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Abstract— For robotic manipulation tasks in uncertain envi-
ronments, good force control can provide significant benefits.
The design of force or torque controlled actuators typically
revolves around developing the best possible software control
strategy. However, the passive dynamics of the mechanical
system, including inertia, stiffness, damping and torque limits,
often impose performance limitations that cannot be overcome
with software control. Discussions about the passive dynamics
are often imprecise, lacking comprehensive details about the
physical limitations. In this paper, we develop relationships
between an actuator’s passive dynamics and the resulting
performance, for the purpose of better understanding how to
tune the passive dynamics for a force control task. We present
two distinct scenarios for the actuator system and calculate
the required input to produce a desired output. These exact
solutions provide a basis for understanding how the parameters
of the mechanical system affect the overall system’s bandwidth
limit. Our model does not include active control; we computed
the optimal input to the system to produce the required torque
at the load with zero error. This is important so that our results
only reflect the physical system’s performance.

I. INTRODUCTION

Robots excel at precise position control and are useful for

tasks that make use of this ability, such as CNC machining.

However, physical interaction tasks such as catching a ball,

walking, running, grasping unknown objects, constrained

contact and even simple force or torque control have histor-

ically been difficult for robots. Each of these tasks involve

dynamic effects such as unexpected impacts and/or a sig-

nificant transfer of kinetic energy between the robot and its

environment. Animals far outperform robots at many of these

tasks, and we contend that this is due to inherent mechanical

limitations in traditional robotic mechanisms rather than

software control inadequacies. This paper focuses on how an

actuator’s passive dynamics affect force or torque control.

Consider a traditional industrial robot arm, powered by

electric motors with large gear reductions and rigid links. The

traditional approach to force control utilizes such an arm,

with a force sensor placed at the end-effector. Forces are

measured, software controllers calculate the desired motor

torques and the motors move accordingly. However, the

motors have inertia, which is amplified through the gearbox

into a significant reflected inertia, and combines with torque

limitations on the motors to limit their acceleration. These

passive dynamics cannot be overcome using software control.
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Fig. 1. The system we investigate in this paper is entirely rotational and
includes damping, elasticity, motor inertia and torque limits. The actuator
is constrained such that only θm and θL can move.

If an object impacts the arm, such as a baseball, the motors

will have no chance to respond, the arm will behave as a

rigid inertial object and the software control will have no

part in its dynamic response.

Passive dynamics are not always harmful. As an example

of passive dynamics improving performance, a mechanical

spring in series with a motor can dramatically improve

force control bandwidth in response to position disturbances.

However, this improvement applies only to the specific case

of force control and its robustness to position disturbances;

a series spring will reduce the performance of the system

for position control. For peak performance in a robotic

system, the passive dynamics must be tailored to the specific

task. This is roughly analogous to impedance matching in

electrical systems.

In this paper, we lay out a mathematical framework for

mechanical systems that includes a motor with inertia and

torque limits, a series spring and a series damper, as shown

in Fig. 1. We investigate two examples; applying constant

force to a moving object and applying changing force to a

stationary object. We then describe the mathematically opti-

mal passive dynamics required to achieve the best possible

bandwidth, based on fundamental physical limits. Based on

this work, roboticists will be able to estimate that a mechani-

cal system has the bandwidth necessary for a particular task,

especially tasks involving force or torque control, spring-like

behavior, impacts and kinetic energy transfer.

II. BACKGROUND

Muscular systems in animals incorporate elastic elements,

which are most often examined while investigating loco-

motion, and are generally discussed in the context of en-

ergy storage [1][2][4][7]. Roboticists have built machines

designed to mimic this spring-like behavior [5][9]. Although

the designers of these running machines acknowledge that

elasticity provides robustness, their studies generally focus
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on energy storage and efficiency, with little attention to force

control.

