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Abstract— This paper presents an oceanographic toolchain
that can be used to generate multi-vehicle robotic surveys for
large-scale dynamic features in the coastal ocean. Our science
application targets Harmful Algal Blooms (HABs) which have
significant societal impact to coastal communities yet are poorly
understood ecologically. Bloom patches can be large spatially
(in kms) and unpredictable in their extent. To understand
their ecology, we need to be able to bring back water samples
from the ‘right’ places and times for lab analysis. In doing
so, we target hotspots representative of intense biogeochemical
activity for such sampling. Our approach uses remote sensing
data to detect such hotspots using ocean color as a proxy,
and advectively projects these patches spatio-temporally using
surface current data from HF Radar stations. Experiments with
satellite and Radar data sets are promising for large, coherent
blooms. We show how these predictions can be used to select
an appropriate sampling trajectory for an AUV.

I. INTRODUCTION
Observing large scale oceanographic features has often

been difficult. For example, Intermediate Nepheloid Layers
(INL) are near-coastal fluid sheets of suspended particulates
with large horizontal extent (in kilometers) and small vertical
extent (in 1-10 meters). Harmful Algal Blooms (the focus of
this paper) are likewise spread over kilometers with primary
productivity driving its ecology within the top 5-10 meters.
Traditional approaches using ship-based measurements for
observing such dynamic and episodic phenomenon have
proven to be ineffective given evolving biological state,
the need to measure various properties across the spatial
extent of such phenomenon, and most of all in dealing
with logistical details centered on manned ships on fixed
schedules.

More recently Autonomous Underwater Vehicles (AUVs)
have shown to be more cost-effective, have demonstrated
increased persistent presence, and with a suitable sensor
payload have been able to systematically observe large
scale phenomenon at requisite scales of variability of bio-
geochemical processes [1], [2]. Yet, such mobile robotic
assets have often been ineffective in resolving the spatio-
temporal characteristics to effectively sample and observe.
Additionally while satellite observations have proven to be
helpful, they are constrained either by cloud cover, the lack of
data beyond a meter or two of the sea surface (when process
driven phenomenon can and are often within the euphotic
zone upto 150m in depth) and logistical issues with the time
lag between observations and processed data sets available
for use. Mooring data suffers from a spatial sparseness even
if in-situ measurements are accurate and available in real-
time.

Fig. 1. NIR-G-B composite image of NE Monterey Bay on August 26,
2004, when an extremely dense red tide bloom was present.

Our goal and the subject of this paper is to make use of
the data available from a range of sources including ocean
models, remote sensing satellites, moorings, and on-shore
instruments to make predictions of the trajectory of a patch
of water. We target HABs for a number of reasons.

Phytoplankton blooms can not only drive rapid CO2

sequestration but, also generate conditions harmful to other
organisms in the case of Harmful Algal Blooms (HABs).
These blooms have large spatial (> 50 km2) and temporal
extent and are visible from space as coloration of the
ocean surface. Ocean physics occurring on small scales can
contribute to the dense aggregation of red tide blooms [3].
The red tide image in NE Monterey Bay in Fig. 1 shows
a narrow band of extremely high near-infrared reflectance
(a characteristic signature and a basis for quantifying bloom
intensity).

However, the drivers and mechanistic processes behind
bloom initiation, evolution and collapse are not well under-
stood in part due to the complex interactions between the
members of the microbial communities and the surrounding
environment. As a result, our capacity to assess the range
of potential future scenarios that might result from ocean
temperature changes, acidification, or nutrient shifts is highly
limited. The causes and triggers for these blooms vary
widely depending upon regional geography and consequent
oceanography [3]. Accurately predicting the location and
time of a HAB onset or demise is a difficult task, and an open
problem. Finally, prediction of bloom collapse is relevant to
societal needs, including early re-opening of closed fisheries
due to bloom toxicity, warning of possible intensification of
harmful effects in a dying bloom, and predicting the onset
of anoxic events.

The direct impact of HABs is the introduction of toxins
into the marine (and as a consequence human) food chain.
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Fig. 2. U.S. coastal areas affected by various HAB toxins,
syndromes and impacts (from [6])

Fig. 3. Animal and Plant mortalities due to HABs (from [6])

In addition, [4] and [5] estimate that the average economic
impact resulting from HABs in the US is ∼$75 million from
1987 to 2000. Fig. 3 shows plant and animal mortalities
tracked from 1998 to 2007.

