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Abstract— We present a novel approach for unsupervised dis-
covery of repetitive objects from 3D point clouds. Our method
assumes that objects are non-deformable and uses multiple
occurrences of an object as the evidence for its existence.
We segment input range data by superpixel segmentation and
extract features for each segment. We search for a group of
segments where each segment matches a segment in another
group using a joint compatibility test. The discovered objects
are then verified by the Iterative Closest Point algorithm to
remove false matches. The presented method was tested on
real data of complex objects. The experiments demonstrate that
the proposed approach is capable of finding objects that occur
multiple times in a scene and distinguish apart those objects of
different types.

I. I

For a robot that interacts with people, it is essential to

semantically analyze its surroundings. In particular, home

environments usually contain various objects, which often

define the particular location at which they are encountered

(e.g. furniture). The ability to detect and distinguish objects

autonomously is thus a key for a robots’ independence when

working in a home environment. For instance, if a robot

can determine that a dining room contains a set of chairs,

which are multiple occurrences of the same object, and a

table, which is different from chairs, then it can use such

information to classify a dining room as a place with two

types of objects - many chairs and one table. Then, when it

encounters an unfamiliar room, it can simply search for the

characteristics of the room - many instances of one object

type and one instance of a different object type - and the

fingerprints of the objects found in the room. When both are

verified, the robot can label the room as a dining room. Such

an automatic process eliminates the necessity of training a

robot with every object it is likely to find in the environment.

Instead, we can simply label each type of object a robot

finds in the appropriate language of the household, e.g. chair

or Sessel. In this work, we investigate the possibility of

unsupervised discovery of objects that occur multiple times,

such as chairs in a dining room, from data taken with a 3D

laser scanner.

Unsupervised discovery of repetitive objects in a given

scene is a challenging task because we do not know a priori

the definition of an object, the number of occurrences of a

certain object type, nor the number of different object types

present in the scene. In addition, the method must be able to

distinguish real objects - chairs and couches - from walls,

ground, and ceiling as we do not pre-segment them out.

Fig. 1. An example of a scene observed with a nodding SICK laser scanner.
Objects that are discovered through the algorithm are colored, where all
points which belong to the same object are assigned to one color. Arrows
are drawn between two segments that match.

The method thus should be able to hypothesize on objects

while handling lots of clutter in the scene. As an indoor

robot can easily collect more evidence to support or refute a

hypothesis without any harm, it is better for a robot to claim

no knowledge than have a false belief when the uncertainty

is high. To minimize false discovery, we take a conservative

approach and only accept the output when the uncertainty is

low.

Figure 1 depicts a typical scene of interest in this paper,

which is captured using a nodding SICK laser scanner. The

scene contains two working chairs and two arm chairs along

with some ceiling light fixures and a plant. Of these, we are

interested in discovering the two types of repeating objects

- the working chairs and the arm chairs. If the process is

successful, each instance of the object gets its own color,

and arrows are drawn between all segments that match.

We propose an approach to discover, without supervision,

objects that occur multiple times in a scene. Using 3D point

clouds from a laser scanner as input, we first segment the

points according to their surface property using superpixel

segmentation and extract features for each segment. We use

an extended joint compatibility test to discover object models

and their matching objects, and verify these objects by the

Iterative Closest Point algorithm to remove false matches.

Through this work, we demonstrate that repetition can aid

the discovery of objects and define object models.

The organization of the paper is as follows. We discuss

related work in Section II. Section III explains how the input

scene is segmented and how features are extracted from each

segment. In Section IV, we discuss the object discovery

method and the verification step. Section V presents the
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experimental results. The paper concludes with Section VI.

II. RW

Repetition detection has been well-explored in the field of

image analysis. In particular, many authors have investigated

methods for detecting regularly repeating patterns [1], [2].

More recently, Loy and Eklundh [3] focused on grouping of

features based on symmetry, and Wenzel et al. [4] proposed

an algorithm that uses symmetry to detect repetitive struc-

tures in facade images. They argued that symmetry is a strong

clue to group features together. Likewise, we group together

segments upon a discovery of a matching set, but we do not

explicitly search for the symmetric plane between the two

objects. In this way, our approach is similar to Zeng and van

Gool [5], where the authors employ point-wise repetition to

improve segmentation results. They use mutual information

to determine if two segments of an intially oversegmented

image are of the same group. We instead extract features for

every segment and compare these features to measure the

similarity between two segments.