Early investigations into force control found that series

compliance in an actuator can increase stability, and in some

cases is required for stable operation [15][11]. Researchers at

the Massachusetts Institute of Technology (MIT) Leg Labo-

ratory explored these ideas and created an actuator designed

specifically to include an elastic element as a force sensor

and low impedance coupling between the drive system and

the load to improve force control. The system is aptly dubbed

a series elastic actuator (MIT-SEA) and it has been shown

that this configuration provides filtering to handle shock

loads as well as higher resolution/bandwidth force control

[8][10]. MIT-SEAs offer great advantages, however, there

are only approximate guidelines for choosing an appropriate

spring. Further work to improve the MIT-SEA has focused on

control architecture [16][13] or transmission design [14][12].

Chew et al. proposed a similar actuator design using a

viscous damper in place of the elastic element, dubbed a

series damper actuator (SDA) [3]. They hypothesize that

using damping, rather than elasticity, allows for greater

bandwidth, and can be easily constructed to allow a variable

damping coefficient. They admit that the main disadvantage

of the SDA is the energy dissipation property, which limits

the energy efficiency of the design. The developers of the

SDA do not provide concrete relationships between damping

and bandwidth, but present a conjecture relating the two.

A hybrid of the SDA and MIT-SEA has been proposed

by Hurst et al. [6]. They concluded that the added damping

provides higher bandwidth than a purely series-elastic ele-

ment and reduces unwanted oscillations in specific situations.

Initial force spikes observed by the drive system at impact

are greater than would be observed by just an elastic element,

but are still much less than for a perfectly stiff system.

III. SYSTEM MODEL

In this paper, we define relationships between series

stiffness, series damping, drive system inertia and the drive

system torque limits in specific experimental scenarios. To

simplify the discussion, we use “motor” to describe the drive

system as a whole - transmission and motor characteristics.

The following symbols describe our model:

ω Angular frequency rad
s

k Spring constant N ·m
rad

B Damping constant kg·m2

s·rad

Im Motor inertia kg · m2

τm Motor torque N · m

τlimit Motor torque limit N · m

τL Load torque N · m

θm Motor angle rad

θL Load angle rad

θA Load angle amplitude rad

Our goal in this paper is to calculate the fundamental

limitations of the physical system. Our model does not

include active control; we compute the optimal input to

the system to produce a desired torque at the load. This is

an important distinction from previous attempts to develop

actuators of this nature. By eliminating controller error, we

are able isolate the physical limitations of our model.

To develop the relationships between an actuator’s design

parameters, we investigate the series elastic/damping actuator

(SEDA) in Fig. 1. Our actuator includes damping and elastic-

ity because they are both physically unavoidable and possibly

useful. We want to know how to select these elements (k, B

and Im) to design the best possible actuator around a force

or torque control task.

Our system model is entirely rotational because our lab,

the Dynamic Robotics Laboratory, is interested in developing

robots that use electric motors. However, the concepts in this

paper relate directly to force control as well as to torque

control. Roboticists designing actuators with linear drive

systems (such as hydraulic pistons) can use the relationships

presented in this paper to develop linear systems.

In addition to the reactive elements k and B, we include

motor torque limits as well as motor inertia. The torque limit

and motor inertia are important for the calculation of the

bandwidth. If infinite torque were possible, there would be

no requirements for designing the impedance of the actuator.

In other words, it would not matter how soft, or stiff, the

elements were, just as long as they existed.

In the case of zero motor inertia with motor torque limits,

the elastic and damping elements are no longer important.

The elements just need to exist to provide for transmission

of torque. In this case the largest torque the actuator could

produce at the load would be the torque limit. In either case

the system is optimal, has infinite bandwidth for any task and

the impedance of the actuator is irrelevant. Unfortunately,

this is not the case with real systems because all motors

have torque limits and rotor inertia.

IV. ACTUATION SCENARIOS

Each scenario is designed to show that there is an optimal

relationship between k, B and Im for a distinct task. This

paper focuses on simple, fundamental motions that might

be expected from a force or torque controlled actuator. The

goal is to relate k, B, Im and τlimit to the performance of

a robotic actuator under specific conditions.

