
MOPED: A Scalable and Low Latency Object Recognition and Pose
Estimation System

Manuel Martinez Alvaro Collet Siddhartha S. Srinivasa

Abstract— The latency of a perception system is crucial for
a robot performing interactive tasks in dynamic human envi-
ronments. We present MOPED, a fast and scalable perception
system for object recognition and pose estimation. MOPED
builds on POSESEQ, a state of the art object recognition
algorithm, demonstrating a massive improvement in scalability
and latency without sacrificing robustness. We achieve this with
both algorithmic and architecture improvements, with a novel
feature matching algorithm, a hybrid GPU/CPU architecture
that exploits parallelism at all levels, and an optimized resource
scheduler. Using the same standard hardware, we achieve up
to 30x improvement on real-world scenes.

I. INTRODUCTION

The reaction time of robots operating in dynamic environ-
ments is limited by the latency of their perception systems.
Robots equipped with low latency perception systems can
quickly perceive dynamic environments, enabling improved
feedback control. An impressive example of such a fast react-
ing robot is the batting robot[1] from the Kamuro Ishikawa
Laboratory which uses customized vision hardware[2] with
an integrated vision chip. From a 16x16 image from the
chip, the system segmented a light object against a dark
background and extracted moments at a latency of 1ms.

While low latency perception systems like the afore-
mentioned have excelled in controlled environments with
relatively simple objects, real human environments that a
personal service robot operates in may be cluttered, dynamic
and unpredictable. These environments, like Fig. 1, for
example, are characterized by their complexity and lack of
structure, requiring a more general perception system.

Collet et al. [3] demonstrated a vision based perception
system called POSESEQ capable of object recognition and
full pose estimation in cluttered scenes. The system learned
metric 3D models using natural (marker-free) features of
objects and maintains a database. At runtime, it detected
multiple objects and multiple instances of the same object
from its database, and provided 6D pose estimation.

POSESEQ was designed to produce accurate pose es-
timates that were critical for mobile manipulation. It was
robust to outliers, partial occlusions, and changes in illumi-
nation, scale and rotation. However, its latency scaled poorly
with respect to the number of objects in the database and the
resolution of the input image. On 640x480 images from real-
world scenes, POSESEQ had a latency of about 2000ms.

Motivated by these shortcomings, we present MOPED, a
system for Multiple Object Pose Estimation and Detection

M. Martinez and A. Collet are with The Robotics Institute, Carnegie
Mellon University, 5000 Forbes Ave., Pittsburgh, PA - 15213, USA.
{manelm, acollet}@cs.cmu.edu

Siddhartha S. Srinivasa is with Intel Labs Pittsburgh, 4720
Forbes Avenue, Suite 410, Pittsburgh, PA - 15213, USA.
siddhartha.srinivasa@intel.com

Fig. 1. A cluttered real-world scene. MOPED finds 27 objects partially-
occluded, repeated and non-planar objects. The database contains 91 models
and the source image is 1600x1200. In this scene, MOPED is 30.78 times
faster than POSESEQ [3] .

that improves the scalability of POSESEQ and optimizes
speed (Fig. 1) without trading off its robustness and accuracy.

Algorithmically, MOPED uses a novel feature matching
algorithm optimized for large databases with logarithmic
complexity and a robust pose merging algorithm capable
of efficiently rejecting outliers. Architecturally, MOPED is
optimized for bandwidth and cache management and SIMD
instructions. Components like feature extraction and match-
ing have been implemented on a standard GPU. Furthermore,
a novel scheduling scheme (Fig. 2) enables the efficient use
of symmetric multiprocessing(SMI) architectures, utilizing
all available cores on modern multi-core CPUs.

We demonstrate the speed and scalability of MOPED on a
real-world object dataset of 91 objects in high clutter, as well
as synthetic scenes with 400 objects. On the same 640x480
real-world images, MOPED demonstrates a latency of about
300ms., a 7x increase over POSESEQ. The gap widens to
over 30x as the number of objects and the resolution of the
image are scaled up.

