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Abstract— This paper presents a novel approach based on
Jacobi shape theory and geometric reduction for formation
control of autonomous underwater vehicles (AUVs). We con-
sider a three degree-of-freedom (DOF) dynamic model for the
horizontal motion of each AUV that has control inputs over
surge force and yaw moment. By using the Jacobi transform,
the horizontal dynamics of AUVs are expressed as dynamics for
formation shape, formation motion and vehicle orientation. The
system decouples when additional symmetries in vehicle design
are presented. Hence formation shape controllers, formation
motion controllers, and vehicle orientation controllers can be
designed separately. This approach reduces the complexity of
formation controllers. We use the model for ODIN as an ex-
ample to demonstrate the controller design process. Simulation
results show the effectiveness of the controllers.

I. INTRODUCTION

The formation control problems of multiple AUVs have
received much recent attention with applications in oceano-
graphic research, seafloor survey, underwater archeology and
meteorology. Cooperative control enables the vehicles to
combine sensor data and create smarter behaviors than those
of a single vehicle.

A common practice in some of the existing results for
formation control is to simplify the motion dynamics of
an individual vehicle or robot to a second-order particle
model [1]–[7]. Formation control becomes more challenging
if more practical and complex dynamics are concerned. Var-
ious methods have been developed to answer this challenge.
A leader-follower formation control scheme for autonomous
helicopters is investigated in [8] by applying the sliding-
mode controller design method, where a 6 DOF dynamic
model is considered. In [9], a dynamic model of the AUV
ODIN [10] is used to design a proportional-derivative con-
troller for formation control. A 3 DOF horizontal model
for AUVs is used in [11] and [12]. In [11], the model
has decoupled sway and yaw motion. A virtual vehicle is
employed to provide a reference trajectory and velocity for
the followers with their tracking controllers designed using
the back-stepping method. In [12], the horizontal dynamic
model of a torpedo type AUV is described using a general
nonlinear mapping, and formation controllers are designed
based on artificial potential functions. A cross-track control
scheme based on Line of Sight (LOS) guidance law is
presented to make the AUVs follow a given straight line
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and constitute a desired formation in [13], where a 5 DOF
dynamic model with independent control inputs in surge,
pitch and yaw is considered. Similar approach is extended to
surface vessels described by a 3 DOF dynamic model where
the surge dynamics are decoupled from the steering dynam-
ics [14]. A cooperative controller based on discrete time
Kuramoto models is designed to integrate communication
and control for multiple vehicles [15]. Experimental results
on the University of Washington Fin-actuated Autonomous
Underwater System(UMMFAUS) are reported in [16].

One of the major difficulties of formation control for
AUVs is that the collected dynamics of all vehicles are
more complex than the non-trivial single vehicle dynamics.
The reviewed existing methods design formation controllers
for the collected dynamics directly. The vehicle dynamics
lead to results that are difficult to be justified theoretically.
In this paper, we employ an approach based on geometric
reductions for formation control of multiple AUVs. The
approach expresses the formation dynamics as a deformable
body by using the Jacobi coordinates that has been previously
applied to formation control for particles in Zhang’s works
[4]–[6]. In this paper, we extend the methods to control of
AUV formations. The key benefit of this approach is that the
dynamics of the formation shape and formation center are ex-
plicitly revealed. Furthermore, in some cases with additional
symmetry, the collected motion dynamics are decomposed
into dynamics for the formation shape, the formation center,
and the vehicle orientation. Each set of decoupled dynamics
is simpler than the collected dynamics, hence controller
design for the decoupled dynamics is simplified.

We apply our design methods to the nonlinear horizontal
dynamic model of ODIN [10], an autonomous underwater
vehicle designed by the University of Hawaii. We show that
each decoupled system is linear, hence controllers can be
designed using linear state feedback.

The organization of this paper is as follows. In Section
II, the horizontal dynamic equations of a single AUV are
reviewed. We derive the formation dynamic of multiple
AUVs through Jacobi transform in Section III. Formation
shape controllers, formation motion controllers and AUV
orientation controllers for ODINs are designed in Section
IV. Numerical simulation results are given in Section V.
Summary and discussions are presented in Section VI.

