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Abstract— Programming by demonstration is an attractive
model for allowing both experts and non-experts to command
robots’ actions. In this work, we contribute an approach for
learning precise reaching trajectories for robotic manipulators.
We use dimensionality reduction to smooth the example tra-
jectories and transform their representation to a space more
amenable to planning. Key to this approach is the careful
selection of neighboring points within and between trajectories.
This algorithm is capable of creating efficient, collision-free
plans even under typical real-world training conditions such
as incomplete sensor coverage and lack of an environment
model, without imposing additional requirements upon the user
such as constraining the types of example trajectories provided.
Experimental results are presented to validate this approach.

I. INTRODUCTION

Precise reaching and manipulation are important skills for

robots that operate in real-world environments. Assembly-

line robots align pieces of hardware, attach bolts, and weld

seams. Humanoids need to precisely grasp and place objects.

The motions performed by these robots must often be

tediously scripted by a programmer or technician familiar

with the capabilities and limitations of the particular robot

in use.

This work seeks to make it easier for both experienced and

novice robot users to command precise motions by providing

examples. The motions are demonstrated by moving a robotic

arm in passive mode or through a teleoperation interface.

This kinesthetic form of training is intuitive for users, and

it avoids the problem of mismatched models when learning

from methods such as human motion capture.

Demonstration is also attractive because it allows the

human to convey implicitly the location of obstacles (by

avoiding them) and non-geometric constraints. Since these

robots typically operate in sensor-poor environments, it

would be difficult to place a ladar or stereo camera pair in

a position capable of observing the entire workspace of a

high degree of freedom (DOF) dexterous arm, particularly

when accounting for occlusion by the arm itself. Building a

precise model of the workspace by hand is a time-consuming

and error-prone task. However, knowledge of free space can

be inferred from the space occupied by the robot during

kinesthetic demonstrations.

Non-geometric constraints are more subtle, but are also

conveyed by the demonstrated trajectories. For example, the

task may require the robot’s end effector to remain in a

certain orientation throughout execution, or to avoid a portion

of the workspace shared with another robot or human,

even if that area is not currently occupied. Both of these
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Fig. 1. The experimental platform: a Barrett WAM 7-DOF arm navigating
a wire maze.

types of constraints are conveyed implicitly by the human

teacher through demonstrations, and may be incorporated

into learned trajectories.

In this work, we present a method for learning robot ma-

nipulator trajectories from expert or novice demonstrations.

We contribute a neighbor-selection technique for finding

similar sections of demonstrated trajectories without the

parameter selection required for previous methods. Using

dimensionality reduction, we create a task-specific planning

space in which collision-free trajectories may be created,

even without a model of the environment in which the robot

operates. Figure 1 shows the wire maze used in one set

of experiments. Participants were asked to manually move

the robot manipulator to navigate the wire maze, producing

trajectories such as those in figure 5(a). The robot learner

used these examples to produce novel trajectories capable of

navigating the maze from a variety of initial conditions.

II. RELATED WORK

The problem of learning trajectories from examples oc-

cupies an interesting niche between the traditional fields

of motion planning and machine learning. Motion planning

algorithms typically choose actions for the robot to execute

based on knowledge about the environment gathered by

sensors or by some other means. Grid-based planners such

as A∗ and D∗ [1] or randomized sampling-based planners

such as RRT [2] and probabilistic roadmaps [3] all depend

on knowledge of free space that the robot is allowed to

occupy. Whether they use a binary occupancy grid or a

graduated costmap, traditional motion planning techniques
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will not operate directly on the examples provided. Without

an explicit model of the environment in which the robot

operates, obstacles may be conservatively inferred to exist in

any region of the workspace not visited by the robot during

training.

Traditional machine learning techniques tend to be more

appropriate to this domain, but learning can be difficult to

generalize properly. A single trajectory of a 7-DOF robotic

arm may contain hundreds of points in a configuration space

including position, velocity, and perhaps a few other features

of individual points. For example, velocities may need to be

included in the configuration space if dynamic constraints

are to be respected. Providing examples of every area of this

configuration space would be too time-consuming, so the

learning algorithm must generalize examples correctly. With-

out knowledge of obstacles, though, simple approaches such

as k-nearest neighbor can easily generalize too broadly, and

other techniques must be used to correct this [4]. Other work

in Reinforcement Learning [5] seeks to correctly generalize

training examples as much as possible. Rather than drawing

generalizations from individual points, other strategies use

short portions of trajectories as their learning primitives.

