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Abstract— This paper presents a saliency-based solution to
boost trail detection. The proposed model builds on the empir-
ical observation that trails are usually conspicuous structures
in natural environments. This hypothesis is confirmed by
the experimental results, where a strong positive correlation
between trail location and visual saliency has been observed.
These results are due in part to the proposed extensions to a well
known visual saliency computational model. This paper goes
further and shows that, with a proper analysis of the saliency
information alone, the ambiguity regarding both trail’s position
and approximate skeleton is reduced to three hypotheses in
98% of the tested natural images. This analysis is performed
by a set of agents inhabiting the saliency and feature specific
intermediate maps. These agents’ behaviours exploit implicit,
top-down knowledge about the object being sought in an active
way. With the proposed model, computationally demanding
accurate trail detectors are able to focus their activity in a
fraction of the input image, thus promoting robustness and
real-time performance.

I. INTRODUCTION

Exploiting any sort of structure in outdoor environments

is essential for safe robot navigation. An example is the

ability of detecting and following trails. Such behaviour

reduces the chances of collision with obstacles, in addition

to lower the cognitive load associated to path and trajectory

planning. This is as true for humans as it is for robots. A

practical application of robots with such a feature could be

natural parks patrolling, in which robots would be engaged

in actively maintaining and cataloguing the environment, and

possibly providing support to human hikers.

Current on-board vision-based trail detection methods

either assume that the robot is already on trail [1] or that

strong edges segment it from the background [2]. Although

trails are partially structured, in demanding environments it

is difficult to develop assumptions on their appearance or

geometry that would facilitate their detection. A stronger, and

consequently more computationally demanding approach, is

to learn trail models off-line in order to support the scoring

of the trail hypotheses generated on-line [3]. In sum, no

previous work proposed a solution able to detect trails in

a parsimonious way, and at the same time without making

hard assumptions.

A careful observation of natural images highlights the fact

that trails are structures that easily pop-out. Bearing this
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Fig. 1. Input images (above) and respective saliency maps (below), where
saliency is represented in grey level. These maps are the superposition of two
conspicuity maps, one for colour and the other for intensity channels. Each
of these maps is searched for trails by agents (see Section II-B), whose
paths are described by the overlaid lines. Thicker lines refer to the most
probable trail candidate, which appears in the input image in red. The other
coloured lines are from the best agent found on each conspicuity map.

some quantitative support, and visual saliency could then be

applied to focus the attention of an accurate trail detector

in an unbiased way. Experimental results herein presented

support this assumption, and furthermore show that saliency

information alone provides enough cues for a set of agents

to localise trails with an ambiguity of up to three hypotheses,

in the vast and diverse used data set. Notably, the robustness

of the method is revealed with its ability to detect what we

humans would select as the most navigable area, in images

where trails are almost indistinguishable or not even present.

See Fig. 1 for some representative examples.

To our knowledge, this is the first report on the use of

saliency in this task. The method allows focusing resources

without the cost and brittleness of obtaining prior knowledge

on both appearance and morphology of the sought object.

Moreover, since the use of saliency for other tasks is rather

common in cognitively rich robots [4], [5], the overhead of

saliency computation is diluted over all those modules.

This paper is organised as follows. Section II describes the

proposed model. Experimental results with natural images

are presented in Section III. Finally, some conclusions are

drawn and future work is proposed in Section IV.

II. PROPOSED MODEL

This section starts by describing the way saliency is

computed, followed by its application to trail detection.

A. Saliency Computation

Saliency computation is about determining which regions

of the input image are more conspicuous, i.e. detach from

the background, at several scales and feature channels. In
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this paper only intensity and colour channels are used, and

saliency follows the biologically inspired model proposed by

Itti et al. [6], properly adapted to the task at hand.

Shortly, one dyadic Gaussian pyramid, with eight levels,

is computed from the intensity channel. Two additional

pyramids, also with eight levels, are computed to account for

the Red-Green and Blue-Yellow double-opponency colour

feature channels. The various scales are then used to perform

centre-surround operations [6]. The resulting centre-surround

maps have higher intensity on those pixels whose corre-

sponding feature differs the most from their surroundings.

An example is a bright patch on a dark background (on-

off), as well as the other way around (off-on). On-off centre-

surround operations are performed by across-scale point-by-

point subtraction, between a level with a fine scale and a level

with a coarser one. Off-on maps are computed the other way

around, i.e. subtracting the coarser level from the finer one.

