
Learning Physically-Instantiated Game Play Through Visual Observation

Andrei Barbu, Siddharth Narayanaswamy, and Jeffrey Mark Siskind

Abstract— We present an integrated vision and robotic sys-
tem that plays, and learns to play, simple physically-instantiated
board games that are variants of TIC TAC TOE and HEXA-
PAWN. We employ novel custom vision and robotic hardware
designed specifically for this learning task. The game rules can
be parametrically specified. Two independent computational
agents alternate playing the two opponents with the shared vi-
sion and robotic hardware, using pre-specified rule sets. A third
independent computational agent, sharing the same hardware,
learns the game rules solely by observing the physical play,
without access to the pre-specified rule set, using inductive logic
programming with minimal background knowledge possessed
by human children. The vision component of our integrated
system reliably detects the position of the board in the image
and reconstructs the game state after every move, from a
single image. The robotic component reliably moves pieces both
between board positions and to and from off-board positions
as needed by an arbitrary parametrically-specified legal-move
generator. Thus the rules of games learned solely by observing
physical play can drive further physical play. We demonstrate
our system learning to play six different games.

I. INTRODUCTION

Children learn to play games by watching others play.
While both formal board games, like CHESS, CHECKERS,
and BACKGAMMON, and less formal play like HOPSCOTCH,
TAG, and DODGEBALL all have well defined rules that
children ultimately come to know, they are rarely told those
rules explicitly. Knowledge of how to play many classic
board games is largely passed down culturally, with chil-
dren never reading, and often even explicitly ignoring, the
formally-specified rules (e.g., Monopoly R©). We are engaged
in a long-term research effort to emulate on robots this
ability to learn to play games by observing others play. The
work presented here is part of a larger effort to ground
learning, reasoning, and language in visual perception and
motor control. Physical instantiation is crucial to our effort of
situating learning, visual perception, and manipulation in the
real world. We want physical robots to play a physical game
where knowledge of game play allows their vision systems to
determine game progress and motor systems to effect game
progress. We also want a physical learner to visually observe
that play to learn the game rules and ultimately be able to
use the learned rules to support physical game play.

Our long-term vision for this overall task is depicted in
Fig. 1. In this task, two robotic agents, the protagonist
and antagonist, play a board game like CHESS. A third
robotic agent, the wannabe, does not know the rules of
the game but must infer the rules by visually observing

The authors are with the School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN, 47907, USA
{abarbu,snarayan,qobi}@purdue.edu

the play of the protagonist and antagonist. The wannabe
must then use these rules for further physically-instantiated
play. In the long term, we wish to be able to do this for
a wide variety of off-the-shelf game hardware for a wide
variety of common physically-instantiated board games. Our
objective is to learn to play legally, not necessarily well.
Expert computer game play is one of the most extensively
studied and successful sub-disciplines of AI. Our goal is
orthogonal to that enterprise.

We have constructed a novel custom robot to support this
enterprise, and have used this robot to successfully learn six
different physically-instantiated games. While one long-term
goal is to learn a wide variety of common board games,
like CHESS, CHECKERS, BACKGAMMON, and GO, with
differing physical game hardware, the work presented in
this paper is limited to games which share the same game
hardware. And while another long-term goal is to use three
separate robotic agents to play the roles of protagonist,
antagonist, and wannabe, the work presented here uses a
single robot to play all three roles. We do however, use a
unique capability of our novel custom robot to simulate play
by multiple distinct agents by robotically moving the camera
to image the game play from different viewpoints.

II. OUR CUSTOM ROBOT

We have designed a custom robot and built three copies
thereof, one of which is shown in Fig. 2. While much
of our robot is constructed with off-the-shelf parts, many
crucial parts were custom designed, milled, or repurposed to
meet the particular needs of the game-playing task. The two
most-novel parts are the overall housing and camera-mount
assembly. The overall housing consists of a two-level wood
platform, where the upper level constitutes the game-play
surface and the lower level serves as the mounting point for
the camera assembly. A 5 DOF arm with two independently-
controllable fingers, is bolted to the upper level. The size of
the overall housing and the arm link lengths were designed
to support game play with off-the-shelf game hardware.

Our robot hand contains a number of sensors to support
fine motor control for manipulating game pieces: a palm-
mounted camera, an ultrasonic range sensor, a laser pointer,
and tactile force sensors on each fingertip. The camera as-
sembly consists of a pair of pan-tilt USB webcams mounted
on a 1 DOF pendulum arm which is in turn mounted on
a servo base bolted to the lower level. We found Logitech
QuickCam Orbit cameras well-suited to our task, as we were
able to strip them down to a lightweight assembly containing
the camera, pan-tilt motors, and electronics, allowing them to
be mounted on the pendulum arm. This allows them to pivot,

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 1879

protagonist

plays−→
CHESS

plays←−
antagonist

↑watches

wannabe

=⇒
protagonist

plays−→
CHESS

plays←−
wannabe

antagonist

Fig. 1. Learning physically-instantiated game play through visual observation. Two robotic agents, the protagonist and antagonist, play a board game
like CHESS. A third robotic agent, the wannabe, does not know the rules of the game but must infer the rules by visually observing the play of the
protagonist and antagonist. The wannabe must then use these rules for further physically-instantiated play.

under computer control, 180◦ around the center of the game-
play surface and affords a binocular view of the whole game
board through the entire pivot range. We have conducted
experiments both where the pendulum head mount is fixed
throughout game play, imaging the game-play surface from
a single viewpoint shared by the protagonist, antagonist,
and wannabe and also where we pivot the camera under
computer control to have the three agents view the game
from different viewpoints.