Several approaches use an intermediate representation such

as domain-specific primitives [6], basis functions [7], or

various types of splines [8], [9], [10] to improve the fit of

example trajectories. Recent work using Gaussian Mixture

Models has focused on limiting the number of necessary

training examples while ensuring confident execution of

learned behaviors [11], or ensuring correct behaviors even

when online adaptation is required [12]. Another recent

work [13] attempts to learn the cost functions implicitly used

by the human teacher in generating entire examples.

Unfortunately, these approaches typically lack the greatest

strength of the previous category of algorithms: since obsta-

cles are not modelled, no guarantees can be made as to the

safety of a planned path. One method for dealing with this

problem is to present the planned path to a user in a graphical

interface, providing an opportunity to correct or reject the

planned path [14], [10]. Unfortunately, this introduces the

requirement that the environment be precisely modelled.

Another promising approach, provided that collisions are

not catastrophic or costly, allows the user to mark portions

of generated or example trajectories as undesirable [15]

after they are executed. Delson and West [16] introduced

an algorithm that, with certain assumptions, including a

limit of two dimensions, ensured that learned trajectories

would be collision-free. However, their work did not account

for redundant manipulators, and imposed the constraint that

all example trajectories must be homotopically equivalent.

That is, all examples must take the same route between

obstacles. While this is not an arduous restriction in simple

cases, it may be difficult to ensure homotopic equivalence in

environments with more obstacles or in higher dimensional

spaces.

Our approach to safety requires a model of the robot,

but not the environment. This requirement should be easy

to fulfill since robots change far less often than the envi-

ronments in which they operate, and many identical robots

are generally produced with the same hardware configura-

tion. Given the example trajectories, it is straightforward

(though computationally expensive) to determine all areas

of the workspace that have been occupied by the robot.

Next, every grid cell in a discretized representation of the

configuration space may be marked as safe if the robot, in

that configuration, occupies only areas of the workspace that

were occupied during training. The user may also elect to

provide a conservative buffer around the robot’s position that

is also considered safe to occupy.

III. APPROACH

In this work, we seek to develop an approach that com-

bines the strengths of previous programming by demon-

stration and planning systems. This system will learn to

perform a precise reaching task with a dexterous arm from a

variety of initial conditions. The generated trajectories should

be guaranteed collision-free in static environments despite

limited sensing and no explicit model of the environment.

Finally, the system should be intuitive and easy to use, even

without training or extensive knowledge of the algorithm

used.

Our approach uses dimensionality reduction to transform

the example trajectories to an intrinsic embedding suitable

for learning the particular task at hand. This retains ex-

plicit representation of each of the examples provided while

smoothing some noise and jitter, and providing a more

convenient domain in which to plan. By combining the

example trajectories with a model of the manipulator, the free

area in the workspace may be determined. A conservative

planner should assume that any space not occupied by the

manipulator during training may contain an obstacle. Once

the intrinsic task embedding is discovered, a novel plan may

be created in the low-dimensional space and transferred, or

lifted, to the original control space.

We will first examine the strategy and motivation for

planning in a reduced-dimensionality space. Next, we present

our extension to Isomap [17] for time-series data. Finally, we

present an implementation of the complete system on a 7-

DOF robotic arm and experimental results are discussed.

A. Dimensionality Reduction

Our primary motivation for dimensionality reduction is

to ease the task of planning by discovering an intrinsic

embedding for examples of the task. That is, rather than

planning arbitrary trajectories through the robot’s workspace

or configuration space, we create a task space in which the

desired trajectory is as simple as possible. In our work to

date, a two-dimensional task space has been used to represent

full 6-DOF trajectories using a redundant 7-DOF manipula-

tor. One dimension represents time, or progress through the

task, while the other dimension represents variations between

distinct examples.

However, finding an intrinsic low-dimensional represen-

tation of the data has other benefits. Dimensionality reduc-

tion is typically used in Programming by Demonstration to
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deal with the correspondence problem [18] between high-

dimensional training data (such as human motion capture)

and low-dimensional controls (such as dexterous arm joint

angles). When kinesthetic demonstrations are used, the train-

ing data is collected in the robot’s control space. However,

dimensionality reduction is still useful as it accentuates com-

monality among multiple training examples, and eliminates

much of the noise (due to imperfect sensors) and jitter (due to

imperfect human motion) that needlessly distinguishes them.