The causes and triggers for these blooms vary depending
upon regional characteristics and the ocean current system.
To understand the bloom ecology (why and when they
occur, and why they decay), it is necessary to sample bloom
hotspots (regions with very high biochemical activity) with
high spatio-temporal resolution. To plan survey missions,
scientists rely on satellite imagery, data from moorings and
drifters, ocean models, and seasonal patterns in observing
HABs with the goal to maximize the likelihood of sampling
hotspots as well as to be able to stay with a patch of the water
with such intense activity. However predicting the occurrence
of a bloom is a difficult task given the complex variability
in coastal waters coupled with rudimentary understanding
of phytoplankton ecology [7]. Because of the non-localized
nature of blooms, the size of the observation area, and the
lack of understanding of the exact dynamics, ship-based and
AUV missions often under-sample bloom hotspots. Factors
negatively impacting mission success include the lag in
obtaining processed satellite data (usually 1-2 days), and the
spatial sparsity of mooring data. Additionally, plans are made
in an ad-hoc, per deployment basis and cannot be generalized

to be used in a continuous, repeatable manner.
In recent work [8]–[10] at USC Center for Integrated

Networked Aquatic PlatformS (CINAPS) [11], gliders were
used to track fresh water plumes based on ocean current
predictions from the Regional Ocean Modeling System
(ROMS) [12] model. [3] discusses the effect of external forc-
ing on blooms occurring in the Monterey Bay. Our effort is
complementary and leverages the above effort in addressing
a piece of the larger problem: how to predict the trajectory
of an algal hotspot. As robotics technologists, our ultimate
aim is to design sampling surveys as a means to decide
whether one or more robotic assets will be needed to sample
a dynamic field. When more than one asset is available, we
wish to determine where to deploy such assets given the large
spatial extent of blooms. And finally we wish to motivate the
design of intelligent coordination algorithms when multiple
assets are deployed to ensure such configurations are robust
to the harsh environmental conditions.

Our experiments target the Monterey Bay which is not
only one of the most biologically diverse bodies of waters but
the northeast bay frequently experiences extreme "red-tide"
blooms, making it an ideal location for bloom studies. In
this paper we analyze the result of advecting hotspots from
blooms that occurred between October 2007 and October
2008 at the Monterey Bay, and show an example of how
such predictions can be used to plan survey missions for
AUVs.

The paper is organized as follows. Section II gives a
brief overview of data sources, the key projection algorithms
and motivations for using these approaches. In section III
we analyze the results of our experiments and follow it up
with sample AUV survey designs in section IV. Finally we
conclude our findings and briefly articulate future work in
section V.

II. SYSTEM DESCRIPTION

The dynamics of an algal bloom can be primarily de-
scribed by three factors: advection, diffusion, and bloom
ecology. Advection is the component of the transport that is
due to the effect of external forcing (ocean current). Diffu-
sion results from movement of particles along concentration
gradients. Lastly, since the phenomenon is biological, its
growth and decay is governed by bloom ecology. To predict
the dynamics of the bloom for long timeframes (e.g., months)
would require data for all three factors described above.
However, for a strong coherent bloom already in progress,
predictions can be made for for a period of upto a week
based on the external forcing and diffusion. Ocean observing
systems such as SCCOOS [13] and CeNCOOS [14] provide
near-realtime data on various aspects of the physical sea-
state such as temperature, current, salinity and sea surface
height. Given access to these data, we ignore ecology and
diffusion and focus on the advective effect of ocean currents
on blooms.

Our system computes prediction of bloom trajectories in
two steps,
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Fig. 4. SeaWiFS images showing a red-tide bloom at the Monterey Bay between September and October 2002 [3]

1) patches of bloom hotspots are detected from remote
sensing data,

2) detected patches are advected using surface current
data from HF Radar stations.

In this section we first discuss the data sources and then
describe how we perform these two steps.

