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Abstract— Our prior work [1] presented a decentralized
algorithm for coordinating the construction of a truss structure
out of multiple components. In this paper, we discuss adaptation
in decentralized construction. We partition construction in two
tasks, tool delivery and assembly. Each task is performed by a
networked team of specialized robots. We analyze the perfor-
mance of the algorithms using the balls into bins problem, and
show their adaptation to failure of robots, dynamic constraints,
multiple types of elements and reconfiguration. The algorithms
can be used for general types of source elements.

I. INTRODUCTION

This paper discusses an adaptive decentralized approach to

construction with robot teams. We wish to develop coopera-

tive robot systems for complex assembly tasks in which parts

of different types are delivered at the location where they are

needed for the current assembly operation and assembled. We

abstract this process in the form of tool delivery robots and

assembly robots. In our previous work [1], we presented a

decentralized control algorithm for coordinating part delivery

and assembly for truss-like structures that consist of links

and connectors, and proved that the decentralized controller

is stable. In this paper we extend the work to construction

beyond trusses where the target consists of any given number

of parts from a set of part types. We give an analysis of this

algorithm and prove that the algorithm is adaptive to (1) the

failure of changing numbers of assembly robots and delivery

robots, (2) dynamic constraints such as order of construction,

and (3) changes in the geometry of the target structure during

assembly. Finally, we demonstrate the performance of the

algorithm in simulation.

A. Related work

This work is based on distributed coverage and robotic

construction. Distributed coverage using Voronoi tessellation

was proposed in [2] for multi-robot system. The same

optimization criteria were used in a distributed coverage

controller for real-time tracking by Pimenta et al. [3]. Schwa-

ger [4] used adaptive coverage control in which networked

robots learn a sensory function. Pavone et al. [5] have been

working on equitable partitioning by the power diagram.

SM2 is a truss-walking inspection robot developed for

space station trusses [6]. Skyworker performed truss-like

assembly tasks [7]. Werfel et al. [8] introduced a 3D con-

struction algorithm for modular blocks. Our previous work

on robotic construction includes Shady3D [9], [10], [11]

utilizing a passive bar. We also proposed a optimal algorithm

for reconfiguration of a given truss structure to a target

structure [12].

II. COORDINATED ROBOTIC CONSTRUCTION

We are given a team of robots, n of which are specialized

as assembling robots and the rest are specialized as part

delivering robots in Euclidean space Q ⊂ R
N (N = 2, 3).

Let Nd be the number of delivery robots and Na be the

number of assembly robots. The robots can communicate

locally with other robots within their communication range.

The robots are given a target shape represented as a target

density function φt : Q → R. φt represents the goal shape

geometry by specifying the intended density of construction

material in space. For example, in Figure 1 the yellow region

has high density (many materials) while the white region has

low density. If the components can be built independently and

an assembling robot is capable of assembling all of them, φt
is linearly superposed as

φt =

z
∑

u=1

βuψu, (1)

where z is the number of the component that can be

assembled by an assembling robot, and βu is a constant

representing importance of the uth component. Importance

can measure time required to assemble the piece, time till

the piece is needed in the assemble, etc.

Without loss of generality, we will focus the examples

on truss structures built with two types of components:

connectors and links in order to simplify exposition and

figures. To represent truss structures, φt is defined point-wise

on the grid that corresponds to the truss. The point density

is proportional to the number of possible truss connection at

the point. We wish to develop a decentralized algorithm that

coordinates the robot team to deliver parts so that the goal

assembly can be completed with maximum parallelism. We

assume that the robots move freely in an Euclidean space

(2D and 3D).

Algorithm 1 shows the main flow of construction in a

centralized view. In the first phase, assembling robots spread

in a convex and bounded target area Q which includes the

target structure. They find placements using a distributed

coverage controller which assigns to each robot areas of the

target structure that have approximately the same assembly
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complexity. In the second phase the delivering robots move

back and forth to carry source components to the assembling

robots. They deliver their components to the assembling

robot with maximum demanding mass. The demanding mass

is defined as the amount of a source component required

for an assembling robot to complete its substructure. In

this paper, we restrict the source components include two

types: unit-length truss elements and connectors. However,

the algorithm is general and can support any number of

different assembly components. After an assembling robot

obtains a component from a delivering robot, it determines

the optimal placement for this component in the overall

assembly and moves there to assemble the component. The

assembly phase continues until there is no source component

left or the assembly structure is complete.