Smoothing is achieved because the lower dimensionality

space lacks the degrees of freedom to precisely represent

every aspect of the example trajectories. Thus, the high

frequency noise is eliminated while the features common to

all examples are emphasized. This strategy is to be favored

over other techniques that smooth trajectories one at a time

by removing high-frequency or low magnitude variations.

Although neither approach requires domain knowledge for

its application, dimensionality reduction is able to preserve

features common to many trajectories, even at the same

magnitude as the noise, because it operates on all the

trajectories at once. For instance, dimensionality reduction

smooths out random jitters, but can maintain small “bumps”

that are common across trajectories.

One promising technique for dimensionality reduction is

Isomap. This algorithm finds a non-linear embedding for data

using geodesic distances between nearby points. In essence,

it discovers a lower-dimensional manifold embedded in the

original space. The input data points lie on (or near) this

manifold, so they can be represented in fewer dimensions.

Isomap operates by first constructing a neighborhood graph

connecting all of the points. A matrix of all-pairs shortest

path distances are computed over this neighborhood graph.

Finally, the low-dimensional embedding is constructed by

applying Multi-Dimensional Scaling (MDS) to the distance

matrix. This creates a space in which geodesic (graph-based)

distances are preserved.

The original Isomap algorithm was not specificly tailored

for time-series data, but it may be applied to points sampled

from trajectories. One extension to Isomap, Spatio-Temporal

Isomap [19], attempts to exploit the inherent relationships

between these points to improve the embedding. ST-Isomap

introduces changes to the first two steps of Isomap: con-

struction of the neighborhood graph and computation of

the distance matrix. First, it exploits the obvious neighbor

relationships inherent in time-series data. Adjacent samples

from a single trajectory, which we call temporal neighbors,

are clearly related, and are thus linked in the neighbor graph.

ST-Isomap also attempts to discover what we call spatio-

temporal neighbors, or neighbors in different trajectories that

occur at the same time in the task. For each of these types

of neighbors, a tunable parameter is used to reduce the per-

ceived distance between linked points. Although ST-Isomap

is able to produce reasonable embeddings for many tasks,

we have found that the tunable parameters must be chosen

accurately for the nature and scale of the task at hand. In this

work, we attempt to refine the neighbor selection mechanism

in order to obviate the need for parameter selection and

Fig. 2. Regularly spaced neighbor links from the solid (blue) trajectory to
the dashed (red) trajectory result in some undesirable links (black).

Fig. 3. The solid (blue) trajectory drifts closer to distant sections of the
dashed (red) trajectory. Pointwise nearest-neighbor alone is not sufficient to
correct this problem.

produce a better embedding.

B. Neighbor Selection

Neighbor selection is the key to discovering an intrinsic

task embedding for time-series data. Although humans can

typically discern global structure even in noisy collections

of points, it is a challenging task for a robot learner. This

problem, known as graph or manifold denoising, has been

studied extensively for application to Isomap [20] and other

graph-based learning algorithms[21], [22], [23]. Time-series

data presents specific challenges to this effort, but it also

has the advantage that part of the structure of the data is

known. Specifically, we retain the temporal links between

adjacent points on the same trajectory as discussed above.

In this section, we examine the selection of spatio-temporal

neighbors between trajectories.

In keeping with the framework established by Isomap,

all neighbor links are bidirectional. The typical Euclidean

metric is used to calculate the distance between neighboring

points, and the geodesic distance between all other pairs is

the shortest distance along links in the graph.

When searching for a point’s neighbors, individual points

are not considered in isolation. Instead, we consider each

pair of trajectories separately, and search for subsequences of

those trajectories that contain points that match in a roughly

pairwise manner. That is, the indices in both subsequences

increase in the same direction, and both subsequences con-

tain approximately the same number of points. Since all

trajectories are initially subsampled at a uniform distance

between adjacent points, this mean that, informally, matching

subsequences travel in the same direction.
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Fig. 4. Many-to-one neighbor links result in a graph with too many links,
and thus geodesic distances that are too small. Deviations such as that shown
in the solid (blue) trajectory should appear distant in the neighbor graph.

Noisy links are detected and removed by searching for

sequences of neighbor links in one trajectory whose indices

in the matching trajectory do not monotonically increase.