Rather than considering the modulo of the difference, as in

the original model [6], we consider both on-off and off-on

centre-surround maps separately, which has been shown to

yield better results [7], [8]. Then, the centre-surround maps

are blended to produce two conspicuity maps, one aggre-

gating colour and another aggregating intensity information.

Finally, these two maps are blended in a saliency map [6].

Note that all maps are 8-bit grey level images.

When blending maps, the most discriminant ones, i.e.

those that highlight a smaller number of objects, are typically

promoted by recurring to a normalisation operator. In the

original model [6], this is done by scaling a given map X
according to the normalisation operator N(.). This operator

is defined by the square of the difference between map’s

global maximum, M(X), and the average of all its other

local maxima, m̄(X), i.e. N(X) = X · (M(X) − m̄(X))2.

A similar normalisation operator has been proposed by

Frintrop et al. [7], [8]. In this case, the uniqueness operator,

W (X) = X/
√

m(X), scales the map X according to the

number of its local maxima above a given threshold, m(X).
In this paper the threshold is set to its default value, i.e.

50% of the map’s global maximum [8]. This method allows,

among other things, to account for the proportion of objects

competing for attention when determining their saliency.

Common to both methods is the use of local maxima

information, which though appealing not always embodies

the information intended to capture. Large homogeneous

structures for instance, such as the sky, generally encompass

only a few local maxima. In this situation, the sky would

be undesirably considered highly conspicuous, despite its

large foot-print in the whole image. A second aspect is that

the two analysed saliency models consider that all pixels

contribute equally to the saliency computation. However,

excepting for extreme tilt/roll angles, the upper region of the

image has little relevant information for trail detection. As

a consequence, without a space-variant contribution to the

final saliency map, feature maps that are only discriminative

in the lower part of the image, and consequently interesting

for trail detection, would not be adequately promoted.

In face of these limitations a new normalisation operator

is herein proposed. Rather than considering only the map’s

local maxima when averaging, as it is done in N(.), we

propose to use all pixels. Furthermore, the contribution of

each pixel to the average is weighted according to its distance

from the top row. Formally, let I(X, c, r) return the grey level

of the pixel in column c and row r of a given map X , with

height h(X). Let w(X, c, r) =
√

r/h(X) be the weight of

pixel at position (c, r). The map’s weighted average, mw, is

thus given by

mw(X) =

∑

(c,r)∈X I(X, c, r) · w(X, c, r)
∑

(c,r)∈X w(X, c, r)
(1)

and similarly to operator N(.), the proposed normalising op-

erator, K(.), takes the form K(X) = X ·(M(X)−mw(X))2.

To reduce computational cost, the proposed system uses

image operators over 8-bit images, whose magnitude is

clamped to [0, 255] by thresholding. In addition, prior to

normalisation, maps are scaled to cover the interval [0, 255],
meaning that M(X) = 255 for all cases.

The Receiver Operating Characteristic (ROC) curves de-

picted in Fig. 2 show that, for the tested dataset (see Fig. 4),

the proposed procedure produces consistently a better trade-

off between the True Positive Rate (TPR) and False Positive

Rate (FPR) than the other two methods. The small difference

between the ROC curves could suggest that only a small

quantitative improvement was obtained with the proposed

model. However, the averaging procedure used to build the

curves hides the fact that none of the other two methods was

able to consistently allocate higher levels of saliency to trail

regions than to the background, as often as the proposed one.

Fig. 2 also shows that saliency is considerably correlated

with trail location, which is an important contribution by

itself. This correlation can also be observed for typical

images in Fig. 1. However, the correlation is still lower that

the one required for accurate trail detection. That is, there is

no single threshold on the saliency map that clearly segments

the trail for all images in the dataset. It is thus important to

Fig. 2. Normalisation operators comparison. Each plot is the average ROC
curve over all images in the dataset, for a given normalisation operator. ROC
curves were built by thresholding the final saliency map and comparing
the resulting binarised image against the hand-labelled ground-truth of the
dataset. All operators result in curves above the line of no-discrimination,
y = x, thus showing the positive correlation between visual saliency and
trail presence. Moreover, the higher area under the curve for the proposed
model, K(.), demonstrates that it is the most adequate for the task at hand.
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devise a mechanism able to overcome this limitation. As it

will be shown in the next section, an agent-based design is

the adequate tool for the purpose.