MOPED demonstrates that novel algorithmic and architec-
tural modifications that exploit the structure and workflow of
a method can enable tremendous improvements.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2043

Fig. 2. The MOPED workflow and an illustration of the seven steps. Number in the upper right corner of rounded boxes represent corresponding keypoints.
TEAPOT, RICE and CAN designate objects in the database. Numbers are assigned to separate instances of the same object.

Fig. 3. Final output of MOPED after Pose Refinement

II. RELATED WORK

The fast and efficient tracking of objects in scenes is an
ongoing goal of augmented reality research, with a focus
on obtaining the camera pose with respect to an object or
scene, and accurately registering camera movement across
frames. Gordon and Lowe [4] provide a method for accurate
camera tracking using learned models of a scene and SIFT
features [5]. SIFT descriptors, albeit accurate and robust,
are computationally very expensive, and multiple alterna-
tive descriptors have been proposed [6–8], which in some
cases allow the tracking of objects at up to 1000Hz [7].
On the other hand, object recognition and pose estimation
for robotics are often explored in terms of accuracy and
recognition rate [3, 9] but seldom in terms of efficiency and
speed. However, recent advances in household robotics [10–
13] are pushing the limits of efficiency and accuracy.

III. ALGORITHM OUTLINE

MOPED starts with a precomputed database of objects
learned offline. Each object consists of of 3D points with
associated SIFT descriptors, constructed as described in [3].
MOPED recognizes and extracts the pose of all objects in
the database (Fig. 3) that are present in the image using the
following operations (also detailed in Fig. 2):

1. Feature Extraction. Extract salient features from im-
age.

2. Feature Matching. Create correspondences between
extracted features in the image and object features stored
in the database. For efficiency, approximate matching tech-
niques are used, but produce more outliers.

3. Keypoint Clustering. Cluster in image space features
matched to a particular object. Spatially close features are
more likely to belong to the same object instance.

4. Coarse object detection. Process each cluster inde-
pendently in search of objects. RANSAC and Levenberg-
Marquardt (LM) are used to find object instances that are
loosely consistent with each object’s geometry in spite of
outliers. The number of RANSAC and LM iterations are
kept low to accept very coarse object detections.

5. Cluster merging. As the same object might be present
in multiple clusters, re-cluster image space features using
poses resulting from Step 4. New, larger clusters are created,
that often contain all consistent features for a whole object.

6. Fine object detection. After Steps 4 and 5, most
outliers have been removed, and it is reasonable to assume
that each of the new clusters contain features corresponding
to only one instance of an object. Repeat LM and RANSAC
with a larger number of iterations to estimate a single pose
from each cluster.

7. Pose Filtering. A final merging step removes any mul-
tiple detection that might have survived, by again merging
together object instances with similar poses.

2044

Fig. 4. MOPED Benchmarks. For the sake of clarity, only half of the detected objects are marked. (a) The Rotation Benchmark: MOPED processes
this scene 36.4x faster than POSESEQ. (b) The Zoom Benchmark: MOPED processes this scene 23.4x faster than POSESEQ. (c) The Simple Movie
Benchmark. (d) The Complex Movie Benchmark.

IV. BENCHMARKS

We present four novel benchmarks (Fig. 4) designed to
stress test every component of our system. We performed
all experiments on a 2.33GHz quad-core Intel(R) Xeon(R)
E5345 CPU, 4 GB of RAM and a nVidia GeForce GTX 260
GPU running Ubuntu 8.04 (32 bits).

A. The Rotation Benchmark

The Rotation Benchmark is a set of synthetic images that
contains highly cluttered scenes with up to 400 cards in
different sizes and orientations. This benchmark is designed
to test MOPED’s scalability with respect to the database size,
while keeping a constant number of features and objects.
We have generated a total of 100 independent images for
different resolutions (1400× 1050, 1000× 750, 700× 525,
500×375 and 350×262). Each image contains from 5 to 80
different objects and up to 400 simultaneous object instances.