II. DYNAMIC MODEL OF A SINGLE AUV

We consider a 3 DOF horizontal motion model that
describes surge, sway and yaw motion for an AUV [17].
We define η = [x,y,ψ]T where [x,y]T represents the vehicle
position in the horizontal plane and ψ is the yaw angle, and
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use ν = [u,v,r]T for the body-fixed linear velocity vector for
surge, sway and yaw. We assume that the AUV is neutrally
buoyant with three planes of symmetry. For simplicity, we
only consider the linear hydrodynamic damping forces and
moments. We select the origin of the body frame of the
vehicle to coincide with the center of gravity. The horizontal
dynamics can be expressed as follows:

η̇ = RI
b(ψ)ν (1)

and
Mν̇ +C(ν)ν +Dν = τ

′ (2)

where

RI
b(ψ) =

 cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 ,

M =

 m−Xu̇ 0 0
0 m−Yv̇ 0
0 0 Iz

 ,

C(ν) =

 0 0 −mv+Yv̇v
0 0 mu−Xu̇u

mv−Yv̇v −mu+Xu̇u 0

 ,

D =

 −Xu 0 0
0 −Yv 0
0 0 −Nr

 ,τ ′ =

 τx
τy
τψ

 . (3)

The matrix RI
b(ψ) is the rotation matrix from the body frame

to the inertial frame. M denotes the inertia matrix. C(ν)
contains Coriolis and centrifugal force terms, and D is the
hydrodynamic damping matrix. τ ′ is the vector of control
inputs where τx is the surge force, τy is the sway force, and
τψ is the yaw moment. Xu, Yv, Nr, Xu̇, Yv̇ and Iz are model
parameters.

Let p = [x,y]T and γ = [u,v]T . We can rewrite the position
and orientation transformation described in equation (1) as
follows:

ṗ = R(ψ)γ (4)

ψ̇ = r (5)

where

R(ψ) =
[

cosψ −sinψ

sinψ cosψ

]
(6)

has the properties that RT (ψ)R(ψ) = I for all ψ , and

Ṙ(ψ) = R(ψ)S(ψ̇) (7)

where

S(ψ̇) =
[

0 −ψ̇

ψ̇ 0

]
(8)

is skew-symmetric.
Next, decomposing the equation (2), we have

M1γ̇ +N(r)γ = τ (9)

and

ṙ =− (Xu̇−Yv̇)
Iz

uv+
Nr

Iz
r +

1
Iz

τψ (10)

where,

M1 =
[

m−Xu̇ 0
0 m−Yv̇

]
,

N(r) =
[

−Xu (−m+Yv̇)r
(m−Xu̇)r −Yv

]
τ =

[
τx
τy

]
. (11)

Equation (9) implies that

γ̇ = M−1
1 (τ−N(r)γ). (12)

Taking derivatives on both sides of equation (4) yields

p̈ = Ṙ(ψ)γ +R(ψ)γ̇ = R(ψ)S(r)γ +R(ψ)γ̇. (13)

Substituting equation (7) and (12) into (13), we have

p̈ = R(ψ)[S(r)−M−1
1 N(r)]R−1(ψ)ṗ+R(ψ)M−1

1 τ. (14)

Define

G(ψ,r) = R(ψ)[S(r)−M−1
1 N(r)]R−1(ψ) (15)

and
H(ψ) = R(ψ)M−1

1 . (16)

Then equation (14) can be rewritten as:

p̈ = G(ψ,r)ṗ+H(ψ)τ. (17)

Equation (17) and the equations of vehicle orientation
described by equation (5) and (10) are nonlinear equations
about state variables (ψ,r, p, ṗ) with control inputs τ and τψ .
It can be observed that equation (17) differs from a second
order particle model in that the orientation and angular
speed affect the translation dynamics. If multiple vehicles
are considered, then the differences in the orientation and
angular speed among the vehicles make the formation control
problem more challenging than the case when all particles
are considered identical.

III. FORMATION DYNAMICS

The entire formation of N AUVs can be viewed as a
deformable body. Jacobi vectors can be defined to describe
the shape and orientation of a deformable body [6]. Suppose
the positions of the AUVs are described by pi = [xi,yi]T , i =
1,2, ...,N. Then the Jacobi vectors are defined by a linear
transform Φ that produces the following equation:

[ρ1,ρ2, ...,ρN−1,qc]T = Φ[p1, p2, ..., pN ]T (18)

where ρi(i = 1,2, . . . ,N−1) are the Jacobi vectors and qc is
the formation center, defined by

qc =
1
N

N

∑
i=1

pi. (19)

The following realization of the transform Φ may be used
when N = 3:

ρ1 =
1√
2
(p2− p1)

ρ2 = p3−
1
2
(p1 + p2), (20)
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as illustrated by Figure 1. If we can control ρ1 → ρ1d and
ρ2→ ρ2d as t→ ∞, where ρ1d and ρ2d are desired constant
vectors, then the three vehicles will converge to a constant
triangular formation.