B. Trail Detection Agents

Rather than considering image analysis as information

processing, this paper follows the idea of considering it as

the result of a sensori-motor coordination process. Under

this paradigm, the agent-based approach to image analysis, in

particular for object recognition, has been showing promising

results [9], [10], [11], [12]. This success story can be in

part understood by the fact that agents realise active vision

local loops, and thus they exploit all the known advantages

of considering perception as an active process [13]. Being

this work in line with this novel way of developing robust

perceptual systems, its potential success contributes to the

body of evidence on the relevance of an agent-based design

for perceptual systems.

In a different context from the one considered in this

article, i.e. road detection, the agent-based design has already

been used successfully [14]. Despite the fact that we focus

on trail detection instead of road detection, some additional

differences between our work and the one of Broggi &

Cattani [14] can be observed. As it will be described, in

our case agents inhabit conspicuity and saliency maps, rather

than the image space itself. We focus on the structure being

sought, i.e. the trail, and not on its boundaries. In addition,

we do not make the hard assumption that the robot is on the

trail or road.

Our system is composed of a set of agents deployed in

each map m ∈ {colour, intensity, saliency}, with width

w(m) = 320 and height h(m) = 240. Each agent moves on

one of these maps, according to a set of behaviours, in an

attempt to follow a given trail hypothesis. Remember that

the saliency map is the blend of both colour and intensity

conspicuity maps, and maps’ pixels are grey level coded.

Hence, the brighter the pixel the more salient, in the case of

m ∈ {saliency}, and the more conspicuous, in the case of

m ∈ {colour, intensity}.

Agents are deployed with a small offset of the bottom of

the map, i.e. at row r = h(m) − 15, to avoid any noise

potentially present at the map’s boundaries. To determine

the column where each agent is deployed, the unidimen-

sional vector v
m = (vm

0 , . . . , vm
w(m)) is first computed.

The element vm
k of v

m, refers to the average grey level

of the pixels in column k, contained between row r and

row r − δ, where δ = 10 to avoid deploying agents in

columns with spurious highly bright pixels. Formally, vm
k =

∑

l∈[r,r−δ] I(m, k, l)/δ. Finally, the agent u is deployed in

column c(u) = arg maxk vm
k , thus compelling the agent

to be initiated in the brightest, i.e. most interesting, region

according to v
m.

To analyse the second brightest region, an Inhibition-Of-

Return (IOR) mechanism is used. This is implemented by ze-

roing the elements of v
m that are connected to vm

c(u) through

elements with values similar to it. This agent deployment

sequence is repeated until one of the following holds: (1)

a maximum number of agents, z, has been deployed in the

map or (2) the current highest value of v
m, max(vm), is

below a fraction η of its initial value, i.e. before the first

agent was deployed. In this paper η = 0.7, which avoids

the deployment of agents in dark, i.e. uninteresting, regions.

Note that although v
m varies, its time step index has been

discarded for sake of clarity.

Let us now describe the behaviour of each deployed agent.

For simplicity, agents and map indexes will be discarded in

the remainder of this section. That is to say that the following

applies to a single agent u allocated to a specific map m.

An agent action is defined in terms of an index, O =
{1, 2, 3, 4, 5}, to the nearest neighbour pixels whereto the

agent can move from its current position, o[n], at iteration

n (see Fig. 3-Left). To reduce both sensitivity to noise and

computational cost, the agent’s surroundings are segmented

into regions R1 . . . R5 (see Fig. 3-Left). The average grey

level of a region containing pixel p is given by A(p). For

instance, both A(1) and A(6) correspond to the average

grey level of the pixels contained within region R1, as this

region is composed of pixels 1, 6 and 11. Thus, regions are

indirectly indexed by their encompassed pixels. The grey

level of a pixel p is simply given by I(p).
To account for top-down knowledge in the structure of

the object being sought, a set of five perception-action

rules B = {greedy, track, centre, ahead, commit}, i.e.

behaviours, vote for each possible action, a ∈ O, according

to the behaviour-based voting command fusion approach

[15]. The most voted action, a+[n], is selected by the agent

as the next motion, which is then used to update its position,

o[n],

ȯ[n] = Γ(a+[n]), a+[n] = arg max
a∈O

∑

b∈B

wb · fb(a, n) (2)

where Γ(.) transforms a motion index onto pixel coordinates,

centred on the current agent’s position, wb is the weight ac-

counting for the contribution of behaviour b ∈ B, described

by the evaluation function fb(a, n) as follows,

ftrack(a, n) = 1 −

∣

∣

∣
A(a) −

∑

q∈Q
q

n−1

∣

∣

∣

255
(3)

fahead(a, n) = 1 −
|3 − a|

2
(4)

fcommit(a, n) = 1 −
|a+[n − 1] − a|

4
(5)

fcentre(a, n) =

∣

∣

∣

∣

d[n] ·

(

6 · H(−dx[n]) − a

5

)∣

∣

∣

∣

(6)

fgreedy(a, n) =
A(a)