B. The Zoom Benchmark

The Zoom Benchmark is a set of synthetic images that
progressively zooms in on 160 cards until only 12 cards are
visible. This benchmark is designed to check the scalability
of MOPED with respect to the total number of detected
objects in a scene. We generated a total of 145 independent
images for different resolutions (1400 × 1050, 1000 × 750,
700× 525, 500× 375 and 350× 262). Each image contains
from 12 to 80 different objects and up to 160 simultaneous

object instances. This benchmark simulates a board with 160
cards seen by a 60◦ FOV camera at distances ranging from
1100mm to 300mm. The objects were chosen to have the
same number of features at each scale. Each image has over
25000 features.

C. The Simple Movie Benchmark
Synthetic benchmarks are useful to test a system in

controlled conditions, but are a poor estimator of the per-
formance of a system in the real world. Therefore, we
provide two real-world scenarios for algorithm comparison.
The Simple Movie Benchmark consists of a 1900-frame
movie at 1280 x 720 resolution, each image containing up
to 18 simultaneous object instances.

D. The Complex Movie Benchmark
The Complex Movie Benchmark consists of a 3542-frame

movie at 1600 x 1200 resolution, each image containing up
to 60 simultaneous object instances. The database contains
91 models and 47342 SIFT features when running this
benchmark. It is noteworthy that the scenes in this video
present particularly complex situations, including: several
objects of the same model contiguous to each other, which
stresses the clustering step; overlapping partially-occluded
objects, which stresses RANSAC; and objects in particularly
ambiguous poses, which stresses both LM and the merging
algorithm, that encounter difficulties determining which pose
is preferable.

2045

TABLE I
SIFT VS. SURF: RECOGNITION PERFORMANCE IN ZOOM BENCHMARK.

Avg. Processing Time (ms) Avg. Recognized Objects

SIFT 223.072 13.83
SURF 86.136 6.27

V. ALGORITHMIC IMPROVEMENTS

A. Feature Extraction

The most computationally expensive step of MOPED is
the extraction of point features from each new image, for
which the original POSESEQ used a CPU-optimized version
of SIFT. We considered SURF features[6], considered as a
fast alternative to SIFT. Table I compares the usage of SURF
vs. SIFT in terms of computation time and object recognition
performance. SURF proves to be 2.59x faster than SIFT at
the cost of detecting 54% less objects. In addition, the per-
formance gap between both methods decreases significantly
as the size of the images increases, as shown in Fig. 7. On
our benchmarks we found SIFT to be the almost always the
better alternative.

B. Feature Matching

Computing the correspondences between image features
and the object database can be expensive. Matching is done
in the 128-dimensional space of SIFT features. Depending
on the number of objects, the database can contain over
50,000 features. Depending on the resolution and complexity
of the scene, the image can contain over 10,000 features.
Approximate approaches to compute correspondences build
kd-trees out of sets of points. POSESEQ, following [5], uses
Approximate 2-Nearest Neighbors (2-ANN) and performs a
distance ratio test between the first 2 NNs to remove outliers.
A kd-tree is built for each model in the database once offline,
and is independently matched against every new image, with
a complexity of O(FimMdb log(Fm)), where Fim is the
number of features on the image, Mdb the number of models
in the database, and Fm the mean number of features for each
model.

When Mdb is large, this approach is vastly inefficient
as the cost of accessing each object kd-tree dominates. A
naı̈ve alternative, which we term SIMPLE, builds just one
kd-tree containing the features from all models. This solution
has a complexity of O(Fim log(MdbFm)). However, the
distance ratio is not an adequate measure when using such a
large number of features, because of the presence of similar
features in different objects.

Alternatively, one can consider a k-ANN approach (with
k > 2). k-ANN implementations using kd-trees can provide
more neighbors without significantly increasing their com-
putational cost, as they are often a byproduct of the process
of obtaining the nearest neighbor. The distance ratio is then
applied to the 2 nearest neighbors from the same model, if
available. If the nearest neighbor is the only neighbor for
a given model, we apply the distance ratio with the next
neighbor on the list. This algorithm is the default choice for
MOPED.