III. THE SPACE OF GAMES CONSIDERED
For reasons to be discussed momentarily, our games share

common physical game hardware consisting of an off-the-
shelf TIC TAC TOE set (see Fig. 2). This particular game
hardware simplifies the necessary robotic manipulation in
several ways. First, the fact that the board positions are de-
pressions makes piece placement somewhat self correcting.
Second, the piece size is well matched to our manipulator.
The game hardware also simplifies the process of finding
board positions while reconstructing symbolic game states
from visual input. In addition to the board, we have caches
for storing off-board game pieces that are not in play. Since
the off-the-shelf TIC TAC TOE set did not include such,
we constructed our own that contain self-correcting circular
depressions of the same size as the board.

Our long-term objective is to be able to learn any typical
board game such as CHESS, CHECKERS, BACKGAMMON,
GO, STRATEGO, R© etc. Such a wide variety of games would
require more-general perceptual and motor abilities than we
have implemented. We wish to leverage our implemented
perceptual and motor abilities as much as possible yet verify
the generality of our overall approach by evaluating its ability
to learn a variety of games. Thus we have chosen a collection
of six simple games that can all be played with the same
physical game hardware, robotic hardware, and perceptual
and motor software. Two, TIC TAC TOE and HEXAPAWN1

[1], are commonly-known games, while the remaining four
are minor variants of HEXAPAWN. We summarize these
variants below:
Variant A Non-capturing moves are forward along the di-

agonal instead of straight ahead.

1On a 3×3 board, three white pieces start on one edge and three black
pieces start on the opposite edge. Pieces move and capture like CHESS
pawns without en passant or initial two-square moves. Players win by
queening and lose when unable to move.

Fig. 2. One of our three novel custom robots designed specifically to
support play of physically-instantiated board games. Note the 5 DOF arm
with two independently-controllable fingers mounted on the upper level of
a two-level housing that serves as the game-play surface. Also note the
binocular pan-tilt cameras mounted on a pendulum arm that can pivot 180◦
around the game-play surface by being mounted on the lower level of the
housing.

Variant B Variant A augmented with backward diagonal
non-capturing moves.

Variant C HEXAPAWN allowing backward vertical non-
capturing moves.

Variant D Variant C augmented with sideways non-
capturing moves.

Our system contains a generic game-playing engine that
is parameterized by a game specification containing an ini-
tial board configuration, legal-move generator, and outcome
predicate. It accepts game specifications coded in either
SCHEME, PROLOG (see Fig. 5), or a subset of English (see
Fig. 3). Specifications in any of these three forms can be used
to drive physical game play where the robot (Fig. 2) alter-
nates play between X and O and determines the game state
by visual observation of the physical game between each
move, optionally moving the pendulum arm to determine
the game state from different viewpoints for the different
players. We provide hand-coded game specifications, in any
of the forms, to the protagonist and antagonist to generate
the training set for the wannabe, which does not have access
to these hand-coded specifications. The learning component,

1880

Every cache square for every player in the initial
state has some piece of that player.

A player moves by moving some piece of that player from
some cache square for that player to some empty board
square.

A player wins when every square in some row has some
piece of that player.
A player wins when every square in some column has some
piece of that player.
A player wins when every square in some diagonal has
some piece of that player.

A player draws when no player wins and that player has
no move.

Fig. 3. As demonstrated in the video on our website,2 our system is able
to play a physically-instantiated board game given rule specifications, such
as these for TIC TAC TOE, in a subset of English.

to be described in Section VI, can learn game specifications
in PROLOG for all of the above six games from visual obser-
vation of physical game play which can then be used to drive
new physical game play. While our game-playing engine also
supports optimal play via minimax game-tree search with
alpha-beta pruning, optimal play does not facilitate learning
of games rules as many situations necessary to learn the
complete rule set do not arise, particularly for learning the
outcome predicate in deterministic games. Thus for learning
we employ random legal play.

IV. GAME-STATE RECONSTRUCTION

Physically-instantiated game play requires recovery of the
game state from visual information, which nominally is a
two-stage process. First, one must determine the world state,
i.e., the shapes and positions of various pieces and board
regions. Then, one must map this world-state information
into game states. The former process is nominally a game-
independent general-vision task of scene reconstruction and
may incorporate camera calibration, segmentation, object
recognition, metric reconstruction, and pose estimation. The
latter process requires game-specific knowledge to determine
which features of the reconstructed scene are relevant to the
particular game being played. For example, in some games,
like CHESS and CHECKERS, pieces are placed between
edges, while in others, like GO, pieces are placed on edges.
In the longer term, we intend to learn such game-specific
knowledge of how world states map to game states along
with the initial board configuration, legal-move generator,
and outcome predicate. In this paper, we restrict consider-
ation to games played with the particular game hardware
discussed in Section III where all games use the same hard-
coded mapping from world state to game state. Thus we
conflate the two-stage process into a direct mapping from
images to game states.

