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Abstract— Tactile information is valuable in determining
properties of objects that are inaccessible from visual percep-
tion. In this work, we present a tactile perception strategy that
allows any mobile robot with tactile sensors in its gripper
to measure a set of generic tactile features while grasping
an object. We propose a hybrid velocity-force controller, that
grasps an object safely and reveals at the same time its
deformation properties. As an application, we show that a robot
can use these features to distinguish the open/closed and fill
state of bottles and cans – purely from tactile sensing – from
a small training set. To prove that this is a hard recognition
problem, we also conducted a comperative study with 17 human
test subjects. We found that the recognition rate of the human
subjects were comparable to our robotic gripper.

I. INTRODUCTION

Humans have a remarkable sense of touch that enables
them to explore their environment in the finest detail [8].
Haptic feedback provides subtle cues about the environment
that cannot be obtained from any other perceptual sensors.
Tactile feedback allows us to localize objects in our hand,
determine their rigidity as well as other material properties,
and even their identity. Consider, for example, the task of
choosing fruit. The response of the fruit quickly lets us figure
out whether it is ripe. This is particularly true for fruits
like peaches or avocados whose color is often not a good
indicator of their ripeness.

Tactile sensors provide robots an additional means of
sensing the environment. They range from simple contact
sensors that provide binary information about whether the
robot is in contact with the environment to more complex
arrays of sensors that provide pressure sensing at a resul-
tion comparable to human finger tips. Force-torque sensors
mounted on the wrist of a robot are also often used to
provide tactile information about the environment, but can
only measure forces after an object has been safely grasped.

At the moment, the information provided by contemporary
tactile sensors tends to be lower resolution and covers a
smaller area compared to visual perception, and therefore
requires different algorithms. Furthermore, the sensor must
be actively controlled to explore the environment in contrast
to visual sensors.

Over the past few years, several promising approaches
have been developed on the technological or sensor side.
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Fig. 1. Left: A mobile manipulation robot grasping a bottle estimates
the internal state of the grasped object from its tactile appearance. Right:
Comparative study on tactile performance with human test subjects.

Artificial skins that measure orthogonal pressure at spatial
and temporal resolutions comparable to human skins are
often composed of elastic, conductive or resistive polymers,
which change their electrical properties depending on the
applied pressure. They can, in principle, be manufactured
to cover larger parts of a robot at relatively low cost.
Several research groups have reported [7], [9], [10] success
in wrapping substantial parts of the surface of their robots
using such sensors, for example, to ease human-machine in-
teraction or to improve the robustness of object manipulation
tasks. Tactile sensing has most often been used for object
recognition or localization.

In this work, we will present a novel approach that uses
the tactile information for estimating the state of the object
to be manipulated, before the object actually is lifted. We
gain this information from the temporal response of the
object to an applied force profile during grasping. This
information can then be used both for low-level motor control
or higher-level motion planning algorithms with the aim
to make object manipulation more robust. For example,
an appropriate gripping force, manipulation speed, or other
constraints can be imposed, in order to neither spill liquid
nor crush the bottle.

We apply this approach to the particular case of dis-
criminating among different types of liquid containers, like
bottles and cans. We show excellent results in terms of
discriminating among the container classes. Furthermore, we
show that we can estimate the internal state of the object,
indicating whether it is closed or open and empty or full.
We compare the results from these experiments to human-
study experiments, where human subjects were asked to
discriminate among the same set of objects.
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A. Related Work

Several studies have shown that humans are very good
at modulating the applied grasp force in relation to the
expected load force [8]. Even during dynamic motions such
as walking or running, humans always apply the minimum
force required to hold an object safely. These coordinative
constraints simplify the control by reducing several degrees-
of-freedom during the manipulation tasks. Tactile perception
hereby plays an essential role: In experiments with humans, it
was shown that the test subjects exerted much more gripping
force than actually was needed when their fingertips are
anesthetized, even if visual feedback was available [14].

Different tactile sensor principles for robots have been
explored in the past, such as pressure-sensitive conduc-
tive polymers [26], piezo-resistive sensors [6], piezo-electric
vibration sensors [15], and capacitive sensors which can
additionally measure sheer force [3] or temperature [2]. A
good survey on the different approaches can be found in [25].