This ensures that adjacent subsequences in one trajectory are

not connected to distant portions of the other trajectory, as

may occur when a trajectory contains a loop (see figure 2)

or other artifact (see figure 3). Finally, one-to-many neighbor

links are not allowed. Only the one-to-one link with the

shortest distance is permitted in the final neighbor graph.

This restriction ensures that the geodesic distances increase

quickly when trajectories deviate from one another (see fig-

ure 4). This strategy is illustrated further in the experimental

results in section IV.

Additional checks may be incorporated into this strategy

to restrict the types of neighbor links formed. For example,

given an explicit or implicit environment model, as discussed

above, we might check that a motion between every pair of

neighbors is safe to execute. If the robot would impact an

obstacle, that link may be removed from the graph. This

helps ensure that, in the embedding, movement between

nearby points is safe.

C. Planning

A robot is clearly capable of performing a demonstrated

task by simply repeating example trajectories. However, this

is undesirable for several reasons. Even expert robot oper-

ators are unlikely to produce perfect examples. Accidental

movements, unavoidable jitter, detours, and sensor errors

can all contribute to variations between demonstrations. In

addition, the robot should have a safe strategy for operation

if its position deviates from demonstrations due to sensing

or actuation noise, or even due to the variety of initial

conditions.

Planning requires a generalization of the provided example

trajectories. Extrapolating cannot be safe without additional

information about obstacles in the environment, but in-

terpolation is possible if we know which portions of the

demonstrated trajectories occur at the same point in the task.

We argued in the previous section for the use of global

information about trajectories to make this determination.

Figure 5(a) shows a neighbor graph for the maze of figure 1.

The graph alone is not sufficient to determine an action

policy for undemonstrated points in the configuration space,

(a) (b)

Fig. 5. A two-dimensional projection of the workspace trajectories for
the wire maze task (left) and the two-dimensional embedding of its 7-DOF
configuration space (right). Purple lines represent neighbor links.

though. Instead, we use the neighborhood information in

the graph to create a simple low-dimensional space that

facilitates interpolation of demonstrated actions.

MDS, the final step of Isomap, is used to create a two

dimensional embedding such as the one shown in figure 5(b).

This embedding preserves (as much as possible) the geodesic

distances between all pairs of points. Although figure 5(a)

illustrates a two-dimensional projection of the Cartesian

workspace trajectories of the end effector, planning must

occur in the seven-dimensional configuration space. Because

the manipulator is redundant, it is necessary to be able to

distinguish between different configurations that result in the

same end-effector pose. In the embedding of figure 5(b),

the starting points of the trajectories (the dark lines) are

clustered along the left edge of the image. The trajectories

end near the bottom-right of the image. The thinner, purple

lines are neighbor links between trajectory points. Although

nothing in the algorithm explicitly forces it to be so, the

horizontal axis is roughly equivalent to time. This is because

MDS selects the dimension with the greatest variance as the

first dimension in the embedding. The vertical axis sepa-

rates trajectories from one another. Vertical spikes represent

portions of example trajectories that deviated from neighbor

trajectories, similar to the examples in figures 2 and 4.

Since the problematic spatio-temporal links pictured there

were eliminated, the geodesic distances between trajectories

increases significantly, and the trajectories become distant in

the embedding.

Our previous work[24] investigated a strategy for plan-

ning in embedded spaces such as these. However, with the

improved neighbor-selection mechanism presented here, the

embedding creates a space in which planning is straightfor-

ward. A roughly linear path through this space from left to

right, remaining in the area between example trajectories, is

one simple strategy for generating novel plans. Future work

will focus on other strategies, and their relative merits. For

example, planning a path which remains near the densest

areas of example trajectories may produce a plan more

qualitatively similar to that desired by the user.

Trajectories created in this two-dimensional planning

space must be transformed to the configuration space of

the robot before they can be executed, but there is no

global linear transformation between these spaces. Instead,
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Fig. 6. The WAM manipulator, the wire maze (left) and the tube maze
(right). The 2-D barcode in the lower-left is a visual fiducial used to detect
the location of the rig relative to the robot. The rig and mazes are not
modelled by the learning algorithm.

individual points in the planned path must be lifted to

the original high-dimensional space. This is accomplished

using the Delaunay triangulation [25] of the trajectory points

embedded in two-dimensions. For any query point in the

plane, the unique enclosing triangle is found. The barycentric

coordinates of the query point within the triangle are used as

weights to interpolate between the points corresponding to

the triangle vertices in the original space. It should be noted

that the mapping from the planning space to the original

space is naturally a one-to-many mapping. However, since

the correspondence between points in the planning space and

the original points in the higher dimensional space is known,

interpolation ensures that the resulting point is in the correct

region of the configuration space.