Fig. 1. Definition of Jacobi vectors for three vehicles.

Taking derivatives on both sides of equation (18), we have

[ṗ1, ṗ2, ..., ṗN ]T = Φ
−1[ρ̇1, ρ̇2, ..., ρ̇N−1, q̇c]T . (21)

Then we derive dynamic equations of the Jacobi vectors
and the formation center vector by taking the second order
derivative of equation (18) and substituting equations (14)
and (21) into the following equation.

ρ̈1
...

ρ̈N−1
q̈c

= Φ

 p̈1
...

p̈N

= Φ

 G(ψ1,r1)ṗ1 +H(ψ1)τ1
...

G(ψN ,rN)ṗN +H(ψN)τN



= Φ

 G(ψ1,r1)
...

G(ψN ,rN)

Φ
−1


ρ̇1
...

ρ̇N−1
q̇c


+Φ

 H(ψ1)τ1
...

H(ψN)τN

 .

(22)

Define a state vector X = [ρ1, . . . ,ρN−1,qc]T and let

G =

 G(ψ1,r1)
...

G(ψN ,rN)

 . (23)

Furthermore, let
A = ΦGΦ

−1. (24)

Define
ui = H(ψi)τi (25)

and let
U = [u1, . . . ,uN ]T . (26)

The dynamic equations of the formation is now

Ẍ = AẊ+ΦU. (27)

Equation (27), equation (5) and equation (10) describe
the formation dynamics as well as the steering dynamics.
The block diagonal matrix G plays an important role in
the formation dynamics in that it determines whether the
formation shape dynamics described by the Jacobi shape
vectors ρi and the formation center dynamics described by
the center vector qc are decoupled. For each block of G, we
have

G(ψi,ri) = R(ψi)[S(ri)−M−1
1 N(ri)]R−1(ψi)

=
[

g11 g12
g21 g22

]
(28)

where,

g11 =
Xu

m−Xu̇
cos2

ψi +(
m−Xu̇

m−Yv̇
− m−Yv̇

m−Xu̇
)ri sinψi cosψi+

Yv

m−Yv̇
sin2

ψi

g12 =(
Xu

m−Xu̇
− Yv

m−Yv̇
)sinψi cosψi +

m−Xu̇

m−Yv̇
ri sin2

ψi+

m−Yv̇

m−Xu̇
ri cos2

ψi− ri

g21 =(
Xu

m−Xu̇
− Yv

m−Yv̇
)sinψi cosψi−

m−Xu̇

m−Yv̇
ri cos2

ψi−

m−Yv̇

m−Xu̇
ri sin2

ψi + ri

g22 =
Xu

m−Xu̇
sin2

ψi +(
m−Yv̇

m−Xu̇
− m−Xu̇

m−Yv̇
)ri sinψi cosψi+

Yv

m−Yv̇
cos2

ψi.

(29)

We see that if we ignore the drag forces i.e. letting Xu and
Yv be trivial, then G(ψi,ri) is trivial for all i = 1,2, ...,N.
Hence the formation shape and formation center dynamics
are decoupled. But if the drag forces can not be ignored, the
dynamics are not decoupled in general.

In the next section we will show that for the ODIN vehicle
[10], due to additional symmetry in the vehicle design,
the dynamics of the formation shape and formation center
are decoupled when drag forces are considered. We can
then design the formation shape and the formation center
controllers separately using linear state feedback.

IV. FORMATION CONTROL FOR ODINS

In this section, we design formation controllers for ODINs.
We show that the formation shape and center dynamics are
decoupled due to properties of the hydrodynamic parameters
of ODIN. Then we design the formation shape and formation
motion control using linear state feedback. Assuming that the
ODIN is controlled by the surge force and steering control
but no sway forces are applied, we follow the inner-outer
loop design approach to separate the design of the surge
control and the steering control.
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A. Formation dynamics of ODINs

The hydrodynamic parameters of ODIN satisfy Yv̇ = Xu̇

and Yv = Xu. Therefore we get M−1 =
[

a 0
0 a

]
, where a =

1
m−Xu̇

= 1
m−Yv̇

. Furthermore,

G(ψi,ri) =
[

aXu 0
0 aXu

]
= aXuI2 (30)

which is a constant 2×2 diagonal matrix. Hence G = aXuI2N .
The system matrix of formation dynamic equation (27)
becomes a constant diagonal matrix. i.e.

