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Abstract— In this paper, we discuss approximations to con-
tinuous curves of the Active Cord Mechanism (ACM) which
is composed of arc-shaped joints or double joints. ACM is a
machine which is made of a series of bending joints and forms
a cord, and it has potential to work in challenging environment
due to its large degree of freedom. In prior research most of
ACM were composed of straight links and joints, and a lot
of successful control methods for them have been proposed.
However, the control of the ACM that is composed of arc-shaped
joints or double joints has not been studied sufficiently so far.
In this research we propose the method of approximations to
continuous curves for such kind of ACM and use it for the
control. The proposed idea is verified by numerical calculations
and experiments by a robot.

I. INTRODUCTION

Active Cord Mechanism (ACM) is a machine inspired by
a snake. It is defined as ” a functional body which connects
in a series joint units, and which forms a cord”[1]. ACM
is a unique system because it has can have extremely large
number of degree of freedom but it is easily realized by
just connecting same bending joints in series. Thanks to this
unique feature, ACM has been studied as one of hopeful kind
of robots for tasks in challenging environments.

A typical ACM in prior research is composed of straight
links connected by revolute joints, and its degree of freedom
is the same with the number of the joints. This structure is
simple and suitable for the design using rotary actuators, but
it has following demerits: One is that the shape is not smooth
when the joint angles are large. The other is that the range
of motion is limited by collision between links, particularly
in case of universal joints.

In addition to the above mechanism, a joint bending like
an arc has been proposed[2][3] (we call it an arc-shaped joint
in this paper). The example of an arc-shaped joint is shown
in Fig. 1. It is made up of an elastic element, 2 disks and
3 cables, and the pulling force of cable bends the element
like an arc. An arc-shaped joint is ideal for ACM because
its shape is smooth if it bends with large angle. However, it
is difficult to design a compact arc-shaped joint with rotary
actuators, so the application for ACM is not many in prior
research.

Recently we have focused on a double joint as another
type of joint for ACM. In this paper we define a ”double

This work was not supported by any organization
H. Yamada is with Global Edge Institute, Tokyo Institute

of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, Japan
yamada@robotics.mes.titech.ac.jp

S. Hirose is with Department of Mechanical and Aerospace Engineering,
Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, Japan
Hirose@mes.titech.ac.jp

Force
Elastic element

Disk

Disk

Cables

Fig. 1. Example of an arc-shaped joint

Pulley

Yaw axis

Pitch axis

Miter gears
Pulley

Miter gears

Tip of the joint

Pitch axis

Yaw axis Tip of the joint

Fig. 2. Example of a double joint

joint” as a joint which has 2 rotating axis for 1 DOF and
its rotational angles around the 2 axes are the same. For
example, a double joint which bend around pitch and yaw
axis can be realized by 2 differential mechanisms connected
by pulleys and cables as shown in Fig. 2[4]. A double joint
has smooth bending shape like an arc-shaped joint, and it is
feasible to design a compact joint using rotary actuators.

However, the control of ACM which is composed of arc-
shaped joints or double joints has not been studied enough.
Thus we propose the control method based on approximation
to a continuous curve, which have been used for previous
robots composed of straight links[5]. In this control method,
the motion is generated by continuous model, and at the same
time the robot is controlled to approximate that motion as
shown in Fig. 3. The merit of this method is that we can
study the motion of ACM with a general ideal model and
apply it to various mechanisms. In this paper we discuss
the method of approximations to continuous curves of ACM
composed of arc-shaped joints or double joints, which is the
key of the proposed control method.

This paper is organized as follows: Section II describes the
definition of continuous model of ACM and approximations
by ACM composed of straight links. Section III and IV
present the approximations by ACM composed of arc-shaped
joints and double joints respectively. Section V presents the
experiment of a robot composed of double joints, and Section
VI gives the conclusion.
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Fig. 3. The control based on the continuous model of ACM

II. PRIOR RESEARCH

A. Dorsal reference curve

A continuous curve is not enough to represent the shape
of continuous ACM, because ACM has the body which has
the distinction of the belly and the back[6]. Thus we have
introduced differential equations extended from Frenet-Serret
equations of a spatial curve, and called the solution as ”dorsal
reference curve” and applied it to the study of ACM[7][8][9].
A dorsal reference curve is a natural representation of an
elongate body, in fact the same idea was introduced for the
study of elastica in the field of physics in 19th century[10].