Algorithm 1 Construction Algorithm

1: Deploy the assembling robots in Q
2: Place the assembling robots at optimal task locations in

Q (Section II-A)

3: repeat

4: delivering robots: carry source components to the

assembling robots

5: assembling robots: assemble the delivered compo-

nents

6: until task completed or out of parts

A. Task Allocation by Coverage with Equal-mass Partitions

Suppose n assembling robots cover region Q with the

configuration {p1, ...,pn}, where pi is the position vector

of the ith robot. Given a point q in Q, the nearest robot to q

will execute the assembly task at q. Each robot is allocated

the assembly task that includes its Voronoi partition Vi in Q.

Vi = {q ∈ Q| ‖q− pi‖ ≤ ‖q− pj‖ , ∀j 6= i} (2)

The target density function φt is the density of truss ele-

ments, and it is fixed during the construction phase. Given

Vi, we define its mass property as the integral of the target

density function in the area.

MVi
=

∫

Vi

φt(q)dq (3)

Each robot follows its own local controller, designed to

achieve a global distribution of robots so that each robot to

have the same amount of assembly work. We call this equal-

mass partitioning. Note that Voronoi tessellation evolves as

robots are controlled. The cost function can be modeled as

the product of all the masses.

H = H0 −
n
∏

i=1

MVi
, (4)

where H0 is a constant and the bound of the product term

as:

H0 =

(

1

n

n
∑

i=1

MVi

)n

=

(

1

n

∫

Q

φt(q)dq

)n

. (5)
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Fig. 1. Density function for an A-shaped bridge and coverage by the equal-
mass partitioning. The blue circles are assembling robots. Yellow regions
have dense φt.

Ni is a set of neighbor robots of the robot i. Minimizing

this cost function leads to equal-mass partitioning, because

the product of the masses is bounded by the sum which

is constant. Therefore the prefect equal-mass partitioning

makes the cost function zero. Using the cost function in (4),

we have developed a decentralized controller that guarantees

H converges to a local minimum [1].

1) Controller with Guaranteed Convergence: We wish for

the controller to continuously decrease the cost function:

Ḣ ≤ 0, t > 0. Let J i denote the part of the partial derivative

term ∂H
∂pi

which is related with the set {i,Ni}.

J i =
∑

j=i,Ni

∂MVj

∂pi

n
∏

k∈{i,Ni},k 6=j

MVk
(6)

Given a velocity control for each robot, the decentralized

controller that achieves task allocation is given by the control

law

ṗi = k
J i

‖J i‖
2
+ λ2

, (7)

where k is a positive control gain and λ is a constant

to stabilize the controller even around singularities where

‖J i‖
2
= 0.

Figure 1 shows the resultant Voronoi regions of an A-

shaped bridge, obtained from implementing the controller

with 4,6 and 10 robots. You can see each robot has approx-

imately the same area of the yellow region.

B. Delivery and Assembly Algorithms

Once the assembling robots are in place according to the

equal-mass partitioning controller, construction may begin.

State machines drive the delivering robots and the assembling

robots. During construction we wish to distribute the source

components (truss elements and connectors) to the assem-

bling robots in a balanced way. Global balance defined as

balance of delivery to all the assembling robots is asymptoti-

cally achieved by a probabilistic target selection of delivering

robots that uses φt as a probability density function. For local

balance defined for only neighboring robots, the delivering

robots are driven by the gradient of demanding mass defined

as the remaining structure to be assembled by the robot.

Robots with more work left to do get parts before robots

with less work left. Each assembling robot waits for a new

truss element or connector and assembles it to the most

demanding location in its Voronoi region. Therefore, con-

struction is purely driven by the density function regardless
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of the amount of the source components. We ensure that all

the processes of the controllers work in a distributed way

and each robot needs to communicate only with neighbors.

Details of the control algorithms are explained in [1].

III. ANALYSIS OF THE ALGORITHMS

We now build on the algorithms and analyze the per-

formance of the algorithms with respect to balance among

the substructures and completion time. Simulation data is

obtained from building the A-shaped bridge in Figure 1.