A = ΦGΦ
−1 = aXuI2N . (31)

Now define
F = [ f1, f2, · · · , fc]T = ΦU. (32)

Then the formation shape and center motion systems are
simplified to:

ρ̈i = aXuI2ρ̇i + fi, i = 1,2, · · · ,N−1
q̈c = aXuI2q̇c + fc. (33)

And the vehicle orientation dynamic becomes linear as
described by the following equation:

ψ̇ = r

ṙ =
Nr

Iz
r +

1
Iz

τψ . (34)

B. Formation Shape and Center Controller

For the linear formation shape subsystems

ρ̈i = aXuI2ρ̇i + fi, i = 1,2, · · · ,N−1. (35)

We can design control force by using linear state feedback.
Define an augmented state vector X̄i = [ρi, ρ̇i]T . The aug-

mented state equation of X̄i can be described as the following:

˙̄Xi = ĀX̄i + B̄ fi (36)

where
Ā =

[
0 I2
0 aXuI2

]
, B̄ =

[
0
I2

]
. (37)

Define the tracking error vector Ei = X̄i− X̄id , where X̄id is
the desired shape. So the state equation of this error vector
is as following:

Ėi = ĀEi + ĀX̄id + B̄ fi− ˙̄Xid . (38)

Let
vi = aXuρ̇id + fi− ρ̈id (39)

Then the state equation of Ei can be written as:

Ėi = ĀEi + B̄vi (40)

Because the rank of controllability matrix

Sc = [B̄ p ĀB̄ p Ā2B̄] =


0 0 1 0 aXu 0
0 0 0 1 0 aXu
1 0 aXu 0 (aXu)2 0
0 1 0 aXu 0 (aXu)2


(41)

is 4, the controllability of system [Ā, B̄] is verified. Then
we can design the state feedback gain Kρ to place all the
eigenvalues of (Ā− B̄Kρ) on the LHP. Then the control law

vi =−Kρ Ei (42)

can guarantee the goal Ei→ 0 as t → ∞, i.e. X̄i→ X̄id with
an exponential rate of convergence. This implies ρi → ρid
and ρ̇i→ ρ̇id , where ρid are desired configureation in Jacobi
coordinates. Therefore, if the desired shape is constant, then
we get the formation shape control forces:

fi =−kρ

1 (ρi−ρid)− kρ

2 ρ̇i i = 1,2, . . . ,N−1 (43)

where kρ

1 ,kρ

2 > 0 are controller gains.
The control for the formation center motion can be de-

signed in the same way as the shape controllers. To track a
desired trajectory given by qcd(t), the control force for the
center can be

fc = q̈cd−aXuq̇cd− kq
1(qc−qcd)− kq

2(q̇c− q̇cd) (44)

where kq
1,k

q
2 > 0 are controller gains.

C. Orientation Controller
We suppose that the vehicle is controlled by surge force

and steering torque by no sway force i.e. τy = 0. Then we
define

H(ψi)τi =
[

ui1
ui2

]
(45)

where
ui1 = aτix cosψi, ui2 = aτix sinψi. (46)

A inner-outer loop controller design method can then be
followed by assuming that the steering dynamics can be
controlled faster than the translation dynamics. Note that
if the sway force control was available, then such inner-
outer loop design procedure would not be necessary and
the steering controller design problem would be completely
decoupled from the formation controller design.

Once we know the control force fi, i = 1,2, · · · ,N−1 and
fc, we can compute the desired value of U by U = Φ−1F .
According to equation (46), the surge forces for each ODIN
are

τix =
ui1

acosψid
=

ui2

asinψid
(47)

where the desired yaw angle ψid should be

ψid = atan2(ui1,ui2) (48)

Therefore, from the computed control forces ui1 and ui2, the
surge force and the yaw angle are uniquely determined. We
design the vehicle orientation controller to achieve ψi→ψid
as t→ ∞.

Consider the orientation equations of i-th ODIN:[
ψ̇i
ṙi

]
=
[

0 1
0 Nr

Iz

][
ψi
ri

]
+
[

0
1
Iz

]
τψi . (49)

The linear state feedback controller for yaw moment is then

τψi = Iz(ψ̈id−
Nr

Iz
ψ̇id− kψi

1 (ψi−ψid)− kψi
2 (ri− ψ̇id)) (50)

where kψi
1 ,kψi

2 > 0 are controller gains.