A dorsal reference curve is explained by analogy of a
track of an air plane (Fig. 4(a)). First we consider a vector
c = (x(s), y(s), z(s)) as the position of the plane. s is a
length of the track, and s = 0 means the starting point. An
orthogonal frame (er(s), ep(s), ey(s)) is considered as the
posture of the plane, and er(s) (roll axis) is a unit vector
facing the moving direction of the plane, ep(s) (pitch axis)
is a unit vector facing to the direction of the left wing, and
ey(s) (yaw axis) is a unit vector facing to the direction of
the vertical tail.

The plane has an aileron, an elevator, and a rudder so we
introduce 3 functions τ (s), κp(s) and κy(s) as the rotational
velocity of rolling, pitching, and yawing motion respectively.
We think these function means the difference of rotational
angle [rad] when the plane travels for a unit length. Now the
track of the plane is calculated by following equations[7][8].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dc(s)
ds

= er(s)
der(s)
ds

= κy(s)ep(s) −κp(s)ey(s)
dep(s)
ds

= −κy(s)er(s) +τ (s)ey(s)
dey(s)
ds

= κp(s)er(s) −τ (s)ep(s)

(1)

If the position (c(0)) and the posture (er(0), ep(0), ey(0))
at the starting point (s = 0) and τ (s), κp(s), κy(s) are given,
the position (c(s)) and the posture (er(s), ep(s), ey(s)) on
the track are obtained as the solution of (1). Fig. 4(b) shows
a visualized image of a solution.

Now we consider the starting point of the track as the
head (or tail) of an ACM, and consider c(s) as the position
of the body, and consider (er(s), ep(s), ey(s)) as the posture
of the body. Thus we can translate the track to the shape of
the ACM. We call the set of c(s) and (er(s), ep(s), ey(s))
a ”dorsal reference curve”, because its shape (Fig. 4(b))
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Fig. 4. A dorsal reference curve

reminds us a slender fish that has a dorsal fin. In addition
we call τ (s), κp(s), κy(s) shape functions.

B. Approximation of a link model

We have proposed a method to approximate a dorsal
reference curve by an ACM composed of straight links (here
we call it straight link model), in which the joint angles of
the straight link model are calculated by integrating the shape
functions (see [5] for the detail). For example, we think a
straight link model which is composed of links with the same
length, and the links are alternatively connected by yawing
joints and pitching joints (Fig. 5). This straight link model
doesn’t have rolling joint, so it can approximate only dorsal
reference curves with τ (s) = 0. In that method, the joint
angles are calculated as following.

θp,i =
∫ l·(i+1)

l·(i−1)

κp(l · i)ds (2)

θy,i =
∫ l·(i+1)

l·(i−1)

κy(l · i)ds (3)

Here θp,i, θy,i are a pitching angle and yawing angle of the
i-th joint respectively, and l is the length of a link. However,
we consider θy,i = 0 if the i-th joint is pitching joint, and
vice versa. In addition we think that there is a virtual joint
(0th joint) at the tip, and κp(s) = κy(s) = 0 at s < 0.
Fig. 6 shows the approximation results of a serpenoid, which
expresses the shape of serpentine movement of a snake, and
spatial spiral. The shape functions of the serpenoid are given
as follows:

κp(s) = 0, κy(s) =
2πα
L

sin(
2π
L
s) (4)

In this paper α = π/3, and L is the same with the total length
of a model. The functions of a spiral are as follows[8]:

κp(s) = −κc sin(τcs)
κy(s) = κc cos(τcs) (5)

We set κc = 12/Lt, τc = 3.6/Lt in this paper, where Lt is
the total length of a model.

We use the following function to evaluate the error of
approximations[5].

Enm =

∫ Lt

0
‖ c(s) − cd(s) ‖ ds

L2
t

(6)
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Fig. 5. A typical structure of a straight link model

cd(s) is a vector of the position of a model to evaluate
such as a straight link model or an arc-shaped joint model
or a double joint model. Enm means a ratio of average
distance between 2 models to Lt. Thus if we set the same
starting position and posture for both model, the better the
approximation becomes, the smaller Enm becomes.

