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Abstract— Bayesian Occupancy Filtering is an alternative
to classical object tracking. Instead of estimating the state
of objects in the environment, the latter is separated into
equidistant cells. Tracking the occupancy state of these grid-
cells is sufficient for many applications in robotics and cell-
measurements can be easily produced from almost any kind of
sensor. In [6] a sophisticated occupancy filter named BOFUM
(Bayesian Occupancy Tracking using prior Map Knowledge)
is introduced, which is able to infer velocities solely from
occupancy measurements. It also features an advanced process
model with motion uncertainty, which can be specialized
for different application needs. In this paper we present an
approach for recursively applying importance sampling (IS) to
approximate the BOFUM calculations. The approach is similar
to well known particle filters, but for a discrete cell perspective.
In our experiments we achieved a speedup of at least 40-
times by using the IS, thus making the algorithm applicable
in real-world applications. We evaluate the consequences of
approximation in an urban traffic scenario and also show the
drawbacks of sampling.

I. INTRODUCTION

Many applications in robotics demand to build a com-
prehensive model of the real world. Due to incomplete and
uncertain perception this turned to one of the key problems
in robotics. Especially when dealing with unknown and
high numbers of objects, standard approaches, which track
objects explicitly, are limited. They have to match object
measurements to objects in the state space. When considering
all combinations of observations and tracks, the cost of
calculation grows exponentially over time with the number
of objects. Besides the immense effort that has to be taken
to solve the data association problem when many objects
are present, every object tracking algorithm needs object
detection. This is a requirement that cannot be met in many
fields of application and for many types of sensors, especially
not when regarding the need for a comprehensive environ-
ment model. E.g. in the automotive application presented
in this work, we only need a segmentation into free and
obstacle space. Grid-based occupancy tracking circumvents
suchlike problems, as it simplifies the classical object and
track concepts. There is no direct association of measure-
ments and objects. Occupancy measurements only need to be
matched to cells, whose positions are certain. Additionally
the problem of birth and death of objects is solved implicitly.

The concepts explained here are not constrained to
robotics. It is e.g. possible to track toxin flow in the sea
for an environmental application with derived filters. In [6]
a dynamic occupancy tracker called BOFUM has been intro-
duced, which is able to infer the occupancy’s velocity. Thus it
is able to predict and track moving traffic participants without
ever measuring their velocities or detecting the objects as
such. Fig. 2 illustrates the importance of this capability. A
screenshot of the tracker applied to laser scanner data is given
in fig. 1. Uncertainty in the nonlinear motion model is also
modeled (see fig 5b), which makes the filter a well suited
base for several robotics tasks like motion planning.

Fig. 1: BOFUM estimation. Measurements are created by the
shown Lidar-Scan. Occupancy probability is green.

A shortcoming of this approach is its highly demanding
calculation. The complexity of one filter step lies in O(n2)
for n cells, as all cell combinations have to be evaluated.
This equals a complexity of O(r4), when using a square cell
field with r rows and columns. Nevertheless the filter’s phys-
ically motivated process model employing an OR-Relation
for the combination of occupancy from different cells (see
fig. 5a) favors the application of Monte Carlo methods.
In this paper we show how to exploit this by deriving a
proposal density for recursive importance sampling (IS).
The resulting approach is comparable with Sequential Monte
Carlo methods also known as particle filters. One difference
in the application of IS is that BOFUM does not essentially
need to approximate the posterior, as it could be calculated
completely due to its discrete nature. Even so, the filter
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Fig. 2: Example demonstrating the necessity for correct
velocity inference in motion planning. The image on the left
shows what happens when the object dynamics are ignored.
The autonomous car is surprised by the cyclist coming out
of the occlusion. In the right image the autonomous car is
able to brake, because it does predict the cyclists motion,
even though it is uncertain.

formulation puts itself forward to this kind of calculation
speedup. Due to sampling, calculation time no longer directly
depends on the grid dimensions, but on the number of
samples. The number of necessary samples depends on the
variance of the posterior and not on the dimension of the
state space [8]. Therefore it is only important how dense the
occupation of the space is. This makes three-dimensional
occupancy grids possible, because i.e. in aeronautics only
small parts of the sky are occupied.

