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Abstract— Within the research on Micro Aerial Vehicles
(MAVs), the field on flight control and autonomous mission
execution is one of the most active. A crucial point is the
localization of the vehicle, which is especially difficult in
unknown, GPS-denied environments. This paper presents a
novel vision based approach, where the vehicle is localized
using a downward looking monocular camera. A state-of-the-
art visual SLAM algorithm tracks the pose of the camera, while,
simultaneously, building an incremental map of the surrounding
region. Based on this pose estimation a LQG/LTR based con-
troller stabilizes the vehicle at a desired setpoint, making simple
maneuvers possible like take-off, hovering, setpoint following or
landing. Experimental data show that this approach efficiently
controls a helicopter while navigating through an unknown
and unstructured environment. To the best of our knowledge,
this is the first work describing a micro aerial vehicle able to
navigate through an unexplored environment (independently of
any external aid like GPS or artificial beacons), which uses a
single camera as only exteroceptive sensor.

I. INTRODUCTION

In the past years, micro aerial vehicles (MAVs) strongly

gained in autonomy. This was motivated through the very

wide field of applications for these little platforms. Com-

monly associated keywords are: search and rescue, explo-

ration, surveillance, agriculture and inspection.

Because MAVs are in general highly unstable and non-

linear systems, a clever combination of sensor equipment

and controller must be designed. Most of the approaches

model the MAV as two connected ideal subsystems and use a

cascaded control structure: one controller for the attitude (3D

orientation of the helicopter) of the MAV and one superposed

controller for its 3D position. Most attitude controller use the

feedback from an onboard inertial measurement unit (IMU).

With this good performance can often be obtained with a

simple PD-controller design, but also more sophisticated

design techniques have been applied [1], [2], [3]. E.g. Bouab-

dallah et al. [4] analyzed the application of two different

control techniques ”Sliding-Mode” and ”Backstepping” and

especially showed that the later has very good stabilizing

qualities. In our case, we use the onboard attitude controller
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provided by Ascending Technologies [5], which is basically

a PD-controller.

Although these attitude controllers make it possible to

keep the MAVs in a hovering state, there is no possibility to

perceive any drift caused by accumulated error. Exteroceptive

sensors are thus unavoidable. The most common approach is

to mount a DGPS receiver on the MAV. By using a so called

Inertial/GPS approach, where data from an IMU and GPS

data are fused together, the MAV can be fully stabilized and

controlled [6], [7]. Two drawbacks of this approach are the

necessity to receive any GPS signal and the lack of precision

of the position estimate.

An alternative approach is to use cameras for the local-

ization task. Cameras are lightweight bearing sensors with

low power consumption and are relatively cheap to buy.

Also, they provide very rich information on the environ-

ment. However this vast information has to be processed

accordingly. The most simple way is to install a number

of external cameras with known location and to have them

track the MAV [8], [9], [10]. This method is very efficient

for testing purposes and can be used to evaluate other

approaches as ground truth reference. However it is not

suitable for missions where the installation of an appropriate

infrastructure is not feasible.

This approach can also be implemented the other way

round: the camera is mounted on the helicopter and tracks a

known pattern on the ground [11]. The team of Hamel [12]

implemented a visual servoing based trajectory tracking to

control an UAV with a mounted camera observing n fixed

points. Further methods have also been developed by fusing

the visual data with IMU data [13].

The availability of an onboard camera can offer new

possibilities. Templeton et al. [14] used a mono vision-based

terrain mapping algorithm to estimate the 3D structure of

the environment in order to find adequate landing sites (the

flight control system still uses GPS data). The problem of

autonomously landing a MAV on a known landing platform

using vision has been solved already quite early by Saripalli

et al. [15]. A vision-based forced landing algorithm has

been implemented where a MAV has to localize a good

landing area and reach it as fast and safely as possible [16].

Another possibility is to have a MAV tracking a leading

MAV with a fixed relative position and orientation. This has

been implemented by Chen et al. [17] by constructing an

Euclidean homography based on some feature points on the

leading vehicle.

Alternatively, stabilizing controllers can be built by means
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of optical flow considerations [18]. Herisse et al. [19] use

an optical flow based PI-controller to stabilize a hovering

MAV, they also implemented an automatic landing routine

by contemplating the divergent optical flow. Hrabar et al.

[20] developed a platform able to navigate through urban

canyons. It was based on the analysis of the optical flow on

both sides of the vehicle. Also, by having a forward looking

stereo camera, they were able to avoid oncoming obstacles.