Tactile sensors have been used in the past to explore the
3D shape of objects [1]. Others have used tactile sensors to
detect ridges and bumps in the material [16] by sliding the
robotic finger over an object to estimate the material from
the obtained frequency spectrum [4]. Sensors based on piezo-
electric vibration have been used to determine the hardness or
softness of probed biomaterials [17]. Force-sensitive fingers
have been used to control the robot’s position [5], i.e.,
to continuously keep the finger in physical contact while
moving the object. It has also been shown that tactile sensors
can be used to estimate the 3D pose of objects with known
shapes [18]. Russel et. al. used a tactile sensor matrix for
object classification [22]. Their approach extracts geometric
features like point, line, or area contacts and integrates them
over time to classify the objects into generic classes such as
boxes, spheres, cylinders, etc. Later, Russel [23] showed that
a similar approach can also be used for object classification
using an 8-whisker tactile sensor on a robotic gripper. Recent
work on object recognition [24] used tactile sensing to gain
low-resolution intensity images of an object. These images
were then used in a bag of features approach from computer
vision to recognize objects of different shapes and sizes.
The authors also presented an active controller that could
determine the next best action to execute to maximize the
information gained.

A few prior works [12], [13] exist on estimating the
friction coefficients such that slippage and crushing are
avoided. Maeno [12] gives a good overview over existing
techniques and describes how their system estimates these
values from the tangetial forces while pushing a tactile sensor
into a surface.

Our approach differs from previous approaches as our aim
of estimation is different. To the best of our knowledge, we
are the first to estimate the state of a container based on
tactile observations. We propose a small set of generic tactile
features that can easily be computed for a gripper that is
equipped with tactile sensors. Another contribution of this
paper is that we provide a human study in which we asked

human subjects to perform the same recognition tasks as the
robot. The results of this study illustrate the difficulty of the
recognition task.

II. APPROACH

A. Requirements

For our approach, we assume a mobile manipulator with a
force-sensitive gripper. At each point in time, we assume that
the gripper can measure its position p(t) ∈ R, velocity ṗ(t) ∈
R and the force f(t) ∈ R sensed by fingertip sensors. In this
section, we formulate our approach based on the presence of
this set of sensor inputs.

We also assume the existence of a controller that can apply
the required force profile and measure the necessary features.
An important requirement for this controller is that it should
not damage the objects but still should be able to grasp the
object firmly. These requirements necessiate the design of a
specialized controller, that we describe in Section III.

B. Feature selection

Consider the schematic drawing in Fig. 2 of force-distance
profiles that we obtain while grasping objects using our
controller described in Section III. From preliminary ex-
periments, we identified two important points in time: the
moment the gripper makes first contact with the object
tfirst and the time tsteady after which the sensor values have
converged (and the grasp is stable). In practice, we require for
the first contact detection that both fingers are in contact with
the object, i.e., that the force measurement of both fingers
is above a certain threshold τ1. With tsteady, we then denote
the point in time where the gripper comes to rest, i.e., its
velocity drops below a certain threshold τ2.

tfirst = arg min
t
|f(t)| < τ1 (1)

tsteady = arg min
t>tfirst

|ṗ(t)| < τ2 (2)

At moment tfirst, we extract the first contact distance
pfirst = p(tfirst). Note that this is a measure of the uncom-
pressed size of the object. The second feature is the distance
between the two fingertips after the gripper has compressed
the object fully. We label this the steady state distance

psteady = p(tsteady). (3)

Note that this distance is a function of both the material and
geometric properties of the object and of the internal state
of the object, i.e. whether the object is open or closed and
full or empty.

Another useful feature is the time that it takes between
making contact with the object and coming to a rest, denoted
by

∆t = tsteady − tfirst. (4)

Two other useful features are the average velocity ∆p/∆t
of compression and the average rate of change of the fingertip
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Fig. 2. The set of features chosen for use in the recognition task.

center sensor force ∆f/∆t, which can be computed from the
features from above as follows:

∆p/∆t = (psteady − pfirst)/∆t (5)
∆f/∆t = (fsteady − ffirst)/∆t. (6)

The average velocity ∆p/∆t represents the rate at which
the object gets compressed and can differ based on the
material properties and the geometry of the object. Equiva-
lently, ∆f/∆t could be thought of as representing an average
compression ratio.

We have now defined a set of 6 generic features that can
be easily extracted by the robot while grasping an object,
see Tab. I. We do not claim that this list is complete, but as
we will show in Section III, we were able to recognize the
object class and its internal state from these features alone.