II. RELATED WORK

A. Grid Represenation and Occupancy Filtering

Probabilistic occupancy grids [4], [9] are well-known
structures for the description of robot environments and sen-
sor fusion. The space is divided equally in a finite number of
rectangular cells on a 2-dimensional plane. Every cell defines
a distribution over its possible states, either being occupied
or not. To prevent a combinatorial explosion of possible grid
configurations in the joint probability distribution, cell states
are assumed to be independent from each other. This allows
cells to be updated and predicted independently. Their ease
of handling and interpretation have made occupancy grids
a widely used form of environment representation. They
have been successfully applied in the field of mapping and
SLAM [13]. Classical occupancy grids are well suited for
static environments but are unable to cope with dynamic
situations. This nuisance led to the development of dynamic
occupancy filters. The work of Prassler et al [10] can be seen
as a direct pre-stage of these filters, as they use occupancy
grid methods to generate object motion hypotheses. A first
attempt to extend occupancy grids with dynamics was done
in [5], where the 2-D occupancy grid was extended to a
4-D occupancy grid. Hence measured occupancy had to
be associated with a position and speed, which implicitly
involves velocity measurements. In [2] a 2-D grid with
an additional velocity distribution for each cell was used,
making speed sensors optional. This paper builds on BOFUM

[6]. Its process model made the velocity not a property
of the cell, but of the occupancy inside the cell. The cell
grid is here only used as checkerboard, where occupancy
can move on. In [1] adaptive motion models were used,
by adding movement types in form of object groups as a
property of the occupancy in cells. This enables the Bayesian
Occupancy Filter using Groups (BOFUG) to infer object
classes solely from occupancy measurements. Fig. 3 shows
a group estimation result.

(a) Camera image of the scene

(b) Filter Estimation

Fig. 3: BOFUG object group estimation. The camera’s field
of view is illustrated by the cone. Occupancy classified as
car is red. The pedestrian occupancy is blue. (See [1])

B. Monte Carlo Simulation

Monte Carlo simulations usually aim at drawing samples
or approximating properties of a random variable. E.g. the
expectation often cannot be calculated analytically, because
the so called target density p(x) is too complex. It is however
possible to evaluate p for any sample xi. There are many
different techniques of how to draw samples, which are more
or less sophisticated. A good overview of various sampling
methods and their features is given in [8] and [7]. In this
work we concentrate on importance sampling (IS), which
weights samples drawn from a proposal density Q to preserve
the expectation. Sequential Monte Carlo methods (SMC) are
very popular for classical target tracking and also known
as particle filters. Basically they recursively apply IS to
approximate an expected object state in a continuous space,
even if the process or measurement model are non-linear
[3], [12]. Those methods are closely related to the approach
presented in this paper, due to methodical similarities. Rao-
Blackwellized particle filters close the gap to multiple object
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tracking by approximating the data-association as well as the
birth and death of tracks with SMCs [11].

III. BAYESIAN OCCUPANCY FILTER USING PRIOR MAP
KNOWLEDGE (BOFUM)

The original occupancy grid algorithms are not sufficient
for usage in highly dynamic environments like e.g. traffic
scenarios. Propagation models for the occupancy in every
grid cell are completely independent in those formulations
and moving objects hence can not be described. The BOF
approach in [2] extends the state space by the velocity of
the occupancy to implement a model of constant speed. The
BOFUM algorithm introduced a physically motivated transi-
tion model, which further enhances prediction [6]. The huge
shortcoming of these dynamic approaches is though, that
they square the problem complexity. In opposition to static
grids, here combinations of all cells have to be considered
for transitions.

A. State Representation

The discrete state space resembles the original BOFUM
definitions in [6]:
N : Set containing all n cell indices. The quadratic 2-

dimensional cell grid has dimension
√
n×
√
n.

N = {1, . . . , n}

O : Vector for occupancy of all cells. If there is at least
one object inside the cell boundaries it is declared
as ‘occupied‘, else as ‘not occupied‘.

O =

 O1

...
On

 ∈ {occ, nocc}n

V : Vector of velocities in x and y- direction. Vi =
(ẋi, ẏi) is discretized in cells per timestep ∆t.
Those are the velocities of the occupancy inside
the cell, not the velocity of the cell itself. For that
reason the velocity distribution of an empty cell
carries no information.