A. Balance of the sub-structures

Our goal is an algorithm that ensures the subassembly

tasks proceed and get completed at the same time. This

ensures that the overall construction is well-parallelized and

there is no unnecessary waiting for subassembly completion.

Let us assume the equal-mass partitioning is successful

so that each assembling robot has the same amount of

the target structure. The probabilistic deployment of the

delivery algorithm leads to the traditional problem ball-into-

bins where we throw m balls into n bins one by one with

uniformly distributed probability of placing a ball at a bin.

This problem is also known as online load balancing for

distributed computation, where n servers are supposed to

match m requests. In both cases, the question is what is the

maximum number of balls (requests) in any bin (server).

Theorem 1: With only probabilistic deployment, the max-

imum deviation of delivery from the mean (mn ) is bounded

by
√

2m
n log n with high probability.

Proof: In case m ≫ n as ours, with high probability

(normally ≫ 1− 1
n ), the maximum number of balls [13] is

smaller than
m

n
+

√

2
m

n
log n. (8)

Since the mean number of balls is m
n , The maximum

deviation from the mean is bounded by
√

2m
n log n.

Figure 2(a) shows the demanding masses simulated from

an example where 10 assembling robots and 10 delivery

robots are used and only the probabilistic deployment is

implemented. We can see the demanding masses spread out

as construction goes on. Figure 3 shows maximum deviation

of the demanding mass from the mean and the theoretical

bound. The mean of the maximum deviation and the error

bars are obtained from 10 simulations.

Algorithm 1 allows a delivering robot to find the as-

sembling robot with the maximum demanding mass after

the probabilistic deployment, and that dramatically improves

balance as shown in Figure 2(b) and Figure 3. During

construction, all the demanding masses are within a range of

a single truss element, which implies perfect balance. This

local search can be understood as picking multiple bins first

and putting a ball at the bin with the minimum number of

balls. It is well known in the balls into bins problem that the

maximum load can be greatly reduced if we can choose two

bins at random rather than just one bin [14]. In the proposed

algorithm, a delivering robot chooses where to place a source

component among neighboring robots of the robot that is
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Fig. 2. Demanding masses resulted from (a) probabilistic deployment only
(b) proposed algorithm. 10 assembling robots and 10 delivering robots are
used.
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Fig. 3. Average demanding mass and error bars from the probabilistic
deployment and Algorithm 1. Green dotted line is the theoretical bound
when only probabilistic deployment is used for delivery. Red solid line is
the simulation result from the proposed algorithm, and black dotted line is
the theoretical bound for the algorithm. The bound makes more sense when
enough time has passed, since the bound is valid for m ≫ n.

picked by the probabilistic deployment. This is equivalent

to having the robot choose multiple assembling robots on a

graph.

Theorem 2: Algorithm 1 yields the maximum deviation

bounded by log logn
log 2 with high probability.

Proof: The maximum load decreases into [15]

log log n

log d
+
m

n
, (9)

where d is a number of bins we can choose. 1 Since we

do not know how many neighbor robots there are, we use a

conservative bound with d = 2.

The black dotted line is the bound with log logn
log 2 . Note that

the maximum deviation is not dependent on m.

B. Construction time and Travel distance

We conduct an empirical analysis of the construction algo-

rithms, by testing several combinations of parameters. There

are two major parameters that affect the total construction

time: velocity of the robot and assembly time required for an

assembling robot to assembling a part. If the assembly time is

much larger than the reciprocal of the velocity, construction

time will be dominated by the assembly time. If the assembly

1To qualify the equation, the graph should be regular with degree nǫ

where ǫ is not too small [15]. In our case, we can not guarantee a degree of
the graph that equal-mass partitioning would build. However, if the target
structure is fully connected, ǫ should be at least greater than 2.
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Fig. 4. (a)Total construction time. (b)Average travel distance of the delivery
robots. Error bars are plotted together. The construction time is down-scaled
by 1000 for a better view.

time is very short, the total time will be a function of the

traveling distances of the robots. We evaluate the algorithms

with the following sets of parameters: Na ∈ {1, 2, 4, 10},
Nd/Na ∈ {1, 2, 4}, Ta ∈ {1, 5, 20}. Ta is the assembly

time.