C. Training data

We have gathered data for a large number of different
objects. For each trial, we obtained measurements for our
6-dimensional feature vector a ∈ R6, i.e.,

a = (pfirst, psteady, fsteady,∆t,∆p/∆t,∆f/∆t)T , (7)

and a label c ∈ C containing the object’s class and internal
state. As a result, we get a training database D containing a
set of attribute-class tuples (a, c).

D. Decision tree classifier

Subsequently, we have applied a C4.5 decision tree clas-
sifier on our training data [27]. We have also tried other su-
pervised classifiers, like support vector machines and neural
networks, from which we obtained similar (or slightly worse)
results. The reason for this might be that all algorithms
are able to extract almost the same amount of data from
the training set. The advantage of decision trees over other
classifiers is that the learned concepts can intuitively be
interpreted.

The C4.5 decision tree classifier [21] is an extension of
the ID3 algorithm. In addition to that, C4.5 can deal with
continuous attributes.

Decision tree induction is an iterative process: it starts
by selecting an attribute that most effectively splits the data
according to their data classes. Typically, the information
gain (which is the reduction in entropy) is used as a measure

feature description
pfirst the first contact distance
psteady distance after which grasping is complete
fsteady force sensed after grasping has completed
∆t duration of the grasping
∆p/∆t average compression velocity
∆f/∆t average compression ratio

TABLE I
GENERIC SET OF FEATURES THAT CAN BE USED TO CLASSIFY AN

OBJECT BEING GRASPED.

for selecting the split. The entropy H of a set D is defined
as

H(D) = −
∑
c∈C

p(c) log p(c), (8)

where p(c) is the probability of target class c in the training
set, i.e.,

p(c) =
1
|D|

∑
(a,c)∈D

1. (9)

As all our attributes are continuous, a split s is defined by
a split value svalue for a particular split attribute sattr, i.e., the
training set D is divided into two subsets

D≤ := {(a, c)|asattr ≤ svalue, (a, c) ∈ D} (10)
D> := {(a, c)|asattr > svalue, (a, c) ∈ D} . (11)

From all possible splits, C4.5 now selects the one with the
highest information gain, i.e.,

s = arg max
s∈S

IG(D, s), (12)

where the information gain (IG) is defined as the reduction
in entropy of the resulting sets compared with the initial set:

IG(D, s) := H(D)−H(D|s), (13)

where the conditional entropy H(D|s) is defined as

H(D|s) = H(D≤)p(≤) +H(D>)p(>). (14)

Each split s corresponds to a node of the decision tree
with two children. The same procedure is then repeated
for the resulting subsets D≤ and D>, until the leafs are
homogeneous with respect to the target class, i.e., the entropy
in the dataset of the leaf is zero.

Another important step after training is pruning, to avoid
overfitting to the training data. This is done by replacing
a whole subtree by a leaf node if the expected error rate
(computed on a test dataset hold out during training) in the
subtree is greater than in the single leaf [27].

III. EXPERIMENTS

A. Hardware

The hardware used for the experiments in this paper is part
of the PR2 personal robot. The PR2 is a two-armed robot
with an omni-directional base. It has an extensive sensor
suite useful for mobile manipulation including a tilting laser
scanner mounted on the head, two pairs of stereo cameras,
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Fig. 3. Left: The experimental setup showing the gripper mounted on a
stand. Right: Some of the bottles and cans used for our experiments. From
left to right: Odwalla fruit juice bottle, water bottle, Naked fruit juice bottle,
Coke can.
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Fig. 4. Calibration data relating raw sensor values to forces calibrated
using a load cell.

an additional laser scanner mounted on the base and an IMU
mounted inside the body. Encoders on each joint also provide
continuous joint angle information. Each arm also has an
additional camera mounted on the forearm. The camera is
mounted so that an object grasped by the hand is within its
field of view.

Figure 3 shows the parallel plate gripper mounted on
both arms of the robot. The gripper has a single actuator, a
brushless DC motor with a planetary gearbox and an encoder.
The transmission function between the rotary displacement
of the actuator and the lateral displacement of the two fingers
is known. A separate load cell was used to calibrate the
gripper. It can apply a maximum force of 200 N but is
software limited to 100 N. This was also approximately the
amount of force that a human can apply by pinching his/her
forefinger and thumb together. Each gripper has a capacitive
sensor consisting of 22 individual cells mounted on each
fingertip. A 5× 3 array is mounted on the parallel gripping
surface itself while 2 sensors are mounted on the tip of the
fingertip and one on the back. Two sensor arrays with 2
sensors each are mounted on each side of the fingertip.