To determine the effect of k, B and Im on the performance

of the system in any test scenario, we first solve for the motor

torque, τm, that produces the desired load torque, τL. If τm

remains below the motor’s peak torque limit, the system is

able to achieve the desired performance goals.

In most cases, as the frequency of a task increases, the

required motor torque increases and eventually meets the

motor torque limit. The function for the exact motor torque,

evaluated with torque limits, becomes the basis for describing

the relationships that parameters have on achieving the

maximum frequency of each task.
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To find the required motor torque, we start by defining the

differential equations that describe the motion of the system:

Imθ̈m = τm − τB − τk (1)

0 = τB + τk − τL (2)

where:

τk = k[θm − θL]

τB = B[θ̇m − θ̇L].

We then take the Laplace transform of (1) and (2), and

solve for the s-domain equation of the motor torque (Tm(s)).
With initial conditions ignored, this is calculated as:

Tm(s) = ΘL(s)
(

Ims2
)

+ TL(s)

(

Ims2 + Bs + k

Bs + k

)

. (3)

Equation (3) describes how the load motion and desired

load torque affect the required motor torque, where ΘL(s)
is the s-domain representation of the load motion and TL(s)
is the s-domain representation of the load torque. With this

equation, we can define any motion for the load and a desired

load torque and determine the exact requirement for the

motor torque. At steady state, this computed motor torque

will produce the torque at the load with zero error.

V. CHANGING TORQUE AGAINST A STATIC SURFACE

For the first task, our model applies a sinusoidal torque

to a fixed load (Fig. 2). We demonstrate how k, B and Im

affect the maximum frequency at which the actuator can vary

the applied torque. The maximum frequency for this case is

defined as the frequency that the actuator can oscillate the

torque at the load before steady-state error is encountered.

To evaluate the maximum frequency the actuator can

achieve under a given set of values for k, B and Im, we

consider the point where the motor’s torque becomes greater

than the torque limit. At this point the motor is no longer

able to produce the required torque to exactly generate the

desired τL.

To find the motor torque as a function of time, τm(t), we

define the motion of the load, θL(t) and the desired load

torque, τL(t). For this scenario, we hold the load position

constant (Fig. 2). We then define the desired load torque to

be a sinusoidal function with some angular frequency, ω, and

a fixed amplitude of 1 N · m. Note that the amplitude can

∆τL

k

B

θm

τm

Im

Fig. 2. For the first scenario, the load is fixed to ground (θL = 0) while
the motor attempts to produce the desired τL through the passive dynamic
elements k and B.

be greater or smaller without affecting the relationships as

long as it is less than the torque limit:

θL(t) = 0

τL(t) = sin(ωt). (4)

Taking the Laplace transform of τL(t) gives:

TL(s) =
ω

s2 + ω2
. (5)

Plugging equation (5) back into (3) and taking the inverse

Laplace transform, we find the τm(t) required to produce the

τL(t) defined in (4) at steady state (t ≫ 0):

τm(t) =

(

Imω3B

ω2B2 + k2

)

cos(ωt) (6)

+

(

ω2B2
− Imω2k + k2

ω2B2 + k2

)

sin(ωt).

If we consider the extremes of equation (6), we can

begin to draw conclusions about the motor requirements and

relationships between the passive dynamic parameters. One

extreme occurs when B = 0, and equation (6) simplifies to:

τm(t) =

(

1 −
Imω2

k

)

sin(ωt). (7)

Equation (7) implies that if the system has very little or

no damping, the only way to reduce the torque requirement

is to increase k or decrease Im.

In contrast, if the system has very little or no elasticity,

such that k ≈ 0, (6) simplifies to:

τm(t) =

(

Imω

B

)

cos(ωt) + sin(ωt). (8)

Equation (8) implies that to reduce the torque requirement,

increasing B or decreasing Im are the only options.

Comparing (7) and (8), we note that as the frequency

increases, B has a much greater effect than k on reducing

the required motor torque.

The graphs in Fig. 3 show the maximum frequency the

system can achieve for a set of parameters k, B and Im.