Finally, MOPED also supports a GPU-based exact feature
matching algorithm. The parallel nature of the brute force

Fig. 5. Scalability of feature matching algorithms with respect to the size
of the database, in the Rotation Benchmark 1400× 1050 resolution).

TABLE II
FEATURE MATCHING ALGORITHMS IN THE SIMPLE MOVIE

BENCHMARK.

Correspondences: After Matching After clustering Final

GPU 3893.7 853.2 562.1
POSESEQ 3893.6 712.0 449.2

SIMPLE 1778.4 508.8 394.7
MOPED 3624.9 713.6 428.9

Matching Time(ms) Objects Found

GPU 253.34 8.8
POSESEQ 498.586 8.0

SIMPLE 129.85 7.5
MOPED 140.36 8.2

matching algorithm suits the GPU, and allows it to be
faster than the ANN approach when Fm is not too large.
Given that this algorithm scales linearly with the number of
features instead of logarithmically, we can match each model
independently without performance loss.

Fig. 5 compares the cost of the different alternatives on the
Rotation Benchmark. POSESEQ and GPU scale linearly with
respect to Mdb, while SIMPLE and MOPED scale almost
logarithmically. We show MOPED using k = 90 and k = 30.
The value of k adjusts the speed and quality behavior of
MOPED between POSESEQ (k =∞) and SIMPLE (k = 2).
The recognition performance of MOPED when using the
different strategies is shown in Table II. GPU provides the
ground truth as it is exhaustive. POSESEQ comes closest
in raw matching accuracy with MOPED a close second.
However, the number of objects detected are nearly the same.
The matching speed of MOPED is, however, significantly
better than POSESEQ. Feature matching in MOPED thus
provides a big speed increase without sacrificing much
accuracy.

2046

Fig. 6. Total latency using single pass vs. double pass pose estimation, in
the Simple Movie Benchmark.

C. Decoupling Detection and Pose Estimation

The duplicated RANSAC-LM steps implemented in
MOPED represent an important advantage over the single-
step detection of POSESEQ. The first pass (Coarse Object
Detection) uses a low number of LM iterations, detecting
hypotheses with a coarse pose. The second pass (Fine Object
Detection) is performed only after filtering most outliers and
merging clusters together, so we use a higher number of
iterations to estimate object poses with high precision. The
combined result when tested on all benchmarks produced
equivalent robustness and precision, but required fewer total
iterations. A representative test on the Simple Movie Bench-
mark is shown in Fig. 6.

VI. ARCHITECTURE OPTIMIZATIONS

Our algorithmic improvements were focused mainly on
boosting the scalability and robustness of the system. The
architectural improvements of MOPED are obtained as a
result of a re-implementation designed to make the best
use of all the processing resources of standard compute
hardware. In particular, we use GPU-based processing, intra-
core parallelization using SIMD instructions, and multi-core
parallelization in coarse grained algorithms. The memory
subsystem, including bandwidth transfer and cache manag-
ing, has also been carefully optimized.

All optimizations have been devised to reduce the latency
between the acquisition of an image and the output of the
pose estimates, to enable faster response times from our
robotic platform.

A. GPU and Embarrassingly Parallel Problems

State-of-the-art CPUs have a peak performance of 12.8
GFLOPS, which can be extended to 76.8 GFLOPS if using
vectorization instructions like SSE and Single Precision
(SP) Floating Point. State-of-the-art GPUs have a theoretical
maximum performance of more than 2000 SP GFLOPS.

To use GPU resources efficiently, input data needs to be
transferred to the GPU memory. Then, algorithms are exe-
cuted simultaneously on all shaders, and finally recover the
results from the GPU memory. As communication between
shaders is expensive, the best GPU-performing algorithms
are those that can be divided evenly into a large number
of simple tasks. This class of easily separable problems is
called Embarrassingly Parallel Problems (EPP).