We employ two different game-state reconstruction meth-
ods. Our older method calibrates the reconstruction process
prior to game play by determining the image regions that
correspond to board positions using the ellipse detector
(cvFitEllipse) in OPENCV [2] constrained to find a
3× 3 grid. The content (empty, X, or O) of each elliptical
board position during game play is determined by detecting

Os as smaller ellipses and Xs as the absence of any ellipse.
We make this process highly robust by sampling the ellipse-
detector output at multiple thresholds and voting on the out-
come. This method, however, is suitable only for a stationary
head position because the ellipse detector is highly sensitive
to the small changes in camera viewpoint that result when
moving the head camera to a different position and back
again.

Our newer game-state reconstruction method works even
when the head camera moves to view the game-play surface
from the perspective of different agents. Prior to game play,
we calibrate the reconstruction process independently for
each viewpoint by finding the image regions that correspond
to board positions by dilating and thresholding the raw color
image, finding connected components in the resulting binary
image, and filtering the results under critical-point detection
constrained to find a 3× 3 grid. Critical-point detection is
an iterative process on the convex hull of the centroids
of the connected components, finding and removing the
bottom-most three-element row of connected components
from the collection of connected components in each of three
iterations and recomputing the convex hull. We also calibrate
color templates for the possible position states (empty, X, and
O), from each viewpoint, prior to game play, by computing
mean and covariance measures of HSV representations of
sampled pixels from board positions with known states and
classify unknown position states during game play using
Mahalanobis distance.

We improve the robustness of both methods by enhancing
the contrast of the circular depressions on the game board
with white inserts to highlight the edges. With this, the older
game-state reconstruction process is sufficiently robust that it
made only two errors in the approximately 2000 reconstruc-
tions performed during the 62 games played autonomously
for the experiments reported in this paper. As both occurred
during the cleanup at the end of the training sequence, they
did not impact the correctness of learning or subsequent
physical play with the learned rules. The newer game-
state reconstruction process is also sufficiently robust to
complete an entire training regimen for TIC TAC TOE while
varying the camera viewpoint for each agent (approximately
200 reconstructions in all) without any errors and supports
learning a sound and complete game-rule specification.

While the cognitive portion of game play relies solely
on the game state represented in the 3× 3 grid of board
positions, the robotic portion of game play requires knowing
the positions of off-board pieces in the caches. We currently
do not determine those positions from visual input and rely
on properties of the particular robotic manipulation strategy
discussed in Section V that allow inferring the positions of
off-board pieces from the observed game state.

V. RULE-INDEPENDENT PIECE MANIPULATION

Physically-instantiated game play also requires robotic
ability to effect the desired changes in the physical game
state. This also nominally can be divided into a two-stage
process. First, one must determine the necessary changes

1881

in the world state that correspond to the desired changes
in the game state, i.e., a legal move. Then, one must
effect that change to the world state. The latter process is
again nominally a game-independent robotic manipulation
task which may incorporate forward and inverse kinematics,
grasp planning, and path planning. The former process,
however, requires game-specific knowledge, essentially the
inverse of the game-specific knowledge needed for game-
state reconstruction from visual input. Like before, we re-
strict consideration to games played with the particular game
hardware discussed in Section III but do not conflate this into
a single-stage process.

Our legal-move generator is formulated as a mapping from
old game states to new game states. We formulate a generic
method, particular to our class of games played on a 3× 3
grid but applicable to any game in that class, that finds a
minimal number of pick up and put down operations to effect
the target change in the physical game state. Such operations
may move pieces between two board positions, or between
the caches and the board. In the case of the latter, we assume
that game rules do not constrain the choice of cache location
for any particular legal move and treat each cache as a last-in-
first-out stack, one on one side for Xs and on the other for Os.
This stack behavior is what allows indirect inference of the
positions of off-board pieces from the observed game state
without direct visual observation. We also have a generic
“clean up” capability that can return all pieces to a state
that corresponds to an arbitrary (but learned) initial board
configuration. This allows completely autonomous robotic
play of a sequence of games to provide training data for the
learner and evaluate autonomous play with the learned rules.

The above constitutes the first stage of the two-stage
process, namely mapping from target game-state changes to
world-state changes. Again, we employ two different meth-
ods for the second stage, namely affecting the desired change
to the world state by picking up and putting down pieces. The
older method uses an open-loop dead-reckoning process. We
hard-code the 3D world coordinates of the board and cache
positions for our robots and employ inverse kinematics to
determine a sequence of joint-angle configurations to effect
a desired pick up or put down operation, parameterized by
a specific board or cache position. The nature of board-
game play allows straightforward planning of a collision-free
path by approaching board and cache positions from above.
Restriction of the game hardware to a particular piece set
means that we can hard-code the grasp planning for each
piece type. This is implemented by providing the pick up
or put down operations with piece type as an additional
parameter, derived visually. Our newer method improves
upon the older method by automatically determining the 3D
world coordinates of the board positions given a 3D model of
the board together with visually-determined board pose. Such
board-pose determination requires camera calibration, which
is done automatically. Our newer method also automatically
determines the parameters of the inverse kinematics via train-
ing on a fiducial. Finally, it augments the open-loop dead-
reckoning process, now used only for coarse motor control,

with a closed-loop visual-servoing process employing the
palm camera and tactile sensors to implement the fine motor
control for grasping the playing pieces.