In terms of 3D, discovery and utilization of repetition

has been adressed in computer aided design and other

synthetic models [6], [7], [8]. They focused on detection

of symmetry or regular patterns in 3D with applications in

graphics and image compression. Work of Bokeloh et al. [9]

is more closely related to this work. The authors proposed an

algorithm for detecting structural redundancy by matching

symmetric constellations of feature lines. We also search

for a collection of elements that repeat as a group, but we

do not assume symmetry as the repetition pattern. To our

knowledge, no work has dealt with discovery of objects by

repetition in laser data.

In unsupervised object detection, several have proposed

adaptation of text analysis methods in image analysis. For

example, Liu and Chen [10] has proposed a modified proba-

blilistic latent semantic analysis method to detect foreground

objects from images. In [11], Endres et al. use Latent

Dirichlet Allocation to detect object classes from range data

without supervision. While this approach can classify objects

of multiple classes, they assume that a ground plane and

walls are extracted a priori and the objects are spatially dis-

connected. In our work, we do not make such assumptions.

We consider every segment as a potential object part and test

them to determine if they belong to an object.

The way we define an object is parts-based. We search

for objects using the joint compatibility branch-and-bound

algorithm [12]. Shin et al. [13] has shown that objects defined

by parts can be represented by a grammar and recognized

using a joint compatibility test. In our work, we do not

perform a separate parts detection, nor require object parts

to have physical meanings.

We employ feature-based approaches to recognize objects.

Among various feature descriptors for 3D data, spin images

have been shown to be successful and popular [14], [15].

Other features of interest for this work are shape distribu-

tion [16] and shape factors [17].

III. S  F E

The proposed algorithm is a three-step process. First, we

extract segments from the input point cloud and extract

features for every segment. We apply a joint compatibility

test on these segments to detect objects and then verify them

using the Iterative Closest Point algorithm. In this section,

we describe the segmentation method and shape descriptors.

A. Range Data Segmentation

The goal of segmentation is to find labels L(x) for all

data points x, where points that are close to each other and

similar in some predefined way, should have the same label.

We use the superpixel segmentation method by Felzenszwalb

and Huttenlocher [18], originally proposed for 2D images,

to group together similar points. This algorithm creates a

graph G = {V,E} of vertices V and edges E, where each

pixel in a given image corresponds to a vertex and the edges

connect adjacent image pixels. Each edge e = (vi, v j) has an

associated weight w(e) representing the dissimilarity of the

connected vertices vi and v j. In the case of an image, this can

be, for example, the difference of the pixel intensities. The

algorithm starts with a segmentation where each vertex is its

own segment. Then, the edges are processed by increasing

weights and the two segments Ci and C j connected by a

given edge e are merged whenever

w(e) ≤ min

(

d(Ci) +
k

|Ci|
, d(C j) +

k

|C j|

)

,

where d(C) is the internal difference function defined by the

maximal edge weight of all edges in the minimum spanning

tree of the segment C ⊆ V, and k is a consistency parameter

that influences the granularity of the segmentation: a low

value of k requires segments to be more consistent and thus

produces more but smaller segments. The interal difference

function ensures that two segments are merged only when

the difference between the two is smaller than the difference

within each segment with some tolerance.

In this work, we define each point x of a 3D point cloud

X as a vertex and form an edge between two neighboring

vertices, where neighbors are determined by a triangular

mesh built on the data. We use the dot product ni · n j as

edge weight where ni is the surface normal vector computed

at point xi. Thus, regions with a smooth surface, e.g. a plane

or a sphere, are segmented as one region while surfaces

with sharp edges, e.g. between two sides of a box, are

segmented into two regions. As a modification of the original

algorithm, we do not force every point to be in a segment.

This is because we cannot calculate the normal for the

points with an insufficient number of neighboring points. For

these isolated points, no vertices are generated in the graph,

and thus no label is assigned. In addition, after termination

we remove segments that contain less points than a given

minimal value msize. Such small segments are often caused by

sensor imperfections or occlusions and do not reveal enough

information for the later matching process.
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B. Shape Descriptors

As shape descriptors, we use spin images [14], shape

distributions [16], and shape factors [17], and weigh them

accordingly. For a given point x with normal vector n, a

spin image is defined as a 2D histogram Hs oriented along

the line l through x with direction n. Each bin of Hs counts

the points with a certain distance to l and the plane through

x with normal vector n. For the spin image descriptor of

a segment C, we form vectors hs
i

of stacked lines of the

histograms Hs
i

for all points xi ∈ C and compute the average

h̄s over all hs
i
.