A. Data Sources

1) Remote Sensing Data: Remote sensing satellite data
provides a synoptic view of the oceans, enabling bloom
detection by use of proxy measurements, such as ocean color
and emitted radiance due to fluorescence. One example is
the MODIS (MODerate resolution Imaging Spectroradiome-
ter) instrument on NASA’s Terra and Aqua Earth-orbiting
spacecraft [15]. Both Terra and Aqua view the entire Earth’s
surface every one to two days. One of the data products
from the Terra MODIS is Fluorescence Line Height (FLH),
a relative measure of the amount of radiance leaving the
sea surface in the chlorophyll fluorescence emission band
(∼ 685 nm), at a resolution of 1 km [16], [17]. FLH is a
recognized proxy for chlorophyll concentration in the upper
column of water1 [18]. Another example is the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) and the chlorophyll-a
data product. Fig. 4 shows a strong bloom in the Monterey
Bay that occurred between September and October 2002.

MODIS data in particular, are available in Hierarchical
Data Format (HDF) where the FLH data product from each
MODIS image can be read into a 500 x 667 matrix.

2) High Frequency Radar Data (HF Radar): External
forcing by wind and water currents is a dominating factor
in bloom transport, providing reasonable estimates of the
trajectory of hotspots over a period of few days using only
external forcing. We used surface current data obtained from
HF Radar stations maintained by CeNCOOS, which provides
radial ocean surface current information in near-real time.
With data from multiple stations, the velocity components of
the surface current is computed. The data must be filtered, in-
terpolated and extrapolated. In our experiments, we obtained
Open-Boundary Modal Analysis (OMA) interpolated radar
data for the period October 2007 - October 2008 (see Fig.
5 for an example). While the work presented can be can be

1The volume of water < 10 m from the surface.

Fig. 5. Open Normal Mode Analysis (OMA) modeled hourly current
vectors for the Monterey Bay [14]

used with the ROMS model surface current projections, our
analysis is on archived data to validate bloom projection. Fig.
6 illustrates the data sources and the time-line of predictions.

B. Hotspot trajectory prediction

1) Hotspot detection: We define a bloom hotspot as the
region in a MODIS image M in which the pixels have
FLH values f that are greater than a specified threshold F .
This is a proxy for a region of intense biological activity.
The thresholded image is referred to as Ithresholded. For
our purposes of asset placement, we want to track multiple
hotspots. Thus, we label the k selected patches as H =
{h1, h2, .., hk}. Since advecting each pixel within a patch
over multiple time steps is computationally expensive, we
choose a sparser representation of a patch. For each hi ∈ H ,
i ∈ 1, ..., k we select representative points to be advected.
These representative points may be from the convex hull, lie
on the boundary, are from the interior, or are the centroid of
the patch.

2) Hotspot advection: Hourly HF Radar data is available
at a 2 Km resolution in a gridded format. We interpolate
the HF Radar surface current estimates so that for any
location p = [x y]T (x, y are longitude and latitude,
respectively), and time t, we have the surface current velocity
Rp,t = [u v]T , where u and v are the East and North
velocity components respectively. A sample is defined as
s = [pT f ]T where f is the FLH value at location p. Each
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Fig. 6. Illustration of a scenario where a satellite image is obtained with a lag. HF Radar data is used to generate prediction of bloom locations. ROMS
forecast of ocean current can be used to generate predictions into the future for bloom locations.

point p within a patch is projected using Rp,t to obtain a new
position of the sample point pt+1 = pt+Rp,t+1∆t The error
covariances for the OMA interpolated velocity estimates are
given as σu and σv for each data point in the grid. These are
used to project the estimation error of the advected point.
The new error is obtained by σpt+1 = σpt + σRt∆t. Algo-

Algorithm 1: Hotspot detection and advection

Input: MODIS images M1 and M21

Time period T = timestamp(M2 - M1)2

t = tM13

Ithresholded = threshold(M1, F )4

H = connectedSegments(Ithreholded)5

h hotspots, H = {h1, h2, ..., hk}6

foreach HotSpot hi do7

sample points for HotSpot hi,8

Pi = resampleHotspot(hi,resolution)9

Pi = {p1, p2, ..., pN}10

foreach sample point pj = [x, y, t] do11

while t < tm2 do12

Rp,t = [u, v]′13

pt+∆t = pt +Rp,t∆t14

σpt+1 = σpt
+ σRt

∆t15

t = t+ ∆t16

end17

end18

end19

rithm 1 summarizes the process of detection and advection
of bloom patches. In our current implementation, we retain
the original FLH value for each sample point throughout the
advection process; because diffusion and bloom ecology are
not factored in, we do not model error in FLH estimates.
Both will be addressed using Gaussian error processes that
grow exponentially with time. Further we assume that the
surface current field is constant within a neighborhood of
the advected point. Our future work will address both these
shortcomings.