1) SIFT vs. SURF on GPU: Most feature extraction algo-
rithms consist of an initial keypoint detection step followed
by a descriptor calculation for each keypoint, and both of
them are EPP. Keypoint searching algorithms can process

Fig. 7. SIFT-CPU vs. SIFT-GPU vs. SURF-GPU, in the Rotation
Benchmark at different resolutions. (left) SIFT-CPU vs. SIFT-GPU: 658%
performance increase in SIFT extraction on GPU. (right) SIFT-GPU vs.
SURF-GPU: SURF is 91% faster than SIFT at the cost of lower matching
performance.

each pixel from the image independently. They may need
information about neighboring pixels, but they do not need
results from them. After obtaining the list of keypoints, the
respective descriptors are also calculated independently.

MOPED uses SIFTGPU[8] as its main feature extraction
algorithm. MOPED supports GPU-SURF[14], but it is not
used by default as it is less robust than SIFT. If compatible
graphics hardware is not detected MOPED automatically
reverts back to performing SIFT extraction on the CPU,
which is an OpenMP-enabled, CPU-optimized version of
SIFT. We compare the latency of the three implementations
in Fig. 7. The comparison is as expected: GPU versions of
both SIFT and SURF provide tremendous improvements over
their non-GPU versions. We were particularly impressed with
the almost tenfold increase in speed with SIFTGPU.

2) GPU Matching: Performing feature matching in the
GPU requires a different approach than the standard Approx-
imate Nearest Neighbor techniques. Using ANN, each match
involves searching in a kd-tree, which requires fast local
storage and a heavy use of branching that are not suitable
for GPUs.

Instead of using ANN, [8] suggest the use of brute force
nearest neighbor search on the GPU, which scales quite well
as vector processing matches perfectly the GPU structure. In
Fig. 5, brute force GPU matching is shown to be faster than
ANN and provide better quality matches because it is not
approximate. We believe that as graphics hardware becomes
cheaper and more powerful, brute-force feature matching
might be the inevitable choice.

B. Intra-core optimizations
SSE instructions allow MOPED to perform 12 floating

point instructions per cycle instead of just one. The 3D to
2D projection function, critical in the pose estimation steps,
is massively improved by using SSE-specific algorithms
from[15][16].

The memory footprint of MOPED is very lightweight
for current computers. In the case of a database of 100
models and a total of 102.400 SIFT features, the required
memory is less than 13MB. Runtime memory footprint is
also small: a scene with 100 different objects with 100
matched features each would require less than 10 MB of
memory to be processed. This is possible thanks to using
dynamic and compact structures, such as lists and sets, and
removing unused data as soon as possible. In addition, SIFT
descriptors are stored as integer numbers in a 128-byte array

2047

Fig. 8. Intra-CPU performance of MOPED relative to POSESEQ, in the
Complex Movie Benchmark. (top) Total time/frame relative to POSESEQ.
(bottom) Time/frame without counting SIFT extraction.

Fig. 9. Pose estimation performance in multi-core CPUs, in the Complex
Movie Benchmark.

instead of a 512-byte array. Cache performance has been
greatly improved due to the heavy use of memory-aligned
and compact data structures [17].

The main data structures are kept constant throughout the
algorithm, so that no data needs to be copied or translated
between steps. k-ANN feature matching benefits from com-
pact structures in the kd-tree storage, as smaller structures
increase the probability of staying in the cache for faster
processing. In feature clustering, the performance of Mean
Shift is boosted 250 times through the use of compact data
structures.

The overall performance increase is over 67% in CPU
processing tasks (see Fig. 8).

C. Symmetric Multiprocessing

Symmetric Multiprocessing (SMP) is a multiprocessor
computer architecture with identical processors and shared
memory space. Most multi-core based computers are SMP
systems. OpenMP is a framework to use multi-processing in
SMP systems that we implement in MOPED.