4291



D. Observer design for ψ̇id and ψ̈id

In the equation (50), calculating τψi requires the values of
ψ̇id and ψ̈id . But we only have the value of ψid according to
equation (48). A state observer is designed to estimate ψ̇id
and ψ̈id from ψid .

Define a new state variable zid = ṙid , then żid is the third-
order derivative of ψid and can be approximated as white
Gaussian noise. So we have a system about ψid , ψ̇id , and
ψ̈id as the following:{

Ẋψi = Aψ Xψi +Bψ ωi
µi = Cψ Xψi

(51)

where ωi represents white Gaussian noise1, µi denotes the
output variable ψid , and

Xψi =

 ψid
rid
zid

=

 ψid
ψ̇id
ψ̈id


Aψ =

 0 1 0
0 0 1
0 0 0

 ,Bψ =

 0
0
1

 ,Cψ =
[

1 0 0
]
.

(52)

Given the value of ψid , the estimation for ψ̇id and ψ̈id can be
obtained by a reduced order Luenberger observer as shown
in [18].

V. SIMULATION RESULTS

In this section, we carry out simulations to demonstrate the
effectiveness of proposed formation controllers. The model
parameters of ODIN are taken from [19]: m = 125kg, Xu̇ =
−62.5, Yv̇ =−62.5, Xu =−100, Yv =−100, Nr =−30, Iz =
8Nms2. We run two simulations.

In the first simulation there are three vehicles which
are initialized as follows: (x1,y1) = (10m,8m), (x2,y2) =
(−5m,10m), (x3,y3) = (25m,5m), u1 = v1 = u2 = v2 = u3 =
v3 = 1m/s, ψ1 = 0.1rad, ψ2 = 0.4rad, ψ3 = 0.7rad, r1 =
r2 = 0.1rad/s. Suppose the white Gaussian noise in equation
(51) is N (0,0.1). The Jacobi vectors are defined as the
equation (20). Let ρ1d = (0,10) and ρ2d = (30,0), the desired
formation shape is a isosceles triangle. The desired trajectory
is a horizontal straight line y = 10. Simulation results are
plotted in Figure 2, Figure 3 and Figure 4. Figure 2 shows
the trajectories of the three ODINs. The positions of the three
underwater vehicles are marked by ’�’ every 50 seconds.
From the Figure 2 we can see that the three ODINs form
the triangular formation immediately and keep moving in
fixed formation. Figure 3 shows that the surge velocity of
the three vehicles converge to 1m/s and the sway velocity
converge to 0. Figure 4 shows how the yaw angles of these
vehicles match the desired value and the yaw angle velocities
converge to 0.

In the second simulation, there are six ODINs controlled
to simultaneously track the desired trajectory and keep a

1A more rigorous notation can be used to represent the white noise. We
adopt the current notation for the sake of simplicity

Fig. 2. Three ODINs in a triangular formation moving on a horizontal
trajectory.

Fig. 3. Surge and sway velocity matching of the ODINs.

polygon formation. The Jacobi vectors are defined by the
following equations:

ρ1 =
1√
2
(p2− p1), ρ2 =

1√
2
(p3− p4), ρ3 =

1√
2
(p5− p6)

ρ4 =
1
2
(p4 + p3− p1− p2)

ρ5 =
1
4
(p1 + p2 + p3 + p4−2p5−2p6).

(53)

Let the Jacobi vectors converge to the following desired
value:

ρ1→ [0,30]T , ρ2→ [20,20]T , ρ3→ [−20,20]T ,

ρ4→ [0,0]T , ρ5→ [0,0]T . (54)

It implies that the formation shape is the hexagon plotted in
the figure 5.

The desired trajectory of formation center is an sinusoidal
line taken as qcd = [t, 30 ∗ sin(0.1t)]T . Simulation results
are plotted in figure 6. It is seen that all ODINs track their
reference trajectories.

VI. CONCLUSIONS AND FEATURE WORKS
In this paper, we demonstrate a geometric method in

formation control of AUVs. Hydrodynamic forces and mo-
ments are considered using a 3 DOF horizontal model for
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Fig. 4. Yaw angle and velocity matching of the ODINs.

Fig. 5. Formation shape of six ODINs.

each AUV with surge force and yaw moment as control
inputs. Jacobi transform is applied to the collected dynamics
to reveal the formation shape and the formation center
dynamics explicitly. For ODIN vehicle model, the formation
shape, formation center and vehicle orientation dynamics
are decoupled and linear state feedback controllers are used
to stabilize the desired motion. Ongoing work are being
developed for the general model of AUVs described by
equations(1) and (2).
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