We improve the robustness of both of the above methods
by using visual feedback to confirm the success of a desired
pick up or put down operation and compensating upon fail-
ure. Our combined vision and robotic-manipulation systems
are sufficiently robust that the approximately 2000 pick up
and put down operations during autonomous play of the 62
games for the experiments reported in this paper required
fewer than 20 human interventions to correct robotic errors.

VI. LEARNING GAME RULES BY ILP

We employ inductive logic programming (ILP) with
PROGOL [3] to learn perspicuous PROLOG specifications
for the game rules from autonomous physically-instantiated
game play. We currently do this on a single robot that plays
all three roles of protagonist, antagonist, and wannabe,
taking care not to allow information flow that could not
happen if this were done on three distinct robots. The
protagonist and antagonist autonomously play a sequence
of random but legal games, at least six for TIC TAC TOE and
at least ten for HEXAPAWN and its variants. As discussed
earlier, we do not train on optimal play because this does
not provide sufficient information to infer the game rules.
Furthermore, games ending in a draw do not contribute to
learning the outcome predicate and hence are ignored. Thus
when randomly-generated training games end in a draw,
additional games are played until a requisite number of non-
draw games have been collected.

Each game starts with the robot autonomously setting
up the physical game hardware to correspond to the initial
board configuration, given an image of the current world
state, which for any game in the training set but the first,
contains pieces remaining on the board from the previous
game. The protagonist and antagonist then alternate play
by taking an image to determine the current game state
(which is not stored from the previous turn), selecting a
random desired next state from the legal-move generator,
planning a sequence of pick up and put down operations
to effect that move, and executing those operations on the
robot. Independent from this, the wannabe takes an image
between each turn to determine the sequence of game states
corresponding to a game and is given the outcome of the
game at each turn, which may indicate that the game is not
yet over. We conduct such autonomous game play both with
a stationary head camera as well as a moving head camera
to image the game from different viewpoints for each agent.
The only communication between the three agents is the
labeling of the outcome at each turn as well as the turn-
taking coordination that informs each agent of the transition
time between game states.

Upon completion of the autonomous training play,
the wannabe formulates the training set as input to
PROGOL in the following form. A game state is formulated
as a 3 × 3 matrix. Each game is formulated as a fact
initial_board(G,P), followed by alternating facts

1882

legal_move(P,G1,G2) and outcome(P,G,O) for
each turn, where G denotes a game-state matrix, P denotes
a player, either X or O, and O denotes a win by either
X or O. Note that we provide an outcome training fact
for all moves, negated for moves that do not end in
a win, which provides negative evidence for learning
the outcome predicate. We then use PROGOL to learn
definitions for initial_board/2, legal_move/3,
and outcome/3. To facilitate learning, we augment the
training data with the background knowledge in Fig. 4.
This background knowledge is the same for all six games
discussed in Section III. Much of it encodes general
elementary physical and mathematical properties known by
almost all children, such as arithmetic (inc/2, dec/2,
row_to_int/2, and col_to_int/2), the concept
of a line (linear_test/7 and linear_obj/3),
and the frame axiom (replace/4, frame/4, and
frame_obj/6). Some (player/1, opponent/2,
piece/1, empty/1, owns/2, win_outcome/1,
owns_outcome/2, owns_piece/2, row/1, col/1,
board/1, ref/3, at/4, and at/5) encode knowledge
about the mapping between world state and game state which
we currently do not learn but anticipate learning in the future.
The remainder (forward/3 and sideways/2) encode
combinations of that mapping with general spatial-relation
knowledge known by almost all children. To drastically
reduce the learning time, we use a non-generative version of
at/4 (with cuts) while learning the legal-move generator.

During training, we first learn both the initial board
configuration and the legal-move generator with the back-
ground knowledge from Fig. 4. Then, to learn the outcome
predicate, we augment the training set and the background
knowledge with the learned legal-move generator, along with
two predicates, has_move/2 and has_no_move/2, that
access that learned legal-move generator. Furthermore, due
to significant overlap in coverage of the clauses generated by
PROGOL for the outcome predicate, we replace PROGOL’s
internal redundancy algorithm with one that searches for
a minimal subset of the candidate clauses that covers the
training set. Finally, to drastically reduce the learning time,
we replace the definition of the frame axiom with one that
is vacuously true while training the outcome predicate.

VII. RESULTS

Our system can learn the rules of all six games discussed
in Section III from autonomous physically-instantiated play
by robotic agents using the methods discussed. The learned
game rules for TIC TAC TOE and HEXAPAWN are given in
Fig. 5. From simulated non-robotic play, we have determined
that six training examples are almost always sufficient in
practice to correctly determine the game rules for TIC TAC
TOE (ten for HEXAPAWN and its variants). Due to the
fact that we train on random legal play, it is possible but
unlikely that the training set can be pathological and contain
a skewed mix of the possible game situations which can
lead to incorrect generalization. Furthermore, random play
can make it unlikely to observe the specific events that are

necessary to learn certain aspects of the rules, such as the
requirement in HEXAPAWN that players lose when unable
to move. We have determined, from simulated non-robotic
play, that losing in this fashion occurs with high probability
among a sample of ten games but not six.