The principle of this method is explained using an example
of a planar curve (a curve with τ (s) = κp(s) = 0) as follows:
First, we define 2 functions as follows:

φy(s) ≡
∫ s

0

κy(s)ds (7)

φly(s) ≡
floor(s/l)∑

i=0

θy,i (8)

floor(x) is floor function, that means the largest integer not
greater than x. φy(s) means the angle between er(0) and
the tangential vector of the curve at s, and φly(s) means
the angle between er(0) and the link of the straight link
model at s. Therefore if φy(s) and φly(s) become close, the
shapes of both models become similar. When we use (3),
φly(s) becomes a function that approximate φy(s) by steps
as shown in Fig. 6(c), so the straight link model approximates
the curve. Even in case of 3D curve we can define the same
kind of functions as (7) and (8) for each shape functions,
and we obtained the fact that this approach is available even
in the case of 3D curve through numerical simulation.

III. APPROXIMATION OF AN ARC-SHAPED JOINT
MODEL

A. A planar model

First, we discuss the way to approximate a planar curve
by an arc-shaped joint model. We introduce a function which
means the sum of bending angles as follows:

φay(s) ≡
m∑

i=0

θay,i +
(s− la ·m)

la
θay,m+1 (9)

where m = floor(s/la) (10)

Here θay,i is the bending angle of i-th arc-shaped joint, and
la is the length of a joint. We think there is a virtual arc-
shaped joint with length 0 at s = 0, and its angle is θay,0.
The graph of φay(s) becomes a line graph, and the tangent
of each line is θay,i/la. When we set the starting point of
a planar curve and an arc-shaped joint model as the same,
φay(s) means the angle between er(0) and the tangential
vector of the arc-shaped joint model at s.

We expect an arc-shaped joint model would approximate
a planar curve when φay(s) becomes close to φy(s) as
the result of a straight link model. We investigated various
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Fig. 6. Approximations by a straight link model

calculation rules by trial and error, and the following method
was the best.

The process of this method is divided to 3 steps. At the
first step, we calculate θay,i that makes φay(s) as the same
with φy(s) at s = lc(1− p), lcp, lc(1+ p), · · · , lc(n− 1+ p),
and save it as θa

ay,i. At the second step, we calculate θay,i

that makes φay(s) as the same with φy(s) at s = lc(n− 1+
p), lc(n−p), lc(n−1−p), · · · , lc(1−p), and save it as θb

ay,i.
At the third step, we decide θay,i as the average of θa

ay,i and
θb

ay,i. The actual calculation is as follows.
First step:

θa
ay,1 =

1
2p− 1

∫ plc

(1−p)lc

κ(s)ds (11)

θa
ay,i =

1
p

{∫ (i−1+p)lc

(i−2+p)lc

κ(s)ds− θa
ay,i−1(1 − p)

}

· · · (i = 2, 3, · · · , n) (12)

θa
ay,0 =

∫ (1−p)lc

0

κ(s)ds− (1 − p)θa
ay,1 (13)

Where p is a parameter (0.5 < p ≤ 1), and n is the total
number of arc-shaped joints.

Second step:

θb
ay,n =

1
2p− 1

∫ (n−1+p)lc

(n−p)lc

κ(s)ds (14)

θb
ay,i =

1
p

{∫ (i+1−p)lc

(i−p)lc

κ(s)ds− θb
ay,i+1(1 − p)

}

· · · (i = n− 1, n− 2, · · · , 1) (15)

θb
ay,0 =

∫ (1−p)lc

0

κ(s)ds− (1 − p)θb
ay,1 (16)
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Third step:

θay,i = (θa
ay,i + θb

ay,i)/2 (17)

Parameter p has a large influence on the approximation,
and we conclude p = 0.789 is appropriate from numerical
simulations. Fig. 7(a) shows the approximation of serpenoid
of (4), and the error (Enm) is only 1/4 of that of a straight
link model in Fig. 6(a). In this case φay(s) becomes suc-
cessfully close to φy(s) as shown in Fig. 7(c).