A shape distribution is defined as a histogram of values

of a predefined function f : Cr → �, where r is the

arity of f and is usually a value between 1 and 4. In our

implementation, we use two binary functions fd(xi, x j) and

fa(xi, x j), namely the Euclidean distance of the points xi and

x j and the scalar product of their normal vectors ni and n j.

The resulting histogram vectors hd and ha are computed by

evaluating fd and fa on all pairs of points in a segment C. To

make the feature vectors invariant with respect to the sample

density, we normalize the histograms hd and ha by the total

number of bin entries. A normalization with respect to the

maximum distance encountered in a segment is not done, as

this would result in scale-invariant features, and we consider

scale as a feature to be distinguished between objects.

Finally, we compute shape factors per segment, i.e. the

normalized eigenvalues of the covariance matrix Ci of all

points in segment Ci, collected in a vector h f . All individ-

ual descriptors are used to define a distance metric dc on

segments as

dc(Ci,C j) = λ1∆h̄s
+ λ2∆hd

+ λ3∆ha
+ λ4∆h f

,

where the λi are weight factors and ∆h is the Euclidean

distance between two feature vectors h(Ci) and h(C j).

IV. O D

The challenge of unsupervised discovery of repetitive

objects is that we have neither an a-priori definition of an

object, nor the number of occurrences per object type. With-

out such information, we cannot determine for each segment

if the segment is an instance of an object. To overcome this

problem, we search for only those objects that occur multiple

times in the scene. The multiplicity allows us to reason on

the object by comparing it against another instance of the

same object. In addition, we only focus on complex objects

and define an object as a collection of segments. Discovering

objects composed of only one segment requires us to rely

entirely on the shape descriptors for matching. The minimum

segment constraint allows us to use physical constraints as

an additional evidence for an object. Therefore, we consider

an object hypothesis valid only when it is composed of at

least two segments. To reduce false matches, we verify the

hypotheses for objects by finding correspondences between

the point clouds of discovered objects.

Algorithm 1: SJCBB Symmetric joint compatibility

branch-and-bound test for discovering a pair of repetitive

objects.

Data: Segments C of the scene

Input: Current model hypothesis HM ⊂ C and its

matching test hypothesis HT ⊂ C

Output: A pair of hypotheses BM ⊂ C and BT ⊂ C that

yield the highest matching score.

Procedure:

if |HM | ≥ |BM | and dc(HM ,HT ) > dc(BM ,BT ) then
BM ← HM

BT ← HT

end

I ← |C|

for i = 1 to I do

Ci
M
← random select f rom(C)

Ci
T
← random select f rom(C \ {Ci

M
})

if individual match(Ci
M
,Ci

T
) and

relation match(HM ∪Ci
M
,HT ∪ C

i
T

) then

SJCBB (HM ∪ C
i
M
,HT ∪ C

i
T
,C \ {Ci

M
,Ci

T
})

end

end

A. Repetitive Object Discovery

To find repeating objects, we use a joint compatibility

test with branch-and-bound [12], a popular solution for

data association problems. Data association is a well-known

problem in robotics. The joint compatibility test addresses

the data association problem by finding test points that not

only correspond to the model points individually but also

match well as a set. The branch-and-bound aspect enables

the algorithm to search efficiently by growing a hypothesis

when necessary and terminating one when no appropriate

part is found.

In an ordinary data association problem, the model set

is predetermined, and the goal is to find the best mapping

from the test set to the model set. In our framework, however,

we do not have a model. Our goal is to discover a model

through the detection of matching pairs of segments. We

thus propose a modification to the algorithm called symmetric

joint compatibility branch and bound, which discovers an

object model and its matching test object from the input

segments.

The overall algorithm is shown in Algorithm 1. Given

segments as input to the algorithm, we search for a set of

segments that occur multiple times in the scene. We perform

the search in two steps. In the first step, we discover an

object model, i.e. a collection of segments, and its matching

object. Since the only evidence we have for an object is the

presence of a matching object, the process will always return

two hypotheses. In the second step, the algorithm searches

for the remaining occurrences of the object using as a model,

the objects found in the first step.
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The first step is as follows: We begin with a randomly

selected segment C0
M

and look for a segment C0
T

in the scene

that match well with it. If we find C0
T

, then we begin two

hypotheses, HM and HT , one for the model set and the other

for the test set. The distinction of model and test hypotheses

is arbitrary as one hypothesis is only valid with the existence

of a matching hypothesis. Therefore, there is no definitive

model hypothesis to which a test hypothesis must match.

Rather, a pair of segments must be similar enough to support

each other’s validity.