The capactive pressure sensors respond to the normal
forces exerted on them. They were calibrated by using a
load cell to measure the net force applied by the gripper and
comparing it to the net force sensed by the fingertip sensors.
The calibration curve for the two fingertip sensors is shown
in Figure 4. Here, the raw sensor values for the fingertip
sensors are computed by adding up the sensor values for the
individual sensors on the grasping face of the sensor. The
calibration data is stored in a lookup table that can be used
to convert raw sensor values to the actual force sensed by
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Fig. 5. Measured net fingertip force (N) for grasping a wooden block and
a rubber toy when using a pure force controller. The high impact forces can
destroy delicate, but rigid objects, like eggs.

the fingertip sensors.

B. Controller

We explored different controllers for the gripper to achieve
the objective of grasping objects without crushing them. A
pure velocity controller cvelocity(ṗ(t), t) makes the gripper
approach an object slowly, but after it contacts the object,
it increases its force output in order to establish a constant
velocity ṗtarget, and thereby crushes the object.

Another option is to use a force controller cforce(f(t), t).
Such a controller can hold an object in the hand firmly, by
trying to apply a constant force ftarget. With a constant force
controller, the gripper continuously accelerates until contact
is achieved. This can lead to high velocities at impact. As an
example, see Figure 5, where the the gripper was grasping
a very rigid object (here, a wooden block). The significant
impact force applied to the object on contact can easily
damage rigid, but delicate objects, like eggs [19]. Of course,
the applied constant force could be reduced to deal with
such cases. In practice, however, if the commanded force
is below the force required to overcome static friction, the
gripper does not move at all.

Driven by these considerations, we chose to create a
compound controller: first, we close the gripper slowly
around an object using the velocity controller until it makes
contact with the object. Then, we switch seamlessly to the
force controller in order to close gently to measure the
object’s deformability properties. This hybrid controller has
two parameters: both the initial velocity ṗtarget and its probing
force ftarget have influence on the executed grasp.

cgrasping(t) =
{
cvelocity(t, ṗ(t)) while f(t) = 0
cforce(t, f(t)) thereafter (15)

The result of the hybrid velocity-force controller can be
seen in Figure 6. Here, a wooden block was grasped by
the gripper using the new controller. The peak force acting
on the object is significantly lower. Further, this controller
was successful in grasping eggs without crushing them. A
movie showing the comparison between an open-loop effort
controller and the closed-loop grasping controller can be seen
at [19].
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Fig. 6. Fingertip distance and fingertip force vs. time plots showing the
reduced impact forces using the hybrid controller. First contact happens at
about tfirst = 6 seconds followed quickly by a steady state at about tsteady
= 6.75 s where fingertip distance stays constant. The probing effort is set to
23 N. Note that the fingertip force does not spike above the desired probing
force on impact.

C. Experimental setup

Using the controller described in Section III, we proceeded
to get data on different types of objects. We chose to work
with a variety of liquid containers. We chose containers that
contained 2 different brands of juices (Odwalla and Naked),
water bottles and multiple soda cans (Figure 3(right)). The
gripper was mounted on a stand so that it would stay
immobile and could grasp each container at a fixed height
above a planar table surface, see Figure 3 (left).

The acquisition of training samples started with the gripper
fully open. The containers were placed one at a time between
the gripper fingertips. The gripper was then closed using
the hybrid force velocity controller described earlier. As the
gripper closed, it was possible that one of the fingertips
came into contact with the object before the other one.
This was taken into account in the controller, which always
looked for contact on both fingertips before concluding that
the object was in the initial state of grasping. Contact was
determined by using a threshold value on the net force sensed
by each fingertip. On contact, control was switched to a
constant force control. Once the gripper came fully to rest,
the controller waited for a small interval of time before
opening the gripper fully. During each trial, the features
described in Sec. II were extracted and written to a file.