B. 3D arc-shaped joint model

We apply the method in former section to a 3D arc-shaped
joint model, which is composed of arc-shaped joints bending
to 2 directions at the same time as shown in Fig. 8. When we
define θa,i as bending angle and ψa,i as direction of bending,
the difference of the frame is obtained as follows:⎛
⎝ ear(si+1)

eap(si+1)
eay(si+1)

⎞
⎠ = Er(−ψa,i)Ep(θa,i)Er(ψa,i)

⎛
⎝ ear(si)

eap(si)
eay(si)

⎞
⎠

(18)
Er(x) and Ep(x) are defined as follows:

Er(x) =

⎛
⎝ 1 0 0

0 cosx sinx
0 − sin x cosx

⎞
⎠ (19)

Ep(x) =

⎛
⎝ cosx 0 − sin x

0 1 0
sinx 0 cosx

⎞
⎠ (20)

Now we define the pitching angle and yawing angle of an

Fig. 8. The shape of a 3D arc-shaped joint

arc-shaped joint in Fig. 8 as follows:

θap,i = θa,i cosψa,i (21)
θay,i = θa,i sinψa,i (22)

In approximation of a dorsal reference curve with τ (s) =
0, we calculate θap,i and θay,i by (11) ∼ (17) (θap,i is
calculated by replacing the suffix ”y” to ”p”). Fig. 7(b) shows
the approximation of spiral of (5) (The dorsal fin in Fig. 7(b)
is omitted for the ease to see, but the dorsal fin of the arc-
shaped joint model is also close to that of the dorsal reference
curve). In addition we confirmed that this method is available
for other curves .

IV. APPROXMATION OF A DOUBLE JOINT
MODEL

In the study of double joints for ACM, we have noticed an
interesting similarity of double joints and arc-shaped joints.
This similarity enables us to apply the approximation method
described in Section III directly to a double joint model.

Now we consider a double joint on a plane as shown in
Fig. 9(a). The total length of the joint is 1 and the length
of links of both ends is Rs. When the bending angle of the
joint is θ, the position of the end of the joint is obtained as
follows:

xd(θ) = (1 − 2Rs) cos
θ

2
+Rs(1 + cos θ) (23)

yd(θ) = (1 − 2Rs) sin
θ

2
+Rs sin θ (24)

Then we consider an arc-shaped joint whose length is 1 and
bending angle is θ as shown in Fig. 9(b). The position of its
end is obtained as follows:

xa(θ) =
sin θ
θ

(25)

ya(θ) =
1 − cos θ

θ
(26)

Fig. 10 shows the positions of the ends of both models in
case of Rs = 0.18. It is interesting the distance between both
ends is less than 1% of the total length when we set Rs at
1.6 ∼ 1.8 and −π/2 < θ < π/2. Thanks to this fact we
can apply the approximation method of an arc-shaped joint
model to a double joint model.

However, for a 3D model, the joint angle of a double
joint should be calculated by inverse kinematics. Now we
are going to replace an arc-shaped joint shown in Fig. 8
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Fig. 9. The position of the tip of a joint

by a double joint shown in Fig. 11. We consider a vector
u = uxear(si)+uyeap(si)+uzeay(si) as a direction vector
of the central link of the double joint. When the order of
rotating axes of the double joint is as the same with Fig. 2
(that is, yaw, pitch, pitch, yaw), u is expressed as follows:

ux = cos(θdp,i/2) cos(θdy,i/2) (27)
uy = cos(θdp,i/2) sin(θdy,i/2) (28)
uz = − sin(θdp,i/2) (29)

Here θdp,i, θdy,i are pitching and yawing angle of the i-th
double joint respectively. On the other hand, u should be
the tangential vector of the middle of arc-shaped joint, so
the following equation should be true.

ux = cos(θa,i/2) (30)
uy = sin(θa,i/2) sinψa,i (31)
uz = − sin(θa,i/2) cosψa,i (32)

Then the following equation is derived from (29), (32), (21),
(22).