Based on optical flow some biologically inspired control

algorithms have been developed for MAV stabilization [21]

[22]. However, the optical flow based pose estimation is also

affected by slow drift as it does observe the relative velocity

of features only. This counts also for visual odometry based

implementations, where the drift is estimated by considering

the feature displacements between two successive images

[23].

An approach with offboard vehicle tracking equipment

was implemented by Ahrens et al. [24]. Based on the

visual SLAM algorithm of Davison et al. [25], they build

a localization and mapping framework that is able to pro-

vide an almost drift-free pose estimation. With that they

implemented a very efficient position controller and obstacle

avoidance framework. However, due to the simplification

they used in their feature tracking algorithm a non-negligible

drift persists. Also, they used an external Vicon localization

system to control the aerial vehicle with millimeter precision

(a system of external cameras that tracks the 3D pose of the

vehicle). So far, they did not use the output of the visual

SLAM based localization system for controlling the vehicle.

In this paper, we present an approach based on the visual

SLAM algorithm of Klein et al. [26]. It enables the MAV

to autonomously determine its location and consequently

stabilize itself. In contrast to other approaches we do not

require any a priori information on the environment or

any known pattern in order to obtain a MAV control. The

controller is based on a cascaded structure of attitude control

and position control. The attitude PD-controller uses the IMU

data of the MAV and exhibits a very good performance.

The position controller is designed by means of the discrete

linear quadratic Gaussian control design with loop transfer

recovery (LQG/LTR) applied on a simplified MAV model.

This enables us to handle the considerable time delay that

comes from the image processing and from the SLAM

algorithm.

For the experimental tests a downward looking camera

is mounted on the Hummingbird quadrotor from Ascending

Technologies [5]. Currently the images are fed via an USB

cable to a ground station where the SLAM algorithm is

running on. Based on the position estimate the control input

are computed and then sent back to the quadrotor. To the

best of our knowledge, this is the first implementation of a

vision-based MAV controller that can be used in an unknown

environment without the aid of any infrastructure based

localization system, any beacons, artificial features, or any

prior knowledge on the environment. In other words, our

platform does not need any external assistance in order to

navigate through an unexplored region.

The outline of the paper is as follows: after introducing

some notations in section II, we will shortly summarize the

SLAM algorithm that has been used here and explain why we

chose it for our approach (section III). In section IV we will

take a look at the modeling of the system and the parameter

identification. After that, we will discuss the controller design

(section V) and analyze the entire structure of our approach

(section VI). To the end we will have a look at the achieved

results and discuss them (section VII).

II. NOTATIONS

To facilitate the following considerations we will introduce

some notations. We will always use boldface for vectors.

Common notations:

Av: Vector v expressed in the A coordinate system.

RAB : Rotation matrix from coordinate system B to

coordinate system A.

Coordinate systems:

I: Inertial coordinate system, is chosen so that the

gravity lies along the z-axis.

M : Coordinate system of the map of the SLAM

algorithm.

C: Coordinate system of the camera frame.

H: Coordinate system of the Helicopter.

Vectors and scalars:

r: Position vector of the helicopter.

T: Thrust vector of the helicopter (always lies on the

z-axis of the H coordinate frame).

T : The absolute value of the thrust vector T.

ϕ: Roll angle of the helicopter, rotation around the

x-axis of the I coordinate system.

θ: Pitch angle of the helicopter, rotation around the

y-axis of the I coordinate system.

ψ: Yaw angle of the helicopter, rotation around the

z-axis of the I coordinate system.

ω: Rotational speed around the z-axis of the I
coordinate system.

Constant parameters:

FG: Gravitational force.

g: Gravitational acceleration.

m: Mass of the helicopter.

Please note that we use the Tait-Bryan convention for the

Euler decomposition of the rotation matrix RHI into the 3

angles ϕ, θ and ψ. If the angles represent rotations between

two other coordinates frames than I and H , we specify them

in the index, e.g. ψCM represents the rotation around the z-

axis from the map coordinate frame to the camera coordinate

frame. All coordinate frames have the same invariant origin.

Estimated values are denoted by an additional tilde (e.g. M r̃).

Reference values are denoted with a star (e.g. T ∗).