When the assembly time is large, the construction time

decreases proportional to the number of the assembly robots,

as shown in Figure 4(a). Therefore the control algorithms

yield good parallelism when a robot has a large assembly

time. If the assembly time is small, we may modify the

criteria for a delivery robot to select an assembly robot

by incorporating expected traveling distance. This will be

considered in our future work.

The average travel distance of the delivery robots is

examined in Figure 4(b). Increasing the number of delivery

robots is more effective when the number of assembly robots

is small. However, too many delivery robots do not reduce

the average distance and the construction time much (the

slopes become flat as the number increases.) Careful choice

of the robot numbers will yield the an appropriate tradeoff

between robot numbers and construction time. This will be

investigated in the future.

IV. ADAPTATION

The construction algorithms in Section III are adaptive

to several cases such as failure of robots, construction with

dynamic constraints, multiple types of source elements and

reconfiguration between two structures. We next discuss each

case.

A. Robustness to failure of robots

Assembling robots are critical since each assembling robot

covers a unique region. Failures of the assembling robots

can be tolerated by executing the subassembly equal-mass

partitioning continuously as a background process. When

a robot fails, its remaining subassembly task will get re-

assigned and all the other assembly loads re-balanced. We

assume a failed robot disappears with an element if it is

carrying any. Algorithm 2 shows the main control loop for

assembling robots with continuous equal-mass partitioning. ρ
describes a density function for currently built structure, and

Φc is a set of required connectors for the current structure.

The assembling robots reconstruct the Voronoi regions when

the surrounding network of the robots has changed. Since

assembling robots move during construction, we introduce

Algorithm 2 Assembly with Equal-mass Partitioning

1: repeat

2: assemble the delivered components

3: move to p̂i by Equation 7

4: update Vi, G, ρ, Φc

5: until task completed
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Fig. 6. Cost function of the simulation in Figure 5. At time 500, the
cost rises up because of failure, however settles down by the equal-mass
partitioning controller.

the virtual center of the Voronoi region p̂i and move it

instead of a robot position, and reconstruct Vi around p̂i.

The assembling robots also need to update the parameters

such as the graph of the built structure and demanding mass

for truss and connectors. We assume that a robot can detect

failure of its neighbor.

Theorem 3: Continuous coverage during construction

compensates for the failure of the assembling robots

Proof: The coverage controller guarantees decay of

the cost function H regardless of the number of neighbors.

Therefore, if a robot fails,H will decrease to a local optimum

with the changed configuration, as long as there are the

remaining assembling robots.

Figure 5 shows a snapshot from a simulation with a failed

robot. The robot in the upper right Voronoi region fails during

construction as Figure 5(b), and the neighboring robots adapt

their Voronoi regions to fill the region of the failed robot

while continuing construction. Since the coverage control

requires a significant amount of computation, the robots end

it when the cost function settles down as shown in Figure 6.

Failure of delivering robots is not critical in our approach,

because the system is transparent to that. Only the com-

pletion time would increase, since we have less number of

delivering robots after the failure.

B. Dynamic constraint: construction in order

Territorial construction is subject to gravity constraints

which in turn imposes ordering constructions on assembly

job. For example, a 3D structure should be built from the

ground up. We extend our algorithm to incorporate this

type of constraint in terms of connectivity. Given φt, we

ensure connectivity by revealing only the part of φt that is

connected to the current structure. Equal-mass partitioning

and the computation of the demanding mass are done with

the revealed part of φt, which is now a time-varying function.

We model this revealed part of φt as a time-varying target

density function ϕt. The assembling robots perform equal-

mass partitioning based on ϕt.

2454



2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

time:490

(a)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

time:505

(b)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

time:630

(c)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

time:1847

(d)

Fig. 5. 4 assembling robots are constructing the bridge and one of them fails at time 500. Green circles are assembling robots, and red ones are delivering
robots. Blue hollow circles are the virtual center of Vi. After failure, the remaining robots reconfigure their Voronoi regions adaptively and finish the
construction.