We arbitrarily set τlimit = 10 for each graph and hold Im

constant for Fig. 3(a) and Fig. 3(b). The graphs demonstrate

the effects of modifying the various parameters of equation

(6).

It follows from these equations that increasing stiffness

provides higher bandwidth for applying varying torques to

a fixed load. The equations indicate that there is an inverse

relationship between the maximum frequency and the motor

inertia (as shown in Fig. 3(c)). An increase in k or B will

increase the bandwidth but an increase in Im will decrease

the bandwidth.
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(a) : Frequency achieved vs. series elasticity, k. Increasing the
elasticity slowly increases the maximum frequency.
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(b) : Frequency achieved vs. series damping, B. Increasing the
damping increases the maximum frequency.
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(c) : Frequency achieved vs. motor inertia, Im. Increasing the
inertia greatly decreases the maximum frequency.

Fig. 3. Performance of the series elastic/damped actuator applying a
sinusoidal torque against a stationary load (Fig. 2). The maximum frequency
occurs at the point where the load torque error exceeds 0. For reference,
the squares on each figure indicate where the system is critically damped.
For figures 3(a) and 3(b), Im = 3.
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Fig. 4. For the second scenario, the load is forced to move by θL while the
motor attempts to keep the load torque, τL, zero with the passive dynamic
elements k and B.

VI. ZERO TORQUE AGAINST A MOVING LOAD

The second task requires the actuator to maintain zero

torque against a moving load (Fig. 4). We again demonstrate

how k, B and Im affect the maximum frequency, which

we define for this task as the frequency at which the load

position can oscillate before a prescribed torque error at the

load is exceeded. This situation might occur if the goal of the

actuator is to keep contact with an object, while maintaining

a constant applied torque. An example of this task might be

carrying a coffee cup while walking or the iso-elastic system

in a Steadicam. Note that there is no inertia at the load, as

its motion is predefined and is not affected by the applied

torque.

We start by looking at the point where the torque required

of the motor becomes greater than the torque limit. For this

task we want to find the motor torque as a function of time,

τm(t), for a predefined motion of the load, θL(t) and the

desired load torque, τL(t). For this scenario, we hold the

load torque constant at zero. We then define the desired

load position to follow a sinusoidal function at some angular

frequency, ω, and an amplitude of θA (Fig. 4)

θL(t) = θAsin(ωt) (9)

τL(t) = 0.

Taking the Laplace transform of θL(t) gives:

TL(s) = θA

ω

s2 + ω2
. (10)

Plugging (10) back into (3) and taking the inverse Laplace

transform we find the τm(t) required to produce the τL(t)
defined in (9) at steady state (t ≫ 0):

τm(t) =
(

−θAImω2
)

sin(ωt). (11)

Intuitively this shows that for the motor to exactly produce

zero torque at the load, it would have to generate a torque

that would cause the motor position (θm) to exactly follow

the load position (θL). We can also conclude that k and B do

not matter when trying to follow the load motion. Instead,

the only parameter we have for reducing the motor torque

requirement is the motor inertia.

However, it may be more useful to measure the load torque

within some error tolerance. To actually investigate how k

and B affect the system, we now assume that there can be

error in the load torque. To produce an error, we take the

optimal output defined in (11) and clip it when the torque

limits are encountered as shown in Fig. 5(a).
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needed to produce zero error. The limited input results from the
torque limit being applied to the ideal input.
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(b) The resulting load torques from the inputs in Fig. 5(a). Notice
how the limited motor torque, τm, no longer generates zero torque
at the load, τL.

Fig. 5. Example load torque, τL, responses to an ideal and limited motor
torque, τm, generated while attempting to apply zero torque against a
moving load. Im = 0.4, k = 10, B = 1 and τlimit = 10.

With the limited τm as the input, we can find the response

at τL. This new response contains an error for which we

can choose a threshold based on system requirements. We

can now use the error threshold as a metric for defining the

maximum frequency the actuator can provide zero τL. The

response now also depends on k and B. Fig. 5(b) shows an

example of how τL responds to a limited τm.