III. VISUAL SLAM BASED LOCALIZATION

A. Description of the Visual SLAM algorithm

The presented approach uses the visual SLAM algorithm

of Klein et al. [26] in order to localize the MAV from a single

camera (see Fig. III). In summary, they split the simultaneous
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(a) Camera view (b) SLAM map (c) Hovering quadrotor

Fig. 1. Screenshots of Georg Klein’s SLAM algorithm. In (a) the tracking of the FAST corners can be observed, this is used for the localization of the
camera. In (b) the 3D map that was build by the mapping thread is shown. The 3-axis coordinate frames represent the location where new Keyframes
where added. In (c) the quadrotor in hovering state is represented. Beneath it the mounted camera can be perceived. All three images were taken at the
same time.

localization and mapping task into two separately-scheduled

threads: the tracking thread and the mapping thread.

The tracking thread is responsible of tracking the selected

features in successive frames and computing an estimate of

the current camera pose. In this version only FAST corners

are tracked and used for the pose estimation.

The Mapping thread uses a subset of all camera images

(also called keyframes) to build a 3D point map of the sur-

roundings. The keyframes are selected using some heuristic

criteria. After that a batch optimization is applied on the joint

state of map points and keyframe poses.

There are several important differences that can be men-

tioned in comparison to the standard SLAM algorithm of

Davison et al. [25]. First of all it does not use any EKF-based

state estimation and does not consider any uncertainties,

sparing a lot of computational effort. The lack of modeling

uncertainities is compensated by using a vast amount of

features and the local and global batch optimization. This

makes the algorithm fast and the map very accurate.

B. Analysis of the SLAM Algorithm

Splitting the SLAM algorithm in a mapping and a tracking

thread brings the advantage that both can run at different

speed. The tracker can thus yield fast pose updates while

the mapper can use more powerful (slower) map optimiza-

tion techniques. Compared to frame-by-frame SLAM the

mapper does not process every frame. This eliminates to a

great extend redundant information processing during slow

movements or hovering. These are the main reasons why we

choose this SLAM algorithm.

Our downwards looking wide angle camera is always

roughly aligned with the z-axis. This ensures large over-

lapping areas and we can further decrease the frequency at

which keyframes are added to the map. In already explored

areas, no keyframes will be added and the algorithm’s speed

remains constant over time while remaining in this area. On

the other hand, when exploring new areas the global bundle

adjustment can be very expensive, limiting the number of

keyframes to a few hundred on our platform (around 50-100

m2, depending on the keyframe rate).

Another strength of the SLAM algorithm is its robustness

against partial camera occlusion. If a sufficient part (around

50%) of the point features can still be tracked the pose

estimate is accurate enough to sustain stable MAV control.

Also, the algorithm will avoid to add any keyframes in such

situation so as not to corrupt the map.

An intricate hurdle when using a monocular camera is the

lack of any depth information. Because of that the algorithm

must initialize new points based on the observations from

more than one keyframe. This could motivate the use of a

stereo camera. However, for a stereo camera to bring any

further advantage, the observed scene must be within some

range of the stereo camera, otherwise a single camera will

yield the same utility. Closely linked to this problem is the

unobservability of the map scale, to tackle this we are forced

to estimate the map scale by hand and pass it to the controller.

We are implementing an online scale estimation aid of an

onboard IMU to tackle this issue.

IV. MODELING AND PARAMETER IDENTIFICATION

As our MAV platform we choose the Hummingbird

quadrotor from AscTec [5]. The sensors on the platform

include 3 gyros, a 3D compass and an accelerometer. At

this point it is important to mention that an efficient attitude

controller is implemented on the onboard microcontroller

of the helicopter. This permits us to focus on the design

of a controller for the stabilization of the x,y,z positions

coordinates and the yaw angle. In general, the presented

method could be implemented on any MAV with sufficiently

fast onboard attitude control.

We produce a model of the system and use the reference

values of the attitude controller as the control inputs. The

ouput is the pose of the camera, i.e., the 3 dimensional

position and orientation of the camera in the coordinate frame

of the stored map. Thus the dynamics of the internal attitude

controller must be included in the model.

The attitude controller controls the two tilt angles ϕ, θ, the

angular velocity around the vertical axis ω and the total thrust

T of the helicopter. Therefore the corresponding reference

values of the attitude controller (denoted by ϕ∗, θ∗, T ∗ and

ω∗) are the inputs to the model, while the outputs are the
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Fig. 8. Time domain system response to an initial error of 1 m in x or
y. The controller is able to correct the error with a T90 time of around
1 seconds and an overshoot of 20%. The performance is limited by the
relatively slow measurement rate and the time delay of the system.
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Fig. 9. Nyquist plot of the system (open loop). Phase margin: 27.7 degrees.
Gain margin: 5.5 dB.

to find a good trade-off between robustness and performance.