255
(7)

where d[n] is computed as described in Fig. 3-Right and

H(.) is the Heaviside function. Q is a set whose elements are

scalars with the grey level of the pixels crossed by the agent

along its path. Refer to Table I for further details on each

behaviour and Fig. 1 for examples of agent typical motions.
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Fig. 3. Trail detection agents. Left: numbers correspond to the pixels’ index
relative to the current position of the agent, o[n]. Regions surrounding o[n]
are segmented in R1 = {1, 6, 11}, R2 = {2, 7}, R3 = {3, 8}, R4 =
{4, 9}, R5 = {5, 10, 12}. Right: illustrating example of key aspects of
the centre behaviour. The dotted line represents the agent motion since its
onset until the current iteration. The pixels composing the thicker horizontal
line define the set S[n]. The agent will try to approach this line’s centroid
x[n], represented by the circle, which is deviated from the current agent’s
position, o[n], by |dx[n]| pixels.

The best performance has been empirically obtained with

the following trade-off, wgreedy = 0.45, wtrack = 0.35,

wcentre = 0.10, wahead = 0.05, wcommit = 0.05.

The agent is allowed to move until one of the following

stopping conditions is met: (1) a maximum number of α1

iterations is performed; (2) the agent reaches row α2 (row

zero at image’s top); (3) the average grey level of regions

R1 . . . R5 is below a given proportion β < 1 of the average

grey level of the pixels visited by the agent.

β ·
∑

q∈Q

q

n − 1
>

5
∑

j=1

A(j)

5
(8)

where, α1 = 50, α2 = 160, and β = 0.7 are empirically

defined scalars.

The set of agents deployed in a given map must be ranked

to select the one that better represents the trail. Consequently,

as soon as one of the previously mentioned stopping condi-

tions is met, the score of the agent is computed,

s =

n
∑

i=0

µ1D
′[i] − µ2D

′′[i]

n
+ (9)

∑

q∈Q

µ3q

n − 1
+ µ4d(o[n], o[0])

where µ1 = 0.01, µ2 = 0.01, µ3 = 0.5, µ4 = 0.5 are

empirically defined scalars and d(o[n], o[0]) is the Euclidean

distance between the two points. The first term of the

score function accumulates the first, D′, and second, D′′,

derivatives of D along the agent’s path. This term favours

paths where D progressively shrinks towards a vanishing

point. The second term promotes agents whose path contains

highly bright pixels. Finally, the third term disfavours short

paths.

III. EXPERIMENTAL RESULTS

This section presents a set of experimental results obtained

with a dataset composed of 50 colour images, with resolution

640 × 480, obtained from Google (see Fig. 4). The dataset

only encompasses images obtained with cameras roughly

located at the eyes height, and thus providing a vantage

point that would be plausible for a medium-size robot. The

trail detector has been implemented without thorough code

optimisation, and tested in a Centrino Dual Core 2 GHz,

running Linux, and OpenCV for computer vision low-level

routines.

Since the output generated by the trail detector is the set

of the agents’ paths, and not the trail’s outline, it is difficult

to find a way of comparing the results against some sort of

ground truth. The following describes the assumptions taken

to assess whether a given agent has been able to represent

the trail. Trails are considered correctly detected if the agent

is deployed inside the trail and finishes its run also inside,

or very close to, the trail. In addition, curves and zigzags

described by the agent are considered valid as long as they

also stay inside the trail, or very close to its borders.

Table II summarises the results obtained as a function

of the maximum number of allowed agents per map z ∈
{1, 3, 5, 7}. In a first analysis, success rate is calculated per

map. This allows to determine the proneness of each map

alone, to provide enough cues for its highest score agent to

properly represent the trail. In a second combined analysis,

success is obtained when at least one of the three map’s best

agent, succeeds. In this case, the ambiguity regarding both

trail’s position and approximate skeleton is of up to three

hypotheses, i.e. one per map, in 98% of the tested images.

This clearly shows that the proposed method accurately focus

agents on the most promising regions of the image.

The obtained results also confirm the positive correlation

between saliency and the presence of trails (see Fig. 2).

Would this correlation be nonexistent and the trail detection

results would be linearly affected by the number of agents.