We have set up a website2 that contains videos that
demonstrate the full autonomously-played training set for
each of the six games as well as subsequent autonomous
play using each of the six sets of learned game rules.
These video sequences were gathered with a fixed head-
camera position and our older game-state-reconstruction and
robotic-manipulation methods, where the protagonist and
antagonist play the training set with rules specified in
SCHEME and then the protagonist and wannabe play with
the learned PROLOG rules (Fig. 5). The website also contains
a video gathered with head-camera position varying for each
of the agents and our newer game-state-reconstruction and
robotic-manipulation methods, where the protagonist and
antagonist play the training set with rules specified in a
subset of English (Fig. 3) and then the protagonist and
wannabe play with the learned PROLOG rules (Fig. 5). This
website also contains the full source code for our system as
well as engineering drawings for the design of our custom
robot and cache hardware allowing others to replicate and
build upon our work.

VIII. COMPARISON WITH RELATED WORK

On the surface, it might appear that our work resembles
that of the general game playing community in that we both
share the goal of ‘learning to play’ games [4], [5]. Deeper
inspection, however, reveals that the apparent similarity is
misleading. Our work aims to learn to play legally; their work
aims to learn to play well. In more-technical terms, we take a
sequence of exemplar game-play instances as input and pro-
duce a game-rule description (in the form of an initial board
configuration, legal-move generator, and outcome predicate),
as output. They take such a game-rule description as input
and produce a strategy as output. That strategy might take
the form of a static evaluator or heuristic function. As such,
we are addressing complementary problems. An interesting
opportunity for future work would be to cascade the two
into a unified system that learns to play both legally and
well from exemplar game-play instances. Indeed, such an
endeavor is facilitated by the fact that the general-game-
playing community has adopted a standard game description
language (GDL) [6] for inputting the game rules to their
learning systems. Fortuitously, GDL is virtually identical to
the PROLOG game-rule specifications output by our system.

Our work involves three components: game-rule learning,
game-state reconstruction from visual input, and robotic
manipulation of board-game hardware. We know of no other
work that integrates all three of these. However, there has
been some work that addresses each of these components
individually.

2http://www.ece.purdue.edu/˜qobi/icra2010

1883

A. Game-Rule Learning

We have found surprisingly little prior work on learning
game rules from example game play. Michalski and Negri
[7] employed ILP to learn a static evaluator for CHESS
endgames. However, this constitutes learning to play (only
part of the game) well, not legally. Levinson [8] formulated
the task of learning a legal-move generator for TIC TAC
TOE and HEXAPAWN as reinforcement learning, but it un-
fortunately does not usually converge to the correct result.
Furthermore, the legal-move generator is not represented in
a perspicuous human-readable format. In the above work,
the game-play examples are provided symbolically, and not
derived from visual input. A far as learning game rules from
visual examples of game play, our efforts are most similar
to those of Needham et al. [9]–[11] and Antanas et al. [12].
The former line of work processes bird’s-eye view video of
several simple games (PAPER SCISSORS STONE played with
cards and three variants of SNAP, two played with cards
and one played with dice) to produce a categorical symbolic
representation of the exemplar game-state sequences and then
uses ILP to learn the rules of these games. Note that the size
of the game state in this work is small, (3×3×2)2 = 324 for
the card-based games and 72 = 49 for dice SNAP. In contrast,
the size of the game state for our games is significantly
larger, 39. Moreover, the rules of our games are signifi-
cantly more complex than theirs. Dice SNAP is specified
with PROLOG rules with at most four variables and three
goals. The PROLOG rules for the card-game specifications
require at most seven variables and three goals. Moreover,
in both of these systems, the rules contain numerous ground
terms produced by the perceptual system (e.g., rollboth,
rollone, pickuplowest, tex0, tex1, tex2, pos0,
pos1, pos2), indicating tabular encoding of the rules with
little conceptual generalization. In contrast, as can be seen
in Fig. 5, the rules of our games have as many as fifteen
variables and thirteen goals, and contain no ground terms
other than the x, o, none, and player x that appear
in the initial board configuration, indicating significantly
greater conceptual generalization in the legal-move generator
and outcome predicate. They use essentially no background
knowledge that is comparable to the background notions in
our work: arithmetic, the concept of a line, spatial relations,
and the frame axiom.

The above line of work, like ours, first processes the
perceptual input to yield categorical symbolic descriptions
that serve as the input to a purely symbolic learning process.
Like ours, this pipeline is brittle in the face of errors
in categorical perception. They report accuracy levels in
categorical perception between 83% and 100% for dice
SNAP but not those for their card games. Moreover, they
report that errors in categorical perception lead to errors
in game-rule learning: We are learning from small amounts
of data which is locally sparse thus a classification error
may make up a significant amount of the data used to form
generalisation. This may seem very fragile;. Of the nine
experiments reported (three runs for each of the three games),

only one experiment yielded a sound and complete game-
rule specification. In contrast, our game-state-reconstruction
front end is sufficiently robust to support learning sound and
complete game-rule specifications for all six of our games.
Moreover, discussing the above line of work [13] Muggleton
states a key challenge will be to push the system to learn
more difficult things. “It would be interesting to see if this
approach will scale up to more complex games such as
noughts-and-crosses [. . .]” he adds. Our work does just that.