V =

 V1

...
Vn

 ∈ {Z× Z}n

X: Combination of occupancy and velocity. Hence, it
covers all time variant information about the cells
at time t.

X = (O, V )

X−: Combined state at time t− 1.

X− = (O−, V −)

R: Matrix describing whether cell c can be reached
from cell a. This information is gained with the
help of background knowledge about the current
position of the cell grid and map information.
Generation of the R matrix is described in [6].

R ∈ {reach, nreach}n×n

T : Transition vector. The transition for a cell Ti equals
j, if the occupancy in cell i moves to cell j during
the next time-step ∆t. The transition subsumes
velocity, reachability and any other knowledge
given about the cell movement. This abstraction
allows a flexible integration of context information.

T =

 T1

...
Tn

 ∈ Nn

Z: The measurement vector, which includes sensor
measurements for every cell. As there is no veloc-
ity sensor in the example implementation of this
work, the ZV part of Z will be omitted.

Z = (ZO, ZV ),
ZO ∈ {occ, nocc}n,
ZV ∈ {Z× Z}n

B. Filter Model and Derivation

In this paper we are not able to explain the BOFUM
equations and their origin in full detail. We recommend [6]
for a comprehensive description. However, we recall the most
important facts in the following.

BOFUM is a classical recursive Bayes Filter and thus
separable in a correction and prediction step. It applies the
markov assumption for the time-discrete states: A state is
supposed to depend only on its preceding state. We derive
the filter from the joint composition of all state variables by
decomposition:

P (X,X−, R, T, Z) =
∏
c∈N

P (Xc, X
−, R, T )︸ ︷︷ ︸

Prediction

P (Zc|Xc)︸ ︷︷ ︸
Correction

,

where P (Zc|Xc) specifies the observation model. The pre-
diction is decomposed in the following way:

P (Xc, X
−, R, T ) = P (X−, R, T )P (Xc|X−, R, T ) =∏

i∈N

(O−i )
∏
j∈N

P (Tj , V
−, R)P (Oc|O−, T )P (Vc|O−, T )

These probability distributions form the BOFUM base. Fig. 4
shows in an overview the conditional dependencies of all
variables in form of a Bayesian Network Graph. V̂c is the
expected velocity for cell c and used as an interim variable.
For more information see section III-B.2.

While the observation model is straight forward and only
minor important with respect to IS, especially the prediction
and transition models are noteworthy.

V −

R

Z

V̂

OO−

T V

Fig. 4: BOFUM Bayesian Network Graph
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1) Occupancy Prediction Model: The combination of cell
occupancy is done via disjunction. In former approaches
like [2] cell propagations were conditionally independent.
Occupancy was therefore combined by averaging. Thereby
an occupied cell and an empty cell cancel each other out
rather than resulting in an occupied cell. Disjunction guar-
antees that occupancy moves over empty ground, without
being influenced by empty cells. Regarding the sampling this
enables us to ignore not-occupied cells during calculation.
See fig. 5a for a quick motivation. The lower cells in
the sketch do not influence the result of the calculation.
This statement can be roughly generalized for uncertain
occupancy, as the contribution of a cell to the result of
a successor cell directly depends on the cell’s occupancy.
Apparently it is not completely true, because other occupancy
propagated to the target cell reduces a cells influence.

P (Oc = occ|O−, T )

=

{
1, ∨a∈N ((Oa = occ) ∧ (Ta = c))
0, else

= 1− P (Oc = nocc|O−, T )

A target cell c, given a single antecedent cell a, is occupied,
if the transition of a equals c and a itself was occupied.

P (Oc = occ|O−a , Ta) =

{
1, (Oa = occ) ∧ (Ta = c)
0, else

2) Velocity Prediction Model: Prediction of velocity
works similar. Again, only occupied antecedent cells a with
transition index c affect the velocity of the target cell c.
As the velocity is assumed to be certain in spatial terms, there
is only one antecedent cell for every velocity that can fulfill
the requirements. That is why the conditional distribution of
the velocity expectation P (V̂ ) can be defined as follows:

P (V̂c = v(a, c)|O−, T ) = P (Oc = occ|O−a , Ta)

The helper function v : N × N → Z × Z is used to
formulate this concept. It maps a cell index combination to
a corresponding velocity.