To ensure a controllability of the x,y positions we limit the

force in z-direction to (m ·g)/2. Otherwise the total thrust T
could go toward 0, disabling any control in x and y direction.

VI. FINAL SYSTEM STRUCTURE, FINAL

IMPLEMENTATION

We use the Hummingbird quadrotor platform from As-

cending Technologies [5]. A high performance onboard

controller enables the stabilization of both tilt angles and

the yaw rate at desired reference values sent via an XBee

radio. Beneath the quadrotor a 12g USB uEye UI-122xLE is

installed which gathers 752x480 images with global shutter.

At the moment the images are transmitted through an USB

cable linked to the ground station. The computations on the

ground stations are done on a Intel Core 2 CPU 2x2GHz

processor. All code is implemented in C++.

In the flow diagram (see Fig. 10) the entire closed-

loop system is represented. The SLAM algorithm and the

controller are both implemented on the ground station.

As the vision based localization does not work when the

helicopter is landed (the camera is too near to the floor),

the take off is only feasible if the initial land-patch beneath

it is already stored in the map. Giving increasing thrust the

helicopter can then fly blindly until it re-finds the map and
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Fig. 11. Position error in the x,y and z positions. The value remains between
± 10 cm. The z position is more accurate than the x and y positions.

stabilizes itself (the position can be tracked from a height

of ca 15 cm). We are currently including an algorithm that

is able to take off from ground over a known pattern and

initialize the map autonomously.

We observed stability problems arising from the scale and

orientation drift of the SLAM map. Due to the projective na-

ture of a single camera the scale of the map can diverge from

it’s original value and lead the quadrotor to crash. Currently

the scale can be adjusted manually, however we are working

on a framework where an online scale estimation algorithm

is included. The robustness of the designed controller allows

the system to handle a relative scale error of around ±20%.

The rotational drift in the map does also lead to instability

if not considered. At the moment this problem is solved by

automatically re-aligning the inertial coordinate frame every

40 cm. For that the helicopter has to be stabilized until its

pose is approximately horizontal. This is done by observing

the RMS value of the last 30 position errors (around 1.5

s). When this value is beneath a certain threshold (0.06

m) we can assume that the pose is horizontal (±0.02 rad

in the tilt angles). In order to retain a smooth position

estimates an offset on the SLAM position is introduced and

adapted at each re-alignment. The entire procedure limits the

progressive speed of the MAV and leaves the mapping thread

of the SLAM algorithm some time to expand the map.

VII. RESULTS AND DISCUSSION

In Fig. 12 the flight path of 60 seconds hovering can

be seen. Note that during hovering no keyframes have to

be added and the SLAM algorithm can focus on position

tracking. The position error has an RMS value of 2.89 cm

in x, 3.02 cm in y and 1.86 cm in z, what yields an absolute

error value RMS of 4.61 (see Fig. 11 and Fig. 12).

The platform is also able to fly to desired setpoints. For

that the path is split into waypoints. The distance between

them is chosen so that the helicopter can re-align the orienta-

tion of the inertial coordinate frame at each waypoint. Here,
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that the tracker cannot find enough features disabling the

localization. In big maps the mapping thread consumes too

much calculation power for new keyframes, preventing the

tracking thread from updates.

The achieved results show that our platform can au-

tonomously fly through a larger unknown indoor environ-

ment with high accuracy. The system is robust against

external disturbances and can handle modeling errors. Some

outdoor tests confirm the controller’s robustness, which was

able to handle quit strong changing winds.

VIII. CONCLUSION

This paper presented a vision based MAV control ap-

proach. The pose was estimated by means of the visual

SLAM algorithm of Klein et al. with a precision of a few

centimeters. This was then used to stabilize the position of

the vehicle. Based on a control input transformation and on

the linear LQG/LTR procedure, a controller was designed.

The resulting platform successfully managed to hover and

follow desired setpoints within an indoor laboratory. For that

it does not need any prior information on the environment.

After the initialization, a map of the surroundings was built

incrementally, wherein the MAV was able to localize itself

without any time-drift. Apart from some minor map drift

the vehicle can control its position up to a few centimeters

of error (RMS around 2-4 cm). We successfully built an

autonomous MAV platform which is able to navigate in an

unknown and unstructured environment in a very robust and

accurate way.
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