We use Best Fit Decreasing to balance the load between
the cores using the size of a cluster as an estimate of its
processing time, given that each cluster of features can be
processed independently. Tests on a subset of 10 images
from the Complex Movie Benchmark show performance
improvements of 55% and 174% on dual and quad core
CPUs respectively (see Fig. 9).

D. Multi Frame Scheduling

In order to maximize the system throughput, MOPED can
benefit from GPU-CPU pipeline scheduling[18]. In order to
use all available computing resources, a second execution
thread can be added, as shown in Fig. 10. However, the
GPU and CPU execution times are not equal in real scenes,
and one of the execution threads often needs to wait for the

Fig. 10. (top) Standard MOPED uses the GPU to obtain the SIFT features,
and then uses the CPU to process them. (bottom) Addition of a second
execution thread does not substantially increase the system latency.

Fig. 11. (top) Limiting factor: CPU. GPU thread processing frame N+1
must wait for CPU processing frame N to finish, increasing latency. (bottom)
Limiting factor: GPU. No substantial increase in latency.

other (see Fig. 11), so the latency can increase significantly,
especially if using high resolution images (see Fig. 12).

VII. SCALABILITY

The Simple Movie Benchmark consists of a 1900-frame
movie at 1280 x 720 resolution, each image containing up
to 18 simultaneous object instances. This is the type of
scene that our robot HERB [10] encounters daily in its
environment. Using a database of 11 models, our results
show a 5.74x speed increase using Standard MOPED and a
7.44x speed increase with Pipelined MOPED (see Table III).
Mean latency is 303ms and 368ms, respectively.

The Complex Movie Benchmark consists of a 3542-frame
movie at 1600 x 1200 resolution, each image containing up
to 60 simultaneous object instances. The Complex Movie
Benchmark contains extreme clutter, seldom seen in the
real world. MOPED shines in this scenario, outperforming
POSESEQ by over 30x (Table III). This demonstrates the
extreme scalability of MOPED. This is further reinforced
in the synthetic benchmarks. In Fig. 13 and Fig. 14, we

Fig. 12. Impact of Pipeline Scheduling. (left) Throughput (FPS) compari-
son. (right) Added latency using pipeline scheduling. Since GPU processing
is the bottleneck on very small resolutions, these are the best scenarios for
pipeline scheduling. At 500x380, throughput is increased by 95.6% and
latency is increased by 9%.

2048

Fig. 13. Scalability experiments in the Rotation Benchmark. (left) Latency
with respect to image resolution. (right) Latency with respect to database
size.

Fig. 14. Scalability with respect to the number of objects in the scene in
the Zoom Benchmark. There are 160 small objects at 1100mm and only 12
large objects at 300mm. (left) Scalability of POSESEQ. (right) Scalability
of MOPED.

show the processing time for SIFT extraction and model
matching as well as the total processing time per frame for
both methods. MOPED’s flat latency curve is particularly
encouraging.

Our experiments show that both MOPED and POSESEQ
scale quadratically in execution time with respect to image
resolution. However, POSESEQ’s performance is highly de-
pendent on the number of different objects in the database,
while MOPED’s performance is almost constant (Fig. 13).

The Zoom Benchmark shows a relatively constant number
of detected features (Fig. 14), although 160 objects are
detected at 1100mm and only 12 are visible at 300mm. It
is interesting to notice that the required time is inversely
proportional to the number of objects in the image, i.e. a
small number of large objects are more demanding than
large numbers of small objects. In addition, SIFTGPU exhibit
bimodal behavior at the memory limit of the graphics card.

TABLE III
PERFORMANCE IN SIMPLE AND COMPLEX MOVIE BENCHMARKS.

Simple Movie FPS Latency (ms) Latency Sd (ms)

Pipelined MOPED 3.49 368.445 92.3431
Standard MOPED 2.70 303.229 69.2581

POSESEQ 0.47 2124.30 286.538

Complex Movie Latency (ms)

MOPED 2173.83
POSESEQ 65568.2

VIII. CONCLUSIONS

We have demonstrated MOPED, an algorithmic and ar-
chitectural evolution of the state-of-the-art POSESEQ object
recognition and pose estimation algorithm. MOPED is scal-
able, fast, and robust, utilizing all of the processing power,
in- and out-of-core, available in modern computers. As a
result, it achieves low latency and high scalability, enabling
robots to perceive and interact in cluttered dynamic scenes.