TABLE I
HOTSPOT PROJECTION TEST CASES

Period(days) Case Evaluation Rating (max 5)
5 03/20/2008 3

4 06/02/2008 4
10/12/2008 4

3 10/09/2008 4

2

10/12/2007 4.5
02/15/2008 3
03/18/2008 2
03/25/2008 2
04/10/2008 2
04/26/2008 2
05/21/2008 3
10/10/2008 3.5
10/12/2008 3
10/14/2008 5

1 10/24/2007 4
10/09/2008 2

III. ANALYSIS AND RESULTS

We performed advection of hotspots on a dataset of
MODIS FLH images captured between September 2007 and
November 2008 when both MODIS and HF Radar data
were available. After rejecting unusable images (often due
to cloud cover), we selected those that displayed hotspots of
considerable intensity. We were also interested in studying
the quality of advection for different time periods. From
the test cases, we identified between 1 and 5 day periods
between MODIS images to ground truth our projections.
In total, we selected 16 test cases spanning the above
period. The resulting projections, shown in Table I, were
evaluated qualitatively by an oceanographer. We observed
good predictions for stronger blooms, specifically those in
the Fall. The advection of bloom patches fail to predict
blooms that are in the initial stages of growth. However, the
projections were good for blooms that were well developed
and of high intensity. Fig. 7 and 8 show examples of two-day
projection from the evaluated test cases.

IV. AN APPLICATION IN AUV SURVEYING

Our aim next is to choose an appropriate survey area given
the prediction of a hotspot trajectory. A compelling scenario
for such an application is illustrated in Fig. 9. Two day
old satellite data shows the onset of a bloom. Our objective
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Fig. 7. Projection of a bloom from October 2007.

Fig. 8. Projection of a bloom from October 2008.

is to project the blooms trajectory and then place a viable
‘lawnmower’ AUV survey to ensure coverage.

A. Survey template

The ’lawnmower’ pattern is a widely used survey pattern
in oceanography primarily because of its uniform coverage
and ease of subsequent data visualization as well as waypoint
synthesis. We have designed our solution with the ’lawn-
mower’ as the survey template, based on the constraints on
the AUV i.e., the runtime and the nominal velocity.

Let the maximum runtime be T and the nominal velocity
of the AUV be vAUV . The maximum distance that the AUV
can cover is given by LAUV = TvAUV . We define a pattern
with the sides a and b, the swath width w and the length of
the ’lawnmower’ given by:

L = (
a

w
+ 1)b+ a (1)

The bounding-box for the lawnmower is given by rectan-
gle R, defined by the center pc, sides a and b, and the angle
θ the bounding box makes with the x-axis. We can nominally
assume that the parameters of the bounding box that defines
the survey area, are predecided. Using Equation 1, by
choosing the sides of this bounding box, we can implicitly
constrain the length of the ’lawnmower’. In later versions,
we will relax this constraint. For a candidate survey area
bounded by R, the sampling reward r is given by total signal
intensity within the survey area. Since our goal is to attain

maximum spatio-temporal sampling resolution at hotspots,
our objective is to maximize the total signal intensity in the
region where we sample. For our implementation, we define
the sampling reward r as,

r =
n∑
i=0

eαfi · gR(pi) (2)

where g is given by,

g(p) =

{
1, if p is inside rectangle R
0, if p outside rectangle R

(3)

and α is a chosen constant. The weighing function over FLH
was chosen to be exponential to reward higher values of
f favorably by a factor α. AUVs are nominally equipped
with a suite of in-situ sensors that can sample additional
parameters of interest in these regions where the expected
chlorophyll concentration is high. For instance at MBARI,
the upper water-column AUV is equipped with backscatter-
based optical devices (Hobilabs HS2 and Sequoia Scientific
Particle Size sensor), Satlantic/MBARI ISUS Nitrate sensor
and a Seabird Dissolved Oxygen sensor in addition to two
Seabird CTDs.