Instead, with a single agent per map, the trails in 90% of

the images were properly detected, whereas an increment of

only 6% is observed if two additional agents per map are

Behaviour Voting Preferences

greedy Regions of highest grey level, under the assumption
that trails are salient structures in the input image

track Regions whose average grey level is more similar to
the average grey level of the pixels visited by the
agent, under the assumption that trails’ appearance
is somewhat homogeneous

centre Regions closer to the centroid, x[n], of the set of
pixels, S[n], that: (1) share the row with o[n]; (2)
display grey levels similar (i.e. within a given margin
γ) to the one of o[n]; and (3) are connected to o[n]
through a set of pixels complying with the first two
conditions. The goal is to maintain the agent equidis-
tant to the trail’s boundaries, where the deviation to

the centroid is given by dx[n] =
c(o[n])−c(x[n])

D[n]
with D[n] = |S[n]|. Remember that c(p) returns the
column of pixel p. See Fig. 3-Right for an illustration
of this process.

ahead Upwards regions under the assumption that trails
appear as vertical elongated structures

commit Previously selected region, to reduce sensibility to
local noise, under the assumption that trails’ outline
is somewhat monotonous.

TABLE I

BEHAVIOURS OF TRAIL DETECTION
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deployed. An even smaller differential is obtained when we

go from three to five agents, namely 2%. Adding more agents

reflects in a null gain.

Nr. of

Agents

Colour

Map
Intensity

Map

Saliency

Map
Combined

z = 1 44 % 64 % 74 % 90 %

z = 3 54 % 78 % 82 % 96 %

z = 5 58 % 80 % 82 % 98 %

z = 7 58 % 80 % 82 % 98 %

TABLE II

TRAIL DETECTION RESULTS

Fig. 4 shows the trail of the best agent per map in

the images composing the dataset. These images are very

diverse and in some cases no trail can be found altogether,

not even by the human eye. The system still produces

a correct answer, that is, selects the open region through

which the robot would be able to traverse. This is a sign of

generalisation capability, which was only possible due to the

use of a non-specific detector, as it is the case of saliency.

Hence, even in the most difficult situations, saliency and

conspicuity maps were able to maintain a globally coherent

description of the environment. However, the existence of

local appearance variations requires the system to have a

considerable level of robustness in order to be unaffected

by those local artifacts. The agent-based approach showed

to be that robust, mostly due to the fusion of several

behaviours. Moreover, being a purely bottom-up and feed-

forward approach, the method is exceptionally fast, taking

an average of 1 ms per map. This includes finding all the

potential trails, finding their length, and choosing the correct

one. An additional cost must be considered, which refers to

the computation of the three maps, which takes on average

30 ms. These maps have two remarkable embedded proper-

ties: (1) they segment the input image in a very efficient

way, and (2) they naturally prioritise the segments according

to their conspicuity.

The resulting computation time of the trail detector, i.e.

33 ms, is roughly 30 times lower than the time reported

by the successful vision-based trail detector proposed by

Rasmussen & Scott [3].

IV. CONCLUSIONS

This paper reported for the first time the use of visual

saliency in the trail detection problem. Experimental results

showed that up to three trail hypotheses are generated by

the method, being at least one of them correct in 98% of the

cases. Seeing trails as conspicuous parts of the scene allowed

the system to generalise. That is, in situations where trails

could be hardly identified, even by the human eye, the system

reported as trail open regions of the environment, where

the robot could easily travel. The proposed normalisation

operator for saliency computation played an important role

in this achievement. Much of the robustness of the method

is due to the use of an agent-based solution. Thus, this paper

contributes to the growing evidence of such approach for the

development of robust perceptual systems.

The proposed model is innovative on the way top-down

knowledge of the object being sought is considered. Typi-

cally, visual features are boosted according to the expected

object’s scale, colour and intensity [16]. In this paper in-

stead, the object’s (trail) approximate shape is implicitly

considered, by means of feed-forward and, consequently fast,

perception-action rules dictating the behaviour of each agent.

We are currently implementing the trail detector under

a distributed framework, in line with previous work on

object recognition [10], envisaging higher levels of robust-

ness. Despite the system’s exhibited robustness, its self-

parametrisation will be the focus of future work.
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Fig. 4. Trail detection results. The best agent’s path in each map is superposed on the corresponding input image. Path colour is green, blue and red
for the colour, intensity and saliency maps, respectively. In the top-right corner of each image, the presence of a filled circle with a given maps’ colour,
indicates that the best agent’s path of the corresponding map correctly represents the trail.
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