IX. ACKNOWLEDGMENTS

This material is based upon work partially supported by
the National Science Foundation under Grant No. EEC-
0540865. Alvaro Collet is partially supported by Caja Madrid
fellowship. Special thanks to the members of the Personal
Robotics project at Intel Labs Pittsburgh, Lily Mummert and
Babu Pillai for useful discussions and comments.

REFERENCES

[1] T. Senoo, A. Namiki, and M. Ishikawa, “Ball control in high-
speed batting motion using hybrid trajectory generator.” in
IEEE ICRA, 2006.

[2] A. Namiki, T. Komuro, and M. Ishikawa, “High-speed
sensory-motor fusion for robotic grasping,” Measurement Sci-
ence and Technology, vol. 13, pp. 1767–1778, Nov. 2002.

[3] A. Collet, D. Berenson, S. S. Srinivasa, and D. Ferguson,
“Object recognition and full pose registration from a single
image for robotic manipulation,” in IEEE ICRA. Kobe: IEEE,
May 2009, pp. 48–55.

[4] I. Gordon and D. G. Lowe, “What and where: 3d object
recognition with accurate pose,” in Toward Category-Level
Object Recognition, 2006, pp. 67–82.

[5] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, vol. 60, pp. 91–110, 2004.

[6] H. Bay, T. Tuytelaars, and A. L. Van Gool, “Surf: Speeded
up robust features,” in ECCV, 2006.

[7] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and
D. Schmalstieg, “Pose tracking from natural features on
mobile phones,” in Mixed and Augmented Reality, 2008.

[8] C. Wu, “SiftGPU: A GPU implementation of scale invari-
ant feature transform (SIFT),” http://cs.unc.edu/ ccwu/siftgpu,
2007.

[9] F. Vikstén, R. Söderberg, K. Nordberg, and C. Perwass,
“Increasing Pose Estimation Performance using Multi-cue
Integration,” in IEEE ICRA, 2006.

[10] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. C.
Romea, R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner,
and J. M. Vandeweghe, “Herb: a home exploring robotic
butler,” Auton. Robots, vol. 28, no. 1, pp. 5–20, Jan. 2010.

[11] A. Saxena, J. Driemeyer, and A. Ng, “Robotic Grasping of
Novel Objects using Vision,” IJRR, vol. 27, no. 2, pp. 157–
173, 2008.

[12] “The pr platform,” http://pr.willowgarage.com, 2008.
[13] H. Nguyen, C. Anderson, A. Trevor, A. Jain, Z. Xu, and

C. Kemp, “El-e: An Assitive Robot that Fetches Objects from
Flat Surfaces,” in Proc. Human Robot Interaction, 2008.

[14] N. Cornelis and L. Van Gool, “Fast scale invariant feature
detection and matching on programmable graphics hardware,”
in IEEE CVPR, 2008.

[15] J. van Waveren, “From quaternion to matrix and back,” 2005.
[16] G. Conte, S. Tommesani, and F. Zanichelli, “The long and

winding road to high-performance image processing with
MMX/SSE,” in Proceedings of the Fifth IEEE Int. Wshp. on
Comp. Architectures for Machine Perception, 2000, p. 302.

[17] T. J. Dysart, B. J. Moore, L. Schaelicke, and P. M. Kogge,
“Cache implications of aggressively pipelined high perfor-
mance microprocessors,” in Int. Sym. on Performance Analysis
of Systems and Software, 2004.

[18] K. S. Chatha and R. Vemuri, “Hardware-software partition-
ing and pipelined scheduling of transformative applications,”
IEEE Trans. VLSI, 2002.

2049