Antanas et al. [12] report a method for learning a subset of
UNO where the categorical output of game-state reconstruc-
tion is replaced with soft evidence that is then processed
by probabilistic ILP. However, they expressly disregard the
softness of that evidence in the experiments that they report.
Moreover, they report only approximately 95% accuracy on
noise-free training data and less than 90% accuracy on noisy
training data. And even when trained on noise-free data,
their method produces a probabilistic game-rule specification
that places 9% of the probability mass on incorrect game
rules. Nonetheless, we consider this a promising approach to
support robust learning of game rules despite noisy game-
state reconstruction.

B. Game-State Reconstruction from Visual Input

Some prior work processes game-board images from a
bird’s-eye view while other work, like ours, processes game-
board images from the perspective of a typical human player.
Shiba and Mori [14] present a method for recovering the
perimeter of a GO board from a single human-view image
but do not attempt to recover piece positions or game state.
Ren et al. [15] present a method for recovering the perimeter
of a game board from a bird’s-eye-view image sequence and
then recover piece positions relative to this perimeter. Their
method applies to an arbitrary rectangular board but they do
not report using piece position to reconstruct game state and
do not report accuracy. Hirsimäki [16] presents a method
for recovering GO-board states from human-view images.
However, they only report testing their method on six images,
out of which it only succeeds in recovering the correct game
state on four. Kang et al. [17] present a method for recovering
a sequence of GO-game moves from bird’s-eye-view image
sequences. However, they do not report any quantitative
evaluation of game-state reconstruction accuracy. Torre et
al. [18] present a method for recovering a sequence of
CHECKER-game moves from human-view image sequences
of games played on a game board with a known geometric
model. However, they report neither qualitative nor quantita-
tive assessment of game-state reconstruction accuracy. Scher
et al. [19] present a method for recovering a sequence of GO-
game moves from human-view image sequences. A novel
aspect of this work is that they improve upon the purely
vision-based game-state reconstruction by incorporating the
rules of GO as constraints. Without such constraint, their
reconstruction accuracy is extremely poor: a total of 650
piece classification errors out of 265 moves. Even adding
the game-rule constraints only reduces the number of piece
classification errors on this data set to 25. Note that these

1884

numbers constitute errors in recognizing the presence or
absence of a black or white stone at individual positions,
not the aggregate whole-game-state recognition accuracy,
which would be significantly lower. Seewald [20] presents a
method for recovering game states from human-view images
of GO boards with a reported whole-game-state recognition
accuracy of 72.7%. In contrast, we recover game moves from
human-view image sequences with only two erroneously
reconstructed game states out of approximately 2000. We are
unaware of any prior work that achieves anywhere near this
level of accuracy. Such performance is crucial for accurately
learning game rules. Moreover, we cannot avail ourselves of
the technique employed by Scher et al. as the wannabe does
not yet know the game rules.

C. Robotic Manipulation of Board-Game Hardware
The robotic ability to manipulate board-game pieces by

dead reckoning is straightforward and commonplace, and
there have been attempts to integrate such ability with
automated board-game play based on visual perception of
game states and piece positions [21]–[23]. However, we are
unaware of any prior work that reports such a combined
sensorimotor game-play system that achieves the level of
robustness needed for fully-automated play of a training
set that is sufficiently large to support game-rule learning.
Indeed, despite the fact that they use a bird’s-eye-view
camera together with a vacuum grip to pick up TRAX tiles,
alleviating the need for fine motor control, Bailey et al. [22]
state At present, the robot is a little clumsy, frequently placing
tiles slightly over the top of other tiles.

Furthermore, an important aspect of our work is the way
our robot was designed specifically to support game-rule
learning. While our robot uses a common 5 DOF arm, this
arm is mounted in a novel environment. We know of no prior
robot that incorporates our two-level housing design and its
associated pendulum head mount. Moreover, we know of no
prior attempt to model multi-agent robotic board-game-play
systems by automatically changing the camera view by such
robotic means to model each agent. Our combined vision
and robotic system is sufficiently robust not only to support
game-state reconstruction and game-piece manipulation from
varying camera views, it can do so even with the imaging
variation due to inherent inaccuracy in repeated attempts to
move the head camera to the same position.

IX. CONCLUSION
We have presented the first integration of vision, robotics,

and game-rule learning in the realm of board-game play. Our
work is also a significant advance over prior independent
work in each of these areas. The richness of board-game play
allows for an open-ended research program investigating per-
ceptual and motor grounding of natural language, reasoning,
and learning yet its circumscribed nature allows for robust
incremental progress.

X. ACKNOWLEDGMENTS
This work was supported, in part, by NSF grant CCF-

0438806. Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of NSF.

REFERENCES

[1] M. Gardner, “Mathematical games,” Scientific American, Mar. 1962.
[2] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with

the OpenCV Library. O’Reilly Press, Oct. 2008.
[3] S. Muggleton, “Inverse entailment and Progol,” New Generation

Computing, Special issue on Inductive Logic Programming, vol. 13,
no. 3-4, pp. 245–286, 1995.