Uncertainty in acceleration is applied in a separate step
after the velocity inference. It subsumes all prediction errors,
including the discretization error. This is essential for the
filter, otherwise measurements could not be linked to the
prediction after unforeseen motions (see fig. 5b). We assume
that the error has the characteristics of Gaussian white noise.

vc = v̂c + w∆t with w ∼ N (0,Σ)

3) Transition Model: The model for cell transitions, i.e.
the model describing the possibility of occupancy movement.
This model realizes the principle of occupancy preservation,
which states that occupancy has to move somewhere and
thus can neither spontaneously arise nor disappear. Therefore
the coefficient µa normalizes over all target cells c of every

(a) Occupancy Combination (b) Acceleration Uncertainty

Fig. 5: Sketches on the combination and prediction of
occupancy movements in BOFUM.

antecedent a.

P (Ta = c, V −, R)

=
P (Ta = c, V −a , Ra,1, . . . , Ra,n)∑

m∈N P (Ta = m,V −a , Ra,1, . . . , Ra,n)
= µaP (V −a )P (Ra,c)P (Ta = c|V −a , Ra,c)

The conditional dependency formulates that the cells must at
the same time be reachable and fit to the occupancy’s speed.

P (Ta = c|V −a , Ra,c) =

{
1, V −a = v(a, c) ∧Ra,c = reach
0, else

C. Exact Filter Calculation

Calculation of the posterior is done by marginalization.

P (Xc|Z) =

∑
X−,R,T P (Xc, X

−, R, T, Z)∑
X−,R,T,Xc

P (Xc, X−, R, T, Z)

∝
∑

X−,R,T

P (Xc, X
−, R, T, Z)

Using the previously presented decomposition, the main
stages Prediction and Correction can be identified. As a third
stage, the Transition calculation is isolated from the rest of
the Prediction.∑

O−,V −,R,T

P (Xc, X
−, R, T, Z) = P (Zc|Oc)︸ ︷︷ ︸

Correction

=

∑
O−,V −,R,T

P (V −, R, T )︸ ︷︷ ︸
Transition

P (O−)P (Oc|O−, T )P (Vc|O−, T )

︸ ︷︷ ︸
Prediction

1) Transition Calculation: The transition is calculated
in advance, as both the occupancy and velocity prediction
depend on it (see fig. 4). This is especially true when
applying IS, where the true distribution is approximated
through a particle distribution. Exhaustive calculation is done
by the following equation:

P (T = t) = (1)∏
a∈N

µaP (V −a = v(a, ta))P (Ra,ta
= reach) (2)
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2) Velocity Prediction: The interim velocity distribution
is inferred with this equation:

P (V̂c = v(a, c)) = (3)∑
O−,T

P (O−)P (T )P (V̂c = v(a, c)|O−, T ) (4)

Finally noise is added to the inferred velocity V̂ :

P (Vc) =
∑
V̂c

P (Vc|V̂c)P (V̂c) (5)

3) Occupancy Prediction: The exact occupation probabil-
ity of a cell is calculated as follows:

P (Oc = occ) (6)
= 1− P (Oc = nocc) (7)

= 1−
∏
a∈N

(
1− P (O−a = occ)P (Ta = c)

)
(8)

IV. BOFUM IMPORTANCE SAMPLING

A. Theory

Direct application of importance sampling to the joint cell
space is not reasonable, so we concentrate on a single cell
view. This is admissible because occupancy transitions are
mostly independent from each other. Accordingly P samples
are defined as cell transitions:

〈a(L), c(L)〉, L ∈ {1, . . . , P}.