D. Objects and Internal States

The container classes present in the training set are the
following:

1) Odwalla fruit juice bottles
2) Naked fruit juice bottles
3) Soda cans
4) Water bottles

The internal states that we would like to differentiate are
the following:

1) closed and full
2) closed and empty
3) open and full
4) open and empty

TABLE II
CONFUSION MATRIX FOR RECOGNIZING THE CLASS OF THE CONTAINER,

WITH fTARGET = 20 N. THE RECOGNITION RATE IS 93.9 %.

a b c d
58 1 0 1 a = Odwalla fruit juice bottles
8 40 0 0 b = Naked fruit juice bottles
0 0 41 3 c = Softdrink cans
0 0 1 76 d = Water bottles

E. Data acquisition using the robotic gripper

With our robotic gripper, we collected data for each of
the internal states for each container class. We carried out
a total of 66 trials with 12 Odwalla fruit juice bottles in 4
different internal states, 80 trials with 16 water bottles in 4
different internal states, 42 trials with 12 cans that only had
3 different internal states, and 41 trials with 10 Naked fruit
juice bottles. We used different instances of each container
class in collecting the data to account for variations within
a container class. We also rotated the containers around
between taking measurements to take account of variations
in surface properties of individual containers with changes
in orientation with respect to the gripper fingertips. All this
data was collected with the probing force set at 20 N.

We also collected a subsequent dataset just for the Odwalla
fruit juice bottles using three different probing forces of 17,
20 and 23 N. This involved conducting 24 trials for each
internal state for a total of 96 trials for all the 4 nodes for
each probing force.

F. Classification results

The two aims for the classification task were: (a) recognize
the different container classes and (b) recognize the internal
state within each class that would indicate whether the
container is full or empty and open or closed.

To test our classifier we used ten-fold cross validation for
each experiment, i.e., first the stratified dataset was divided
into 10 parts. Then we learned the classifier on 9 parts, and
used it subsequently to classify the test instances from the
remaining part. This was repeated each of the ten folds,
such that we ended up with target class predictions for
all instances in the dataset. Finally, the predictions were
compared to the true target class, and the recognition rate
was computed as the ratio between correctly and incorrectly
instances.

Table II shows the confusion matrix for recognizing the
different container classes. Note that the size pfirst of the
different containers is a discriminative attribute for the dif-
ferent containers, yet two sets of containers (Naked and
Odwalla fruit juice juice bottles) have similar sizes. They
can, however, be distinquished by using fsteady, the net force
reported by the fingertip sensors at full compression.

As the results show, our approach had a 93.9 % accuracy
in recognizing the different sets of liquid containers. The
most confusion was in discriminating between the Odwalla
fruit juice bottles and Naked fruit juice bottles. Note that this
recognition could have been easily performed using image
based feature recognition as well. Our approach is not meant
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TABLE III
RECOGNITION RATE OF THE INTERNAL STATE, PER CONTAINER CLASS,

WITH fTARGET = 20 N.

Object Class Recognition Rate
Odwalla fruit juice bottles 83.3%
Naked fruit juice bottles 58.3%
Softdrink cans 74.4%
Water bottle 32.5%

TABLE IV
RECOGNITION RATE, DEPENDING ON THE PROBING FORCE PARAMETER

fTARGET , FOR THE ODWALLA FRUIT JUICE BOTTLES.

ftarget Recognition Rate
17 N 69.8%
20 N 83.3%
23 N 94.8%

to compete with such approaches but is meant to complement
other approaches and to be used for confirmation of the
hypothesis from visual perception.

In the second part of our evaluation, we have evaluated
the recognition rate of the internal state of a container, given
its class (see Table III). We found, that the recognition rate
strongly depends on the particular container. This result is
not surprising, as obviously feeling the internal state of a
container strongly depends on how well it manifests its
internal state to the outside, i.e., in its tactile appearance.
Interestingly, we found that the Odwalla bottles were sepa-
rable the easiest. Their internal state was estimated correctly
at 94.8%, compared to 58.3% for Naked bottles, 74.4% for
cans and only 32.5% for water bottles. The reason for the low
performance on water bottles could be that they are made of
very flimsy plastic and tend to deform unpredictably.

We also found, that the recognition rate was a function
of the parameters of our hybrid controller. While the influ-
ence of the initial grasping velocity ṗtarget was negligable,
we found that choosing a good probing force ftarget could
improve the recognition substantially, see Table IV. This
parameter determines how hard the gripper probes into the
object, and should therefore be carefully selected according
to the object class. In the case of the Odwalla bottle, we
found, for example, the stronger probing force of ṗtarget =
23N to be more informative than weaker ones, yielding a
mode recognition rate of 94.8%.

In a combined experiment, where we let the robot estimate
both the container class and the object internal state except
for water bottles (resulting in 11 possible combinations), we
obtained a recognition rate of 63.8%.

The confusion matrix for the specific case of recognizing
the internal state of an Odwalla bottle is shown in Table V.