This method is reliable only for query points that lie

within the triangulation of the points of the example tra-

jectories. Fortunately, this is precisely the area in which

we can be confident executing novel plans. Points outside

the triangulation cannot be lifted by interpolating between

example points, and thus represent extrapolations outside

the demonstrated area of the configuration space. A similar

method may be used to map points in the other direction,

from the configuration space to the planning space. This

mapping is required to query the plan for an action to

perform at a given configuration.

IV. EXPERIMENTAL EVALUATION

Experiments were conducted using the 7-DOF WAM

manipulator shown in figure 6 on two similar tasks. When

the arm is operated in gravity-compensation mode, it can

(a) (b)

(c) (d)

Fig. 7. Neighbors selected by (a) k-NN and (c) ST-Isomap, and their
embeddings (b) and (d). Spurious short-circuit neighbor links produce
embeddings unusable for planning.

be easily moved by hand. Participants were asked to per-

form kinesthetic demonstrations navigating the two mazes

pictured. When the robot’s copper end effector contacts the

walls of either maze, a buzzer provides auditory feedback.

The wire maze on the left is effectively two-dimensional,

though some of the rotational axes are relatively uncon-

strained, allowing additional variation in the demonstrated

trajectories. This rotational variation is not strictly necessary

for navigating the maze and is unlikely to be correlated

between example trajectories. The linear portion of the end

effector is used to navigate the maze, and the proximal and

distal loops keep the end effector within the plane of the

maze. The tube maze on the right more fully explores the

six degrees of freedom of the workspace. In this task, the

loop at the tip of the end effector must be threaded over

the copper tube to reach its base. Six demonstrations were

performed on each maze by each participant.

Figure 7 shows the neighbor links chosen by other meth-

ods and the resulting embeddings. Figures (a) and (b) were

produced using the k-nearest neighbor strategy of the original

Isomap algorithm, with k = 10 chosen to ensure the number

of neighbors per point is roughly equivalent to that of

the other algorithms. The workspace plot of figure 7(a)

appears sparser than the corresponding images for ST-Isomap

(figure 7(c)) and our algorithm (figure 5(a)) because k-

NN produces more temporal neighbors than spatio-temporal

neighbors. The ST-Isomap results illustrate some of the most

difficult situations for neighbor selection. In many cases,

such as the spurious neighbor links near the bottom of

figure 7(c), links are formed between trajectories that are

relatively near to one another, and even travelling in parallel

directions. Without considering global information about the

trajectories, these incorrect links are difficult to detect.

The trajectories learned, even by our simple initial ap-
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proach, appear qualitatively sound, and have been success-

fully executed on both mazes. In addition, the planned

trajectories avoided joint limits more effectively than the

example trajectories. During demonstration, users often ro-

tated arm joints to their extremes even when this was not

necessary to complete the task. Because the planning method

relies on interpolation of demonstrations, planned trajectories

remain away from joint limits whenever allowed by the

demonstration data.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a method for embedding robot

trajectories in a low-dimensional space and a simple tech-

nique for creating novel plans in this space. Our work extends

Isomap by introducing a neighbor-finding technique suited

for time-series data such as configuration-space trajectories,

and is free from the parameter selection required for the

application of other approaches to multiple domains. This

approach allows dimensionality reduction to produce a two-

dimensional task-specific space in which safe planning is

straightforward, even without a model of the environment in

which the robot operates.

Future work will focus on development and evaluation of

planning techniques in the embedded space, and possibly

over the neighborhood graph itself. We also plan to ad-

dress computational inefficiencies in the current approach.

Since the embedding is not a globally linear transformation,

straight lines are not preserved, and a large number of points

must be lifted to faithfully transfer a plan from the embedded

space to the original configuration space. By identifying

regions of the demonstrations where less detail is required,

such as areas of low diversity or low curvature, planning may

be simplified in these areas.

Finally, we expect the improved neighbor-finding approach

presented here to be useful in other applications. In addi-

tion to programming by demonstration, this technique may

prove useful for activity recognition, robot fault detection,

and other applications in which time-series trajectories are

compared.
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