The original aim of the occupancy combination is to model,
that objects move over empty ground rather than mixing
with it. As a side effect cells which are not occupied do
not carry any worthy information for the prediction (besides
the absence of occupancy), because they cannot influence the
prediction results. Omitting the calculation of not-occupied
cells does therefore not worsen the filter-result. Similar
considerations can be made for the velocity distribution of
occupancy inside of cells. This implies that a proper proposal
density q should be proportional to the cell’s occupancy and
velocity probability. The combination of antecedent a(L) and
target cell c(L) is thus drawn from the following proposal
density:

〈a(L), c(L)〉 ∼ q(a(L), c(L)) =
P (V −

a(L) = v(a(L), c(L)))P (O−
a(L) = occ)

W. l. o. g. we consider in the following only samples 〈a, cL)〉
with the antecedent a. To model the principle of occupancy
preservation, the BOFUM filter step normalizes over all
target cells with the normalizing constant µa (refer to (2)):

P (Ta = c) = µa P (V −a = v(a, c))P (Ra,c = reach)

According to IS, samples have to be weighted with the
division w′ = p/q of target density p and proposal q to
compensate the biased drawing:

w′(L) =
P (Ta = c(L))
q(a, c(L))

=
µaP (Ra,c(L) = reach)

P (O−a = occ)

Thus the time-consuming calculation of P (V −a = v(a, c)),
basically an approximation of an integration over several
bivariate Gaussian distributions, can be omitted as we can di-
rectly draw from the Gaussian distribution (see equation (5)).
The obligatory normalization over all samples 〈a, c(M)〉
eliminates the normalization coefficient µa of the occupancy
preservation:

w(L) =
P (Ta = c(L))∑
M P (Ta = c(M))

Since we only consider samples with antecedent a the a priori
occupancy probability P (O−a = occ) is for all the same and
therefore left out. It only influences the sampling density of
the antecedents not their weights. Particle weighting for the
transition approximation results in the following equation:

w(L) =
P (Ra,c(L) = reach)∑

〈a,c(M)〉 P (Ra,c(M) = reach)

= µ′aP (Ra,c(L) = reach)

Hence as weighting factor only the reachability remains. The
proposal density can be improved by additionally sampling
from the reachability. In our implementation this is not
reasonable, since the calculation of the complete R matrix
is computationally demanding.

We deduce the noise-free velocity V̂ from the approxi-
mated transition according to (4):

P (V̂c(L) = v(a, c(L))) = P (O−a = occ) w(L)

P (V̂c) equals zero, if no appropriate transition sample was
drawn. For the occupancy prediction (8) we can proceed
analogously and reuse the previously evaluated velocity
prediction:

P (Oc = occ)

= 1−
∏
a∈N

(
1− P

(
V̂c(L) = v(a, c(L))

))
At first sight it might be impractical to choose a proposal
density proportional to the cell-occupancy when approximat-
ing the transition, because the a priori occupancy has no
impact on the transition result at all. However, with respect
to approximating the a posteriori velocity and occupancy this
choice is straight forward. It raises the sample density in
regions, that have high impact on the expectation calculation
of the posterior. Thus the approximation quality is improved.

While the proposal density leads to an optimal approxima-
tion for velocity inference – when noticing that reachability
and measurement can due to their nature not be incorporated
in the sampling process – this is not true for occupancy
inference. The conditional dependency between transitions
in form of the OR-relation prevents that. It is however the
best starting density, when not sampling from the complex
joint distribution and has the inevitable advantage of reusing
the velocity result as is.
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V. EXPERIMENTS

In this section we will first show the effects of the IS
approximation on the filter result in a worst case scenario.
This gives a clue about the minimal number of samples
needed to obtain appropriate approximation results. Second
an analysis for a recorded traffic scene is done, to show
the hazards and chances of approximation in real world
applications. Finally a short runtime overview is given to
demonstrate the benefits of the sampling algorithm.

A. Worst Case Analysis

This experiment is meant to reveal the lower boundary
for the sampling density. Note that it is actually not the
worst case, but a very unfavorable prior, that will never be
deceeded in reality. The grid size is 30 × 30 and contains
cells of 1 m width. The initial occupancy distribution in this
experiment is uniform and thus unfavorable regarding the
sampling strategy. Interaction between different transitions
occurs very often, which lowers the quality of the proposal
density, because it assumes independent transitions (cf. IV-
A). Additionally the a priori velocity distributions have a
standard deviation of 4 m

s2 . The filtering frequency is 1 Hz,
thus the high variance spreads the occupancy very far over
the grid in one timestep. High variance of the proposal
density naturally raises the need for more samples.