The hypotheses HM and HT grow as we select a new

segment C1
M

and search for C1
T

which is individually com-

patible to C1
M

, andHT∪C
1
T

is jointly compatible toHM∪C
1
M

.

The growth of HM and HT continues until the n-th model

segment Cn
M

no longer finds a compatible test segment Cn
T

.

The algorithm then starts a new pair of hypotheses with a

different seed segment pairs, in search of the best pair of

hypotheses BM and BT . The best pair of hypotheses contains

the most number of segments with the smallest distance

between the hypotheses. At the end of the process, we label

BM and BT as objects O1 and O2 of type O.

Upon the discovery of an object type O, we begin the

second step. To find the remaining instances of O in the

scene, we apply the algorithm again, but this time, using

O1 and O2 as the model. Now the goal is to find a set of

segments that matches the model best. Each time we find

such a hypothesis Hk, we label it as an object Ok of the type

O. The search for an object of type O ends when we no

longer find a hypothesis that matches either O1 or O2. We

repeat this two-step process of finding a pair of hypotheses

and detecting other instances of the object until we no longer

find a valid hypothesis.

In the presented algorithm, the invidiual and the joint

match score play a crucial role in deciding on a match. We

use the shape descriptors as described in Section III-B to

evaluate a match. For an individual match, we consider a

pair of segments CM and CT compatible if

dc(CM ,CT ) < Ti,

where Ti is a thresholding value for individual compatibil-

ity. For the joint compatibility, in addition to calculating

dc(HM∪CM ,HT∪CT ), we compute the Mahalanobis distance

dm(VC,HM ,V
C,H

T ) between the new segement pairs to the

segments in their corresponding hypotheses, where VC,HM

indicates a vector from the center of the input segment CM

to a segment in the hypothesis HM . We require that for all

segments in HM and HT ,

dm(VC,HM ,V
C,H

M) < T j.

The physical constraints enable us to reject segments that are

similar in features but are inconsistent with the hypotheses

in their arrangement.

B. Match Verification

The goal of the verification step is to minimize falsely dis-

covered objects by confirming that the discovered objects are

consistent among themselves. We achieve this by mapping all

(a) Without initialization (b) With initialization

Fig. 2. Correspondences between two point clouds without the spin image
initalization 2(a) and with the initialization 2(b). Without the initialization,
ICP performs poorly when the two point clouds have a high rotational
transformation as shown in 2(a). 2(b) shows that the same two sets match
well with the initialization.

points of an object Oi to the points that belong to its matching

pair O j by the Iterative Closest Point (ICP) algorithm [19].

ICP, often used in localization, finds the transformation from

one point cloud to the other by minimizing the difference

between the two sets. Since ICP finds a local minimum, it

works well only when the initial correspondence between

two point clouds is close to the global minimum. As the

objects Oi and O j can be in any orientation, the initial

estimation cannot rely purely on the nearest neighbors in

the Euclidean space. We instead estimate the initial transfor-

mation by computing features at various randomly selected

points in Oi and finding their corresponding points from O j

in the feature space. We use spin images as the features,

as presented in [14]. Figure 2 shows the effect of the

initialization by the feature-space correspondence. As the

figure indicates, without the initialization, the verification

step performs poorly when the objects are mirrored.

The initialization is as follows: Given two objects Oi and

O j, we first center them with their respective mean values Ōi

and Ō j in x- and y-direction, and randomly select a subset

of points (x1, ..., xn) in Oi. We assume that objects are in

their natural vertical position and do not center the points in

z-direction. This helps us eliminate wall-ceiling, wall-floor,

and ceiling-floor matches. For each point xk, we calculate

its spin image and search for all points (yk
1
, ..., yk

m) in O j,

whose spin image is similar to xi. These points are then

used as the initial correspondence points for ICP. Once the

transformation between the two point clouds is found, we

count all the points in Oi that have a corresponding point

in O j and vice versa. We consider the two objects Oi and

O j matched if the total number of matched points is greater

than 70 percent of the sum of points in Oi and O j.

V. R

In this section, we test the algorithm on scans from real

world scenes. We took data using a nodding SICK laser with

a width of 100 degrees and a height of 90 degrees. Each set

was captured at the horizontal resolution of 0.25 degrees

and the vertical resolution of 15 degrees a second. The test

set was composed of 55 data sets from four different rooms.

Overall, the scenes had four types of working chairs and one

type of arm chairs along with trash cans, a flip chart, and a
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Fig. 4. A test scene with no repeating object. The algorithm discovers no
object.