Algorithm 3 Update the density function ϕt during building

a single truss element

1: q1 ← a set of nodes incident to eopt and /∈ Rc

2: q2 ← two nodes of eopt
3: set t = 0
4: repeat

5: ϕ̇t(q1) =
φt(q1)
Ta

6: ρ̇(q2) =
Φ0(q1)

Ta

7: update ϕt and ρ
8: until t > Ta
9: Rc ← q1

We update ϕt by Algorithm 3. Given the grid map Q, Rc is

a set of nodes that are reachable, Φ0 is a unit density for each

node of a truss element, and Ta is an assembly time to finish

assembling a truss element. When an assembling robot starts

to build a truss element at an edge eopt, it checks whether

the adjacent nodes of eopt are in Rc or not. For the nodes

to be revealed q1, the density function increases by the rate
φt

Ta
till time Ta. Therefore, only the nodes connected to the

current structure (Rc) are used in the current target density

function ϕt. The next chosen edge eopt must be connected

to the current structure.

The coverage control follows Algorithm 2. We modify it

to incorporate the time varying density function. Note that

ϕt varies smoothly since ϕ̇t is a constant.

Given the cost function H that is now a function of ϕt

replacing φt is Equation 3, differentiating H yields

Ḣ =

n
∑

i=1





∂H

∂pi
ṗi + Fi

∏

k/∈{i,Ni}

MVk



 . (10)

The new term Fi comes from the time varying density

function, and can be computed as

Fi = −
∏

j=Ni

MVj

∫

Vi

ϕ̇t(q, t)dq, (11)

where ϕ̇t is given by Algorithm 3. If we set the velocity

input as

ṗi =
J i

‖J i‖
2
+ λ2

(k − Fi) (12)

where

J i =
∑

j=i,Ni

∂MVj

∂pi

n
∏

k∈{i,Ni},k 6=j

MVk
, (13)

Ḣ becomes

Ḣ = −
n
∑

i=1

1

‖J i‖
2
+ λ2

(

k ‖J i‖
2
+ λ2Fi

)

∏

l/∈{i,Ni}

MVl
.

(14)

Theoretically, setting the gain k to a large value ensures Ḣ ≤
0 unless all J i are zero. We conjecture that Fi also becomes

zero if all J i are zero, however, we have not proven this yet.

In practice, a robot sets the gain ki that guarantees a local

derivative of the cost function Ḣi ≤ 0, which is defined as

Ḣi =
∑

j=i,j∈Ni





∂H

∂pj
ṗj + Fj

∏

k/∈{i,Ni}

MVk



 . (15)

Theorem 4: Fi is bounded.

Proof: MV and ϕ̇t are bounded. Therefore, by Equation

(11), Fi is bounded.

Theorem 5: The control input ṗi is bounded.

Proof: Because Fi and MV are bounded, ṗi is bounded

by Equation (12)

Figure 7 shows results from our implementation of the

control algorithms with 2 assembling robots. The bridge is

to be built from the lower left corner. Only the lower left part

of the target density function is revealed as in Figure 7(a).

The more the robots build, the more of φt is used until the

entire target density function φt is revealed. As shown in

Figure 8(a), the cost function is almost flat even though ϕt

changes during construction, since the controller incorporate

the time varying density function. We can see the masses of

two robots are almost identical at all time during construction

as in Figure 8(b).

C. Reconfiguration

The goal structure might change after or during construc-

tion. We extend the construction algorithm to support adap-

tation to changing structure geometry during construction, in

order to build a new goal structure from the current structure.

Suppose a target structure φt1 has been built and a new target

structure φt2 is given. Assuming the assembling robot is

2455



2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

time:60

(a)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

time:410

(b)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

time:820

(c)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

time:2840

(d)

Fig. 7. Construction in order. 2 assembling robots and 2 delivering robots are building the bridge from the lower left corner.
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Fig. 8. Construction in order

capable of disassembly, Algorithm 4 shows how the original

structure is reconfigured to the new structure. Here we set the

target density function as difference between two structures

|φt2 − φt1 | for equal-mass partitioning, since disassembly

also requires work of assembling robots. We assume cost for

disassembly is the same as assembly. If they are different,

we can generalize the target density function as:

φt = (φt2 − φt1)+ + α(φt1 − φt2)+, (16)

where α is a workload ratio of disassembly to assembly and

(·)+ represents positive only. From now on, we set α = 1.