The results of the experiments in fig. 6 demonstrate the
weaknesses of sampling algorithms. The correct calculation
only needs to pursue 810,000 cell transitions. Even when
using the ridiculous high number of 10 million samples, one
can see approximation errors. Here the exact calculation is
superior to the approximation in terms of speed, because it
calculates every cell combination only once. Practically the
result for 1 million samples is already usable. This shows
that the sampling works even in bad conditions nearly as
well as the complete calculation. The flattened borders form,
because there is no occupancy movement originating outside
the grid.

B. Real Case Analysis

In the worst case analysis IS is indeed slower for a
reasonable number of particles. In real scenarios however,
it goes strong. The experiment in fig. 7 demonstrates its
qualities: Here a 80 × 80 is used to filter measurements
from a Lidar Velodyne HDL-64E 360◦ laser scanner. The cell
width is chosen to be practically usable 0.5 meters. To obtain
the exact result of a filter step, one would have to calculate
41 million cell transitions. The sampling algorithm creates
very good results with only 1 million sample transitions.
Because the runtime is approximately proportional to the
number of samples, we conclude that in this scenario IS
is at least 40-times faster than the exact calculation. When
defining usability by still recognizing all objects, even 105

samples are sufficient. This can be exemplarily seen for the
very small cyclist on the left side of the scene. Very low
numbers of samples however suffer from noise in occluded
and therefore highly uncertain areas. Sampling allows to arbi-
trarily shift between exactness and sampling time according

(a) Exact calculation

(b) 107 samples (c) 106 samples

(d) 105 samples (e) 104 samples

Fig. 6: Prediction results for the approximation in a worst
case scenario. The calculation time for this experiment is
shown in figure 8. Note that the scale is magnified to make
the errors better visible.

to one’s requirements. For an application aiming at 10 Hz
a grid resolution of 160 × 160 is realistic, when using the
current implementation.

C. Runtime and Speedup

The runtime analysis for both the worst and real case
discussed above is shown in fig. 8 in percents of the exact
worst case runtime. The latter needs about 50 milliseconds
using an Intel R© CoreTM i7 920 based computer. The results
were measured by counting the CPU cycles to eliminate
external factors. Calculation effort for the approximation
scales almost linear with the number of samples even for
extreme sample numbers. The complexity of the algorithm
is no longer quadratic to the number of cells, but depends
on the amount of occupancy in a scene and the variance
of its velocities. Advantages due to the simpler nature of
the approximated calculation cannot be seen in these results.
An efficient method for approximating Gaussian integrals
equalizes this disadvantage of the exact calculation.

VI. CONCLUSION

In this paper we presented an efficient method for approxi-
mative grid based occupancy tracking. We utilize importance
sampling to tremendously cut down calculation time for
prediction and thus make BOFUM real-time capable. The
speedup due to the approximation totals more than 4000%
compared to the exact calculation time in our experiment.
It also allows to adaptively trade off speed and accuracy
according to the application’s needs, thereby providing any-
time characteristics. Additionally the independent sampling
procedure allows to easily parallelize the filtering.
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(a) Measurement (b) 3-D Laserscan of the cyclist

(c) 106 samples (d) 105 samples (e) 104 samples

Fig. 7: A posteriori estimation of BOFUM for different sam-
ple counts for real measurements. The cyclist is highlighted
by the yellow ellipse.

Fig. 8: Average cpu cycles for one predict step calculation
in the worst case and real case scenario shown in fig. 6 and
7 for different numbers of samples. The results are given in
percent of the worst case cycle number.

Further we are working on a combination of the tracks
concept used in target tracking and the cell-based occupancy
concept. In our opinion fusing the rather sensor independent
BOFUM with object specific estimations, that are able to
integrate very specific object knowledge, is the way to go.
Therefore we try to integrate BOFUM in a sophisticated
multi hypothesis tracking (MHT). Recent research has shown
that the inference of different object classes is possible on
occupancy level, solely by using multiple transition models
[1]. Only modest changes to BOFUM were needed to make
it automatically segment the environment into different occu-
pancy groups. Thanks to the sampling technique presented
in this paper performance does not decrease, although the
state space grows proportional to the number of groups. This
is due to the orthogonal nature, the different group motion
models were chosen from. The target tracking algorithm will

be integrated in a similar manner.
Thus we think that Bayesian Occupancy Filtering provides

an outstanding platform for comprehensive environment es-
timation and prediction using several different sensors as
information source.
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