TABLE I

T         

msize 50 75 100 120 150

k = 6 56% 48% 51% 45% 40%
k = 9 59% 48% 59% 45% 40%
k = 12 42% 34% 36% 36% 36%
k = 15 47% 47% 36% 36% 36%

plant as background. Objects were placed up to 90 degrees

of rotation from each other. Most scenes contained two or

three objects of the same type, but some scenes contained

two objects of two kinds. Four scenes contained contained

no repeating objects. In total, there were 138 instances of

objects that the algorithm could discover.

We evalute the algorithm by the rate of discovery and

precision. The discovery rate is the number of objects the

algorithm found over the number of objects we expect

it to discover. We calculate precision as the number of

correctly discovered objects over the number of correctly

and incorrectly discovered objects. The rates for object types

are computed likewise. For example, if a scene contains

three chairs of type A and one of type B, then we define

the ground truth as three chairs and one object type. As

mentioned earlier, the program does not detect objects of

single occurrence.

Figure 3 and Figure 4 contain some of the results of

the presented algorithm. All points that belong to the same

object have the same color, and an arrow connects two

matching segments. The arrow starts from a model segment

and points at the corresponding test segment. The overall

rate of object discovery is 59% and that of object types is

68%. The precision is 98% for objects and 97% for object

types. The precision is high because our method eliminates

every uncertain object. In a home environment, it is better

for a robot to take more data when it is uncertain about

the environment than to make a false assumption about its

surroundings. If we set the minimum segment requirement

to one, i.e. an object is composed of one or more segments,

then the discovery rate goes up to 76% for objects and 84%

for object types, but the precision drops to 51% for objects

and 49% for object types. The drastic decrease of precision

is due to the false matches among segments that belong to

wall, ceiling, and floor.

Fig. 5. No object is discovered due to sufficient number of segments. When
an object is segmented as one segment (top), the program fails to discover
it as an object (bottom).

Fig. 6. No object is discovered because of a failure in the verification step.
Objects that are found in the discovery phase (top) are falsely eliminated
during the verification phase, yielding no detection (bottom).

Our method does not assume a perfect segmentation.

However, the final outcome is affected by the quality of

segmentation. Table I shows the rate of discovery against

the consistency parameter k and the minimum segment size

parameter msize. Our experiment revealed that k = 9 and

msize = 100 yields the highest discovery rate and precision.

This is partially due to our assumption that an object is com-

posed of at least two segments. The requirement naturally

favors objects that are segmented into multiple segments.

Therefore, for a high discovery rate without suffering the

precision, it is crucial that the segmentation is done in such

a way to allow multiple parts per object while each segment

being large enough to be discriminative. One major source

of no discovery was the lack of sufficient object segments.

When an object is segmented into a single segment, the

program fails to discover the object as it is invalid according

to our definition of object, as shown in Figure 5. Another

5045



Fig. 3. Some test scenes with discovered objects in color. Points that belong to the same object have the same color

source of no detection was the lack of sufficient points on

objects. In addition to occlusion and the natural sparsity of

data, the incident angle limits the number of usable points

in laser data. Without sufficient points, however, we cannot

extract segments and features reliably. This causes a lack

of object discovery. Lastly, while the verification step most

often improved the quality of results, it sometimes eliminated

correct hypotheses due to incorrect initialization of point

clouds, shown in Figure 6.

VI. C  O

We presented an approach for unsupervised discovery of

repeated objects in range data without a prior knowledge on

parts, location, or the number of occurrences. It determines

potential object parts by applying a modified superpixel

segmentation on the point cloud and extracts features on

these segments using spin images, shape distributions, and

shape factors. It then discovers objects by finding a set of

segments that has a matching set using a joint compatibility

test. The objects are verified by the Iterative Closest Point

algorithm to minimize false matches. We tested the algorithm

on real world data sets to demonstrate its ability to detect re-

peated objects. The whole process is performed without any

supervision and without presegmentation of the background.

There are several avenues for improvement. Work pre-

sented in this paper has so far only been tested indoor. While

outdoor also contains repetitive structure, using the current

algorithm for outdoor scenes poses challenges because out-

door objects are often much bigger than indoor objects. A

single scan of an outdoor scene often fails to capture multiple

instances of the same object at the level of detail necessary

for the algorithm. To overcome this problem, it is necessary

to merge several images together to obtain more dense data.

Such utilization of a robot’s mobility would also improve the

indoor results as some objects were undiscovered due to an

insufficient number of points on the object. The ultimate goal

is to enable a robot to learn the characteristics of a place,

which requires to extend the approach as to find matches

among several places of the same type.
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