The demanding mass is extended to two types: for assembly

(∆Ma
Vi

) and disassembly (∆Md
Vi

) , which are defined as

∆Ma
Vi

=

∫

Vi

(φt2(q)− φt1(q))+dq−

∫

Vi

ρa(q)dq, (17)

∆Md
Vi

=

∫

Vi

(φt1(q)− φt2(q))+dq−

∫

Vi

ρd(q)dq, (18)

where ρa is the density function of the built structure and

ρd is of the disassembled structure.

Algorithm 4 Reconfiguration Algorithm

1: Place the assembling robots by equal-mass partitioning

with the density function |φt2 − φt1 | in Q
2: repeat

3: delivering robots: carry source components from

(φt1 − φt2)+ to the assembling robots

4: assembling robots: assemble the delivered compo-

nents in (φt2 − φt1)+
5: until task completed or out of parts

1) Assembly Algorithm: The state machine used for the

assembling robot in [1] is adjusted for reconfiguration. The

robot has the following states:

• IDLE

• WAITING: waiting for a new component or request for

a part

• MOVING ASSEMBLY: moving to the optimal location

to add the part

• ASSEMBLING: adding the component to the assembly

• MOVING DISASSEMBLY: moving to the optimal lo-

cation to detach the part

• DISASSEMBLING: removing the component and hand

over it to a delivering robot

The last two states are added to the state machine in [1] for

disassembly.

Algorithm 5 shows the details of the state machine for

disassembly. The state machine for assembly is in [1]. When

reconfiguration starts, an assembling robot initializes the

parameters R,E, ρa, ρd and changes its state to WAITING.

Recall that each robot has a local graph representation

G = (R,E) of the already built local substructure by itself

and neighbors. If it receives a request for disassembly from

a delivery robot, it finds the optimal location to remove

a truss element in (φt1 − φt2)+. The optimal location is

chosen as an edge with the maximum demanding mass

for disassembly. The robot moves to the location by set-

ting the state to MOVING DISASSEMBLY. In the MOV-

ING DISASSEMBLY state, an assembling robot moves to

the target location t and changes the state to DISASSEM-

BLING when it arrives. Then it detaches the truss element

and hand it over to the delivery robot. After disassembly, it

updates the parameters such as R,E, ρd. The state goes back

to WAITING.

2) Delivery Algorithm: Delivering robots also operate by

an adjusted state machine from [1]. Each robot has the

following states:

• IDLE

• ToSOURCE: moving to a picked point in (φt1 − φt2)+
• ToTARGET: moving to a picked point in (φt2 − φt1)+
• ToASSEMBLY: delivering the element to an assembling

robot

• ToPICKUP: moving to get a new element from an

assembling robot
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Algorithm 5 Control Algorithm of assembling robots

STATE: IDLE

1: R← nodes ∈ φt1(Vi), E ← edges ∈ φt1(Vi)
2: ρa(q) = 0, ρd(q) = 0
3: state=WAITING

STATE: WAITING

4: if receive a request for disassembly then

5: e =findOptimalEdge(R,E, (φt1 − φt2)+, ρd)

6: t = q(node1(e)+node2(e))/2

7: state=MOVING DISASSEMBLY

8: end if

STATE: MOVING DISASSEMBLY

9: if reached t then

10: state=DISASSEMBLING

11: else

12: move to t

13: end if

STATE: DISASSEMBLING

14: disassemble the material

15: update ρd(e)
16: E ← E − e
17: R← R− {node1(e), node2(e)}
18: hand over the material to the delivery robot

19: state=WAITING

• PICKING: getting the element from the assembling

robot

The last two states are for disassembly.

Algorithm 6 describes the details of the state machine.

Instead of obtaining a source component from a source

cache as in [1], a delivering robot gets it from the redun-

dant structure (φt1 − φt2)+ and carries it to the unfilled

structure (φt2 − φt1)+. Given an initially empty state, a

delivering robot changes its state to ToSOURCE and picks

a possible source location with respect to the probability

density function (φt1 − φt2)+. This probabilistic choice has

already been used for finding an assembly location in [1],

and we use the same method to pick a source component

here. The state ToSOURCE ends when the robot reaches

the chosen location and switches to ToPICKUP. In the state

ToPICKUP, the robot figures out an assembly robot with the

maximum demanding mass that is a sum of ∆Ma
Vk

+∆Md
Vk

.