θdp,i = 2 sin−1{sin(θa,i/2) cosψa,i}
= 2 sin−1

{
sin(θa,i/2)

θap,i

θa,i

}
(33)

In addition the following equation is derived from (29), (32),
(21), (22).

θdy,i = 2 sin−1

{
sin(θa,i/2) sinψa,i

1
cos(θdp,i/2)

}

= 2 sin−1

{
sin(θa,i/2)

θay,i

θa,i

1
cos(θdp,i/2)

}
(34)

The approximation by a double joint model is conducted
by calculating the angles of an arc-shaped joint model with
method in Section III and using (33), (34). Fig. 12 shows
the approximation of serpenoid (4) and spiral (5). The error
is larger than that of the arc-shaped joint model, but smaller
than that of the straight link model.

V. EXPERIMENT

A. Structure of a robot ”ACM-L2”

We verified the proposed method by experiments with a
robot ”ACM-L2”[4], which was composed of double joints.
Table I shows the specification of ACM-L2. The length of
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Fig. 10. Comparison of the tips of an arc-shaped joint and a double joint
(Rs = 0.18)

Fig. 11. Direction of the center link of a double joint

each joint is 78 mm and the length of central link is 50mm,
so Rs in (23) is 0.18.

The control system is composed of a PC which generates
the motion of the whole body, and microcomputers which
control the angles of each joints. The PC program deals with
the shape functions of a dorsal reference curve as arrays,
and generates the motion of the curve. The shape of the
dorsal reference curve is converted to joint angles by the
proposed method in the PC, and the angles are transmitted
to microcomputers. The microcomputers received the target
joint angles and conduct position control of each joint.

B. Results of Experiments

We conducted an experiment of ”sinus-lifting”. Sinus-
lifting is a locomotion style of a snake, in which the snake
lifts its body around the most bending parts during serpentine
movement. It was clarified sinus-lifting prevents side slip of
the body and improves efficiency of motion[1][9]. The shape
of sinus-lifting is expressed by a dorsal reference curve as
follows:

κp(s) =
2π
La

(
−c0 cos

4π
La
s+ c1

)
(35)

κy(s) =
2π
La
α sin

2π
La
s (36)

Here La is wavelength, c0 is a parameter related to the height
of lifted parts, and c1 is a parameter to compensate the shape
(the curve tends to leave a level surface without c1). As the
result of numerical simulations, we decided the appropriate
value of c1 as follows:

c1 = −(0.043 ∗ α4 + 0.105 ∗ α2)c0 (37)
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TABLE I
SPECIFICATIONS OF ACM-L2

Size (L, W, H) Weight DOF Max.torque Joint angle
800, 50, 50 [mm] 0.99 kg 18 0.5 N·m -75∼75 deg

Fig. 13 shows the dorsal reference curve at α = 5π/12,
c0 = 0.3, c1 = −0.092.

In this experiment, we put thin plastic plates covered
with fluoride resin tape on the belly of ACM-L2 to imitate
the smooth belly scales of a snake. Fig. 14 shows the
experimental result when the robot approximated the shape
of Fig. 13. It successfully travelled on artificial turf with
velocity of 75mm/s, and it is 71% of the speed when the
robot moves without slip. These scenes are contained in the
attached video. The velocity of normal lateral undulation
(with c0 = 0) was 55 mm/s with the same condition, so
the results shows sinus-lifting was conducted successfully.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a method of approximations
to continuous curves of Active Cord Mechanism (ACM)
composed of arc-shaped joints. We also discuss the similarity
between an arc-shaped joint and a double joint, and proposed
a method of approximations to continuous curves of ACM
with double joints. The proposed method was verified by
experiments of serpentine movement of a snake-like robot
with double joints, and it successfully travelled with velocity
of 75mm/s using sinus-lifting. This result shows the proposed
method is available to generate smooth motion of ACM.

Projected view

Fig. 13. A dorsal reference curve representing sinus-lifting

0sec

1sec

2sec

3sec

100mm

Fig. 14. The experiment of sinus-lifting

ACM composed of arc-shaped joints or double joints is
closer to a curve than typical robots composed of straight
links. At the present such kind of ACM is not major, however
if a high-performance arc-shaped joint or double joint is
realized, the ability of ACM will improve significantly.
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