To determine the location and orientation for a survey with
a known layout and dimension, we use a nested approach to
search the survey area that maximizes the reward described
by Equation 2. For our test case, we arbitrarily choose the
length of the sides of the survey rectangle given by a and b
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Fig. 9. A hypothetical bloom onset (A), projection (B) and a viable AUV survey to capture the bloom’s spatial extent.

as 16km and 5km respectively. First, we find the bounding
box of the projected sample points giving us the region of the
ocean that has the maximum likelihood of an ongoing bloom
based on our projection algorithm. Within this bounding box,
we perform a recursive grid search. In each step, we split the
bounding box into a 4x4 grid and compute the reward for
each cell. We select the cell that has maximum reward, and
continue the process. The recursion is terminated when the
subsequent grid size is smaller than the survey area size.
At this stage, we do an exhaustive search in the final cell
(which would be larger than the survey-area since the grid
search is terminated) to define the location and orientation
of the survey-area. This is represented by findBestArea in
Algorithm 3.

Figs. 10 and 11 show the result of our search algorithm on
the example bloom cases from October 2007 and 2008. The
dotted box shows the initial bounding box and the solid box
shows the final survey area chosen by the search algorithm.

Algorithm 2: recursiveBestGrid(G,a,b)

Input: survey area parameters a and b and grid G1

L and B are length and breadth of bounding-box B2

if L/2 < a OR B/2 < b then3

return G4

end5

L = L/2,B = B/26

m = arg max
i

(samplingReward(Gi, P ))
7

recursiveBestGrid(Gm,a,b)8

Algorithm 3: findSurveyArea(P ,a,b)

Input: N projected sample points P ={p1, p2, ..., pN}1

survey area parameters a and b2

bounding-box of advected points B3

Gmax = recursiveBestGrid(B,a,b)4

[Sp, θ] = findBestArea(Gmax,a,b)5

The survey template places the AUV in the vicinity of
the targeted hotspot. However once within the approximate
area, the vehicle’s adaptation and response to sensed pa-

Fig. 10. Rectangular survey area of known size that maximizes the
contained FLH intensity of the bloom case 1 (10/12/2007). The nested grid
approach was used to search for the location and orientation of the rectangle
that maximized the gain (FLH intensity).

Fig. 11. Plot showing the survey rectangle for the October 2008 bloom

4789



rameters needs to be considered. In this context we have
been developing a framework for onboard autonomy, that
integrates probabilistic state estimation, planning and execu-
tion. The Teleo-Reactive EXecutive (T-REX) is built upon
the sense-plan-act [19] paradigm to autonomously synthesize
control actions; re-planning to handle off nominal situations
is automatic. Environmental state estimation uses a Hidden
Markov Model (HMM) [20] to classify and enable online
estimation based on offline machine learning techniques [21].
Additional details can be found in [22]–[25].

Together with the ability to track a patch of water,
synthesize an abstract survey template and augmented by
onboard autonomy, our toolchain can provide a viable way to
track patches of water with specified properties. Our current
focus on HABs provide a compelling science motivation with
direct societal impact.

V. CONCLUSION AND FUTURE WORK

This paper presents an approach that can be used to
generate survey missions for Autonomous Underwater Vehi-
cles (AUVs) in the context of advected bloom patches. The
approach uses remote sensing data to detect algal hotspots
and projects these patches using surface current data from
HF Radar stations along the central California coast. Result
of advecting hotspots from blooms that occurred between
October 2007 and October 2008 show that this approach
is promising for tracking large, coherent blooms. Finally
we show an example of how such predictions can be used
to plan simple (‘lawnmower’ pattern) survey missions for
AUVs. Our future work is to add more data sources such
as in-situ platforms and vehicles as well as mooring and
buoy data along with the incorporation of diffusion into the
model to investigate various adaptive sampling methods and
to motivate the HAB scenario to work towards multi-vehicle
control.
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