It is interesting to note that the open and full bottle
tends to be compressed for the longest time, i.e., ∆t is
large. The steady state force fsteady differentiates between
the open and empty bottle and the empty and closed bottles
while the steady state distance psteady differentiates the closed
and full bottle very easily. However, when we repeated this
experiment with bottles that had been subjected to repeated

TABLE V
CONFUSION MATRIX OF OUR APPROACH FOR RECOGNIZING THE

INTERNAL STATE OF AN ODWALLA FRUIT JUICE BOTTLE FROM THE

TACTILE APPEARANCE USING A ROBOTIC GRIPPER (fTARGET = 23 N).
THE RECOGNITION RATE IS 94.8%.

a b c d
24 0 0 0 a = full closed
0 20 1 3 b = empty open
0 0 24 0 c = full open
1 2 0 21 d = empty closed

compressions, the recognition rate decreased again to 81 %.
This is not surprising considering that the classifier was
trained on data from fresh bottles while the testing was now
done with bottles that had been subject to repeated stress.
A movie showing the system recognizing the internal state
of a set of bottles using the learned classifier can be found
in [20].

IV. HUMAN STUDY

The experimental results show that the robot could do
reasonably well in terms of recognizing both the container
class in the first series of experiments and internal state of
an object in a second series of experiments.

We designed a human study to compare the performance
of the robot to that of humans for the internal state estimation
problem. The study was designed to find out if, using only
tactile feedback, humans could achieve comparable recogni-
tion rates for the task of recognizing the internal state of an
object. Figure 1 (right) shows the experimental setup used for
the human study. Test subjects were asked to recognize, using
only tactile information from squeezing a bottle, the internal
state of the bottle. They were provided the opportunity to
train beforehand until they were confident about their ability
to discriminate between the different internal states of the
bottles. Each test subject was then asked to identify the
internal state of 16 different bottles sequenced in a random
order. The subjects were instructed not to move or pickup
the bottles and could not see the bottles while they were
grasping them. To simulate the two-fingered grasp used by
the gripper, the test subjects were asked to use only their
thumb and index finger for the grasping task. Additionally,
noise-canceling headphones were used to minimize the sound
cues that subjects could pick up. There were a total of 17
test subjects.

Table VI shows the overall confusion matrix for all the
trials together. The average recognition rates for all the
subjects was 75.2%. The highest recognition rate was for
bottles that were full and closed. There was considerable
confusion between the empty/closed and full/open bottles.
Based on a questionnaire filled out by the subjects at the
end of the test, we found that most subjects were using
features similar to the ones chosen for the learning approach.
The two most cited features by the human subjects were the
total compression distance and but also the rate at which
the bottle returns to its original shape. The second feature
is easier for humans to detect than the robot since the
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TABLE VI
OVERALL CONFUSION MATRIX FOR ALL HUMAN SUBJECTS FOR

RECOGNIZING INTERNAL STATE OF AN ODWALLA FRUIT JUICE BOTTLE.
THE RECOGNITION RATE IS 72.2%.

a b c d
48 8 5 0 a = empty open
5 41 1 3 b = empty closed
16 11 55 2 c = full open
2 8 7 63 d = full closed

grippers on the robot are not easily back-drivable. The most
successful test subjects cited a different set of features to
discriminate between the bottles. They used high-frequency
feedback from tapping the bottle with their fingers to detect
the presence or absence of liquid in the bottle. At present
the sensors on the robot are inadequate to gain this kind of
information.

V. CONCLUSION

In this paper, we have presented an approach for es-
timating the internal state of objects being grasped by a
mobile manipulator by using tactile sensors. We proposed
a set of simple features that can be easily extracted from
tactile sensing and proprioception. In experiments carried
out on real data, we have shown that both the object class
as well as its internal state can be estimated robustly. In
a direct comparison experiment, we have shown that the
robot’s performance is of the same magnitude as human
performance. The robot’s performance improved with an
increase in the magnitude of the probing force used for
detection, presumably since this rendered the features used
for detection more discriminative.

Despite these encouraging results, there are several di-
rections for future research. Detection would clearly benefit
from better sensors, for example with the ability to sense
lateral forces with higher temporal resolution. An interesting
approach that could be examined in the future includes the
use of high-frequency signals and the haptic response from
objects to such signals [11]. Temperature sensors in the
gripper might also provide additional information to aid the
recognition task.
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