[4] S. Schiffel and M. Thielscher, “Fluxplayer: a successful general game
player,” in Proceedings of the 22nd National Conference on Artificial
intelligence, 2007, pp. 1191–1196.

[5] J. Clune, “Heuristic evaluation functions for general game playing,” in
Proceedings of the 22nd National Conference on Artificial intelligence,
2007, pp. 1134–1139.

[6] M. Genesereth and N. Love, “General game playing: Game descrip-
tion language specification,” Computer Science Department, Stanford
University, Stanford, CA, USA, Tech. Rep., 2005.

[7] R. S. Michalski and P. Negri, “An experiment on inductive learning in
chess end games,” in Machine Intelligence 8, E. Elcock and D. Michie,
Eds. New York: Horwood, 1977, pp. 175–192.

[8] R. Levinson, “General game-playing and reinforcement learning,”
University of California at Santa Cruz, Santa Cruz, CA, USA, Tech.
Rep., 1995.

[9] D. R. Magee, C. J. Needham, P. E. Santos, A. G. Cohn, and D. C.
Hogg, “Autonomous learning for a cognitive agent using continuous
models and inductive logic programming from audio-visual input,” in
Proceedings of the AAAI Workshop on Anchoring Symbols to Sensor
Data, 2004.

[10] C. J. Needham, P. E. Santos, D. R. Magee, V. Devin, D. C. Hogg,
and A. G. Cohn, “Protocols from perceptual observations,” Artificial
Intelligence, vol. 167, pp. 103–136, 2005.

[11] P. E. Santos, S. Colton, and D. R. Magee, “Predictive and descriptive
approaches to learning game rules from vision data,” in IBERAMIA-
SBIA, 2006, pp. 349–359.

[12] L.-A. Antanas, I. Thon, M. van Otterlo, N. Landwehr, and L. De Raedt,
“Probabilistic logical sequence learning for video,” in Inductive Logic
Programming, Jul. 2009.

[13] W. Knight, “Machine learns games ‘like a human’,” New Scientist,
2005. [Online]. Available: http://www.newscientist.com/article/dn6914

[14] K. Shiba and K. Mori, “Detection of Go-board contour in real image
using genetic algorithm,” in SICE Annual Conference, vol. 3, Aug.
2004, pp. 2754–2759.

[15] J. R. Peter, P. Astheimer, and I. Marshall, “A general framework for
vision based interactive board games,” in 4th Annual European GAME-
ON Conference, 2003.

[16] T. Hirsimäki, “Gocam: Extracting Go game positions from pho-
tographs,” Helsinki University of Technology, Helsinki, Finland, Tech.
Rep., 2005.

[17] D. C. Kang, H. J. Kim, and K. H. Jung, “Automatic extraction of game
record from TV Baduk program,” in The 7th International Conference
on Advanced Communication Technology, vol. 2, 2005, pp. 1185–
1188.

[18] R. Torre, P. Fua, S. Balcisoy, M. Ponder, and D. Thalmann, “Inter-
action between real and virtual humans: Playing Checkers,” in Proc.
Eurographics Workshop on Virtual Environments, 2000.

[19] S. Scher, R. Crabb, and J. Davis, “Making real games virtual: Tracking
board game pieces,” in 19th International Conference on Pattern
Recognition, Dec. 2008, pp. 1–4.

[20] A. Seewald, “Automatic extraction of Go game positions from im-
ages: An application of machine learning to image mining,” Seewald
Solutions, Tech. Rep., 2007.

[21] B. Marsh, C. Brown, T. LeBlanc, M. Scott, T. Becker, C. Quiroz,
P. Das, and J. Karlsson, “The Rochester Checkers player: Multimodel
parallel programming for animate vision,” Computer, vol. 25, no. 2,
pp. 12–19, 1992.

[22] D. G. Bailey, K. A. Mercer, and C. Plaw, “Autonomous game playing
robot,” in 2nd International Conference on Autonomous Robots and
Agents, 2004.

[23] José Gonçalves and José Lima and Paulo Leitõ, “Chess robot sys-
tem: A multi-disciplinary experience in automation,” in 9th Spanish
Portuguese Congress On Electrical Engineering, 2005.

1885

inc(X,Y):-Y is X+1.

dec(X,Y):-Y is X-1.

player(player_x).
player(player_o).

opponent(player_x,player_o).
opponent(player_o,player_x).

piece(x).
piece(o).
piece(none).

empty(none).

owns(player_x,x).
owns(player_o,o).

win_outcome(x_wins).
win_outcome(o_wins).

owns_outcome(player_x,x_wins).
owns_outcome(player_o,o_wins).

owns_piece(x_wins,x).
owns_piece(o_wins,o).

row(r0).
row(r1).
row(r2).

col(c0).
col(c1).
col(c2).

row_to_int(r0,0).
row_to_int(r1,1).
row_to_int(r2,2).

col_to_int(c0,0).
col_to_int(c1,1).
col_to_int(c2,2).