To gain an understanding of how the actuator responds

with different passive dynamic parameters, we present the

graphs in Fig. 6. Notice that in this scenario, the maximum

achievable frequencies quickly become relatively low even

with modest values of k and B (Fig. 6(a) and Fig. 6(b)).

These graphs highlight the result that decreasing stiffness

provides higher bandwidth for tracking the load motion,

while maintaining acceptable output error. They also indicate

that there is an inverse relationship between the maximum

frequency, fmax, and the parameters, k, B and Im. In other

words, a decrease in k, B or Im increases the bandwidth.

Even as the stiffness increases to infinity (k,B → ∞), the

maximum frequency will never dip below:

fworst =

(

1

2π

) √

τlimit

θAIm

. (12)

Equation (12) was found by setting (11) equal to τlimit

and solving for frequency.

The frequency, fworst, represents the maximum frequency

the load motion can move at before the motor torque limit,

τlimit, is reached. For any frequency beyond fworst there

will be an error, whose magnitude depends on the inertia of

the motor, k and B. This frequency is plotted as the dashed

white line in Fig. 6(a) and Fig. 6(b).
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(a) : Frequency achieved vs. series elasticity, k. Increasing the
elasticity decreases the maximum frequency.
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(b) : Frequency achieved vs. series damping, B. Increasing the
damping decreases the maximum frequency.
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(c) : Frequency achieved vs. motor inertia, Im. Increasing the
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Fig. 6. Performance of a series elastic/damped actuator applying zero
torque against a moving load with some allowable error. The maximum
frequency is the point where the load torque error exceeds 1 N · m. The
white dashed lines in figures 6(a) and 6(b) are the worst case maximum
frequency, and occur when the system stiffness approaches infinity. For
figures 6(a) and 6(b), Im = 0.4.
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Fig. 7. Test platform for a single degree of freedom force controlled
actuator. The system tracks its output force by measuring the deflection in
its spring. Springs of varying stiffness can quickly be interchanged.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we derived the physical limitations of

actuators with passive dynamics that can be described by

the dynamic model shown in Fig. 1. Our model does not

include active control; we computed the optimal input to

the system to produce the required torque at the load with

zero or acceptable error. This is important so that our

results only reflect the physical system’s performance. These

exact solutions provide the basis for understanding how the

parameters affect bandwidth and how to select parameters

for a torque control task. Each of these tasks are designed to

represent extreme applications of torque and force control.

For our model to generate a varying torque against a fixed

load, the system should have higher stiffness and/or lower

inertia. Perhaps less obvious is that both damping and inertia

play a much larger role in increasing the maximum frequency

than stiffness.

For the actuator to produce exactly zero torque against a

moving load, the system’s stiffness does not matter. Instead,

the stiffness only determines how quickly the error increases

with increased frequency. We found that reducing stiffness

decreases error caused by motor torque limits. But as the

stiffness approaches infinity, the performance of the actuator

is governed solely by the motor inertia and torque limit.

It is evident that designing an actuator optimized for both

varying torque against a stationary load and applying zero

torque against a moving load, is very difficult. In fact, they

require exact opposite optimizations and share no set of

parameters that provide good results for both tasks. The only

way to improve the bandwidth of both tasks simultaneously

is to reduce the motor inertia or increase the torque limit.

This implies that actuators designed to perform a wide set

of tasks require variable impedance.

Additional work will include the development of relation-

ships for more complex actuation scenarios such as stopping

an inertia or mass with initial velocity, or commanding the

actuator to behave like a spring. Real examples of these tasks

are space ship docking and legged locomotion. This work

will inform engineers and robot designers on the roles of

elasticity and damping. They will provide insight into how

each parameter contributes for complex motions.

The next step in our work is to validate the calculations

presented on a real system. We have begun constructing an

actuator that embodies the model presented in this paper (Fig.

7). Our goal is to develop guidelines to allow engineers to

understand the compromises and requirements of the me-

chanical system for all types of robotic physical interaction

tasks.
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