEE Int. Conf. on Robotics and

Automation (ICRA), 2008, pp. 1359–1364.
[12] S. Martin, S. Wright, and J. Sheppard, “Offline and online evolutionary

bi-directional RRT algorithms for efficient re-planning in dynamic
environments,” in IEEE Int. Conf. on Automation Science and En-

gineering (CASE)., 2007, pp. 1131–1136.
[13] F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace

structure: representing robot capabilities,” in IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2007, pp. 3229–3236.
[14] R. Kümmerle, P. Pfaff, R. Triebel, and W. Burgard, “Active monte

carlo localization in outdoor terrains using multi-level surface maps,”
in AMS, 2007, pp. 29–35.

[15] A. Nakhaei and F. Lamiraux, “Motion planning for humanoid robots
in environments modeled by vision,” in 8th IEEE-RAS Int. Conf. on

Humanoid Robots, 2008, pp. 197–204.
[16] M. Toussaint, “Bayesian inference for motion control and planning,”

Technische Universitaet Berlin, Tech. Rep. 22, 2007.
[17] A. Elfes, “Using occupancy grids for mobile robot perception and

navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.
[18] D. F. Wolf, G. S. Sukhatme, D. Fox, and W. Burgard, “Autonomous

terrain mapping and classification using hidden markov models,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2005, pp. 2026–
2031.

[19] C. S.Sonnenburg, G.Raetsch and B.Schoelkopf, “Large scale multiple
kernel learning,” Journal of Machine Learning Research, no. 7, pp.
1531–1565, 2006.

[20] W. W. Christian Igel, Marc Toussaint, “Rprop using the natural
gradient,” Trends and Applications in Constructive Approximation.

International Series of Numerical Mathematics, vol. 151, pp. 259–
272, 2005.

2528