To ensure there is a source component to be disassembled,

the assembly robot should have positive demanding mass for

disassembly (∆Md
Vk

.) If the assembling robot has the state

WAITING, then it requests disassembly and moves to the

robot, switching the state to PICKING. The delivery robots

waits for the assembling robot to finish disassembly and

receives the new truss element, changing the state to To-

TARGET. The assembly procedure for the state ToTARGET

and ToASSEMBLY has been explained in [1].

3) Implementation: Figure 9 shows snapshots of reconfig-

uration from an A-shaped bridge (Figure 9(a)) to an M-shape

(Figure 9(b)). 4 assembling robots and 4 delivery robots

are deployed. We can see the density function |φt2 − φt1 |
for equal-mass partitioning has cross-like shape (the yellow

Algorithm 6 Control Algorithm of delivering robots

STATE: IDLE

1: state = ToSOURCE

2: t ∼ (φt1 − φt2)+
STATE: ToSOURCE

3: if reached t then

4: state = ToPICKUP

5: else

6: move to t

7: end if

STATE: ToPICKUP

8: communicate with robot ri s.t. q ∈ Vi
9: deliveryID = argmax(k=i,j∈Ni),∆Md

Vk
>0 ∆M

a
Vk

+

∆Md
Vk

10: if ri = WAITING then

11: send a disassembly request to ri
12: state = PICKING

13: t = pdeliveryID

14: end if

STATE: PICKING

15: if reached t and get a truss element then

16: state = ToTARGET

17: t ∼ (φt2 − φt1)+
18: else

19: move to t

20: end if

STATE: ToTARGET

21: if reached t then

22: state=ToASSEMBLY

23: else

24: move to t

25: end if

STATE: ToASSEMBLY

26: communicate with robot ri s.t. q ∈ Vi
27: deliveryID = argmax(k=i,j∈Ni),∆Ma

Vk
>0 ∆M

a
Vk

+

∆Md
Vk

28: t = pdeliveryID
29: if reached t & state of ri = WAITING then

30: pass the material

31: state = ToSOURCE

32: else

33: move to t

34: end if

region without the truss and the truss outside the yellow re-

gion in Figure 9(b).) The partitioning results in new Voronoi

regions as in Figure 9(c), and the delivering robots carry a

truss element from redundant truss to the yellow region that

is not filled by the truss yet.

D. Multiple types of source components

Figure 10 shows snapshots of the simulation of building

the A-shaped bridge with two types of truss elements: side

and diagonal. The density function is a simple sum of that

for side and that for diagonal, since we assume assembling
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Fig. 9. Reconfiguration from the A-shaped bridge to the M-shaped bridge. 4 assembling robots and 4 delivering robots are used. (a) Completion of
building the A-shaped bridge (b) New density function for the M-shaped bridge (c) Equal-mass partitioning for difference between the density functions
(d-f) Reconfiguration
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Fig. 10. A-shaped bridge with two types of truss elements. 4 assembling
robots and 4 delivery robots are building the structure.

times for them are the same.

In the future, we will consider the case source components

have dependency on each other so that they have to be built

in some order.

V. CONCLUSION

In this paper, we review the decentralized control algo-

rithms for coordinated construction of a truss structure, and

extend them to be adaptive for various situations.

We show the probabilistic delivery algorithm is an instance

of a classic problem: balls into bins. Analysis leads to

theoretical bounds for unbalance among the sub-structures

that are empirically proven in simulation. Given the as-

sumption that equal-mass partitioning has found the global

optimum, the local search algorithm reduces the bound from
√

2m
n log n to log logn

log d .

Based on the proposed approach, the algorithms are adap-

tive for several cases. For failure of robots, the convergence

property is not affected by failure of delivering robots, and

keeping equal-mass partitioning makes the system robust

to failure of assembling robots. Construction with dynamic

constraints is possible by incorporating the time-varying den-

sity function and corresponding controllers which is slightly

modified from the original controller. Non-dependent source

elements can be used by superposing density functions for

the elements. Reconfiguration between two structures are

implemented by substituting the target density function for

difference between target density functions of two structures.

Our current work is focused on the development of

hardware implementation and a decentralized construction

algorithm with an abstract goal.
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