board([[A,B,C],[D,E,F],[G,H,I]]):-
piece(A),piece(B),piece(C),
piece(D),piece(E),piece(F),
piece(G),piece(H),piece(I).

ref(0,[H|_],H).
ref(0,_,_):-!,fail.
ref(1,[_,B,_],B).
ref(1,_,_):-!,fail.
ref(2,[_,_,C],C).
ref(2,_,_):-!,fail.
ref(I,[H|T],H2):-dec(I,J),ref(J,T,H2).

at(ROW,COLUMN,BOARD,PIECE):-
row_to_int(ROW,RI),
col_to_int(COLUMN,CI),!,
ref(RI,BOARD,L),!,ref(CI,L,PIECE).

at(ROW,COLUMN,BOARD,PIECE,
[ROW,COLUMN,PIECE]):-

at(ROW,COLUMN,BOARD,PIECE).

replace(0,A,[_|T],[A|T]):-!.
replace(0,_,_,_):-!,fail.
replace(1,A,[X,_|T],[X,A|T]):-!.
replace(1,_,_,_):-!,fail.
replace(2,A,[X,Y,_|T],[X,Y,A|T]):-!.
replace(2,_,_,_):-!,fail.
replace(I,H1,[H2|T1],[H2|T2]):-

dec(I,J),replace(J,H1,T1,T2).

frame(RROW,CCOLUMN,BOARD1,BOARD2):-
row(RROW),
col(CCOLUMN),
row_to_int(RROW,ROW),
col_to_int(CCOLUMN,COLUMN),
ref(ROW,BOARD1,L1),
replace(ROW,L2,BOARD1,BOARD3),
replace(COLUMN,ignore,L1,L2),
ref(ROW,BOARD2,L3),
replace(ROW,L4,BOARD2,BOARD3),
replace(COLUMN,ignore,L3,L4),!,
board(BOARD2).

frame_obj([R1,C1,P1],
[R2,C2,P2],
[R1,C1,P3],
[R2,C2,P4],
B1,
B2):-

frame(R1,C1,B1,B3),
at(R1,C1,B1,P1),
at(R2,C2,B1,P2),
frame(R2,C2,B3,B2),
at(R1,C1,B2,P3),
at(R2,C2,B2,P4).

forward(player_x,R1,R2):-
row_to_int(R1,RI1),
inc(RI1,RI2),
row_to_int(R2,RI2).

forward(player_o,R1,R2):-
row_to_int(R1,RI1),
dec(RI1,RI2),
row_to_int(R2,RI2).

sideways(C1,C2):-
col_to_int(C1,CI1),
inc(CI1,CI2),
col_to_int(C2,CI2).

sideways(C1,C2):-
col_to_int(C1,CI1),
dec(CI1,CI2),
col_to_int(C2,CI2).

linear_test(X1,Y1,X2,Y2,X3,Y3,S):-
S is X1*(Y2-Y3)+X2*(Y3-Y1)+

X3*(Y1-Y2).

linear(R1,C1,R2,C2,R3,C3):-
[R1,C1]\=[R2,C2],
[R3,C3]\=[R2,C2],
[R1,C1]\=[R3,C3],
row_to_int(R1,RI1),
row_to_int(R2,RI2),
row_to_int(R3,RI3),
col_to_int(C1,CI1),
col_to_int(C2,CI2),
col_to_int(C3,CI3),
linear_test(RI1,CI1,RI2,

CI2,RI3,CI3,0).

Fig. 4. Background knowledge encoded in PROLOG. PROGOL-specific settings and mode, type, and pruning declarations have been omitted.

TIC TAC TOE HEXAPAWN

initial_board([[none,none,none],
[none,none,none],
[none,none,none]],

player_x).
legal_move(A,B,C) :- owns(A,D),

row(E),
col(F),
at(E,F,B,none,G),
at(E,F,C,D,H),
frame_obj(G,H,G,H,B,C).

outcome(A,B,C) :- owns_piece(C,D),
at(E,F,B,D),
at(G,H,B,D),
at(I,J,B,D),
linear(E,F,G,H,I,J).

initial_board([[x,x,x],
[none,none,none],
[o,o,o]],

player_x).
legal_move(A,B,C) :- row(D),

col(E),
owns(A,F),
empty(G),
forward(A,H,D),
at(H,E,B,F,I),
at(H,E,C,G,J),
at(D,E,B,G,K),
at(D,E,C,F,L),
frame_obj(I,K,J,L,B,C).

legal_move(A,B,C) :- row(D),
col(E), opponent(A,F),
owns(A,G), empty(H),
forward(A,I,D),
owns(F,J),
sideways(E,K),
at(D,K,C,G,L),
at(I,E,B,G,M),
at(I,E,C,H,N),
at(D,K,B,J,O),
frame_obj(L,N,O,M,C,B).

outcome(A,B,C) :- row(D),
opponent(A,E),
forward(E,D,F),
forward(E,F,G),
owns_outcome(E,C),
owns_piece(C,H),
at(G,I,B,H,J).

outcome(A,B,C) :- opponent(A,D),
has_no_move(A,B),
owns_outcome(D,C).

Fig. 5. Rules for two of the six games discussed in Section III learned automatically from visual observation of autonomous physically-instantiated game
play.

1886

