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Abstract— Navigation in unknown dynamic environments
still remains a major challenge in robotics. Whereas insects
like the desert ant with very limited computing and memory
capacities solve this task with great efficiency. Thus, the
understanding of the underlying neural mechanisms of insect
navigation can inform us on how to build simpler yet robust
autonomous robots. Based on recent developments in insect
neuroethology and cognitive psychology, we propose a method
for landmark navigation in dynamic environments. Our method
enables the navigator to learn the reliability of landmarks using
an expectation reinforcement method. For that end, we imple-
mented a real-time neuronal model based on the Distributed
Adaptive Control framework. The results demonstrate that
our model is capable of learning the stability of landmarks
by reinforcing its expectations. Also, the proposed mechanism
allows the navigator to optimally restore its confidence when
its expectations are violated. We also perform navigational
experiments with real ants to compare with the results of our
model. The behavior of the proposed autonomous navigator
closely resembles real ant navigational behavior. Moreover,
our model explains navigation in dynamic environments as
a memory consolidation process, harnessing expectations and
their violations.

I. INTRODUCTION

In recent years, a great deal of progress has been made

in the field of autonomous navigation in unknown environ-

ments. Moreover, autonomous navigation has seen a great

interest with the advance of embedded systems in cars,

aerial vehicles, blimps, humanoid robots etc. Nevertheless,

even with the use of global positioning information sys-

tems, autonomous navigation remains a challenge in spite

of the enormous advances in computing power and classical

branches of robotics [1], [2], [3], [4].

On the other hand, biological systems solve complex navi-

gational tasks at levels unparalleled by artificial systems. For

example, a wide range of foraging animals from mammals

to insects demonstrate remarkably stable navigational skills

in unknown dynamic environments [5], [6], [7]. Biomimetic

robotics aims at capturing such capabilities of biological sys-

tems to construct more advanced artificial systems. Indeed,

in recent years, the control design of artificial autonomous

systems have seen a shift from mere symbolic artificial
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intelligence (sense-plan-act) to newer concepts like situated-

ness and contextual intelligence as exhibited by biological

systems [8]. In this context, the problem of information

representation and its usage is of crucial importance to both

artificial and biological systems [9].

In biological systems there has been the controversy

of information representation in the context of navigation,

between the map-based and mapless systems. On the one

hand, the concept of cognitive map for navigation, carried

out mainly by Tolman [10], was fuelled by the discovery

of the so-called place cells in the hippocampus of the rat

and has widely increased our understanding of cognitive

navigation mechanisms [11], [12]. It spawned early research

on navigational strategies in cognitive neuroscience based

on hippocampal representations of space [13], [14]. Until

today a number of neurobiologically plausible models of

navigation paradigms have been proposed for mobile robots

[15], [16]. Also, newer neurobiological studies of place-cells

have recently inspired biomimetic robotic models of map-

based navigation [16], [17], [18], [19], [20].

On the other hand, while mammals are assumed to learn

a place/map-like representation for foraging [11], [12], this

does not seem the case in insects. Insect navigation has been

studied for more than a century [21], [22], [23]. Interestingly,

a wide range of findings suggest that insects do not rely on a

map for solving foraging tasks [24], [22]. There is evidence

that rather than using map-like representations, insects make

optimal use of proprioception, landmark recognition and

memory to navigate [7]. In particular, desert ants use sun po-

sition and visual panorama for heading direction computation

[6], [25]. Complex allocentric navigational behaviors using

mainly ego-centric cues can be seen both in mammals like

rodents and in insects. Remarkably, insects like ants and bees

have considerably low computational resources with only

a few hundreds of thousands of neurons. Therefore, insect

navigation studies are highly useful for revealing essential

components for a computationally cheap navigation strategy.

Only through building artificial models of ant navigation

and by directly comparing the performance of the artificial

system and the real ant, we can demonstrate that we capture

the underlying navigation principles. This will then lead

to the development of real-world robots that can navigate

autonomously based fully on ant navigation strategies.

In our previous recent work we described a comprehensive

mapless model, including chemical search, PI and landmark

navigation, of insect navigation strategies [26]. That naviga-

tional strategy was based on the so called heading direction

accumulation cells, which were recently hypothesized to
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be present in the brain [27]. Nevertheless the problem of

information gathering, representation and usage was not

addressed. This becomes highly relevant as the autonomous

navigator has to act in a dynamic world with non-static

landmarks.

In this work we propose an autonomous navigation method

in dynamic environments based on recent views from cogni-

tive psychology [28] and insect neuroethology and physiol-

ogy, which suggest that insects expect future events based on

past experiences [29]. We use an expectation reinforcement

paradigm to adapt the confidence of the artificial forager

in encountered landmarks. We also propose a variant of an

insect-like probabilistic search strategy suggested earlier to

be used by insects upon expectation violation [30], [31].

Our model is based on the Distributed Adaptive Control

(DAC) framework that organizes behavior in three levels

of adaptive control [32], [33]. The implementation of the

model is achieved using the large-scale neural simulator IQR

[34] and tested on a simulated robot. In our experiments we

first evaluate the capability of our model to solve a complex

navigational task in an unknown dynamic environment. We

further carry our experiments with real ants to compare

their behavior with the robot model in the same navigational

task. Our results show a successful autonomous navigation

strategy in dynamic unknown environments and striking

similarity to insect behavior. Moreover, our model explains

autonomous navigation as a dynamic process of memory

reconsolidation, which harnesses expectations that are readily

available from past explorations.

II. METHODS

A B

C

Fig. 1. Insect behavioral analysis, modeling and testing on robots: A)
Real-world ant experimental studies are performed and the behavior of the
ant is recorded using a tracking camera. Controlled manipulations of visual
landmarks in the ant arena are made in order to analyze the ant behavior. B)
We first model the ant behavior based on the understanding of the underlying
neural principles. The ant experimental data is analyzed and fed into the
SyntheticAnt simulation of the navigational model. This simulation is used
to tune the parameters of our navigational model on a simulated robot. C)
The real-world robot SyntheticAnt is tested with analogous manipulations of
visual landmarks in the arena, allowing direct comparisons of the behaviors
of real ant and the robot. The results of this is again used to design new
ant experiments.
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Fig. 2. Autonomous Navigation Task: Left) In the training session (also
called foraging) the navigator leaves its nest to forage for food, traversing an
arena with visual landmarks. These visual cues can be used by the navigator
to memorize its routes. Middle) After several foraging runs, a manipulation
is made in the arena (i.e. a landmark is displaced or removed as the red
triangle in the figure), and the behavior of the navigator observed. Right)
The original constellation of the landmarks is restored and the behavior of
the navigator is observed.

A. Navigational Task and the Test Environment

1) Task: Both the real ant and the artificial forager called

SyntheticAnt are made to forage for the feeder (food location)

in an initially unknown environment starting from its nest.

The environment contains many visual landmarks which

could be used by the forager for navigation. After many

foraging runs, some landmarks are displaced or removed.

The forager is then made to forage in this manipulated

environment. In the next foraging runs, the original landmark

constellation is restored. This task allows to study and

compare three key issues of autonomous navigation:

• learning landmark navigation in a dynamic environment

• behavior upon detection of landmark manipulation

• confidence adaptation depending on the reliability of the

landmarks after restoration.

See figure 2 for an illustration.

2) Real Ant Experiments: We perform real ant foraging

experiments as described above using the desert ant (genus
Cataglyphis). Landmark manipulation tasks are performed

using several colored ants and the ant trajectories of the

foraging runs are recorded using the AnTS overhead camera

tracking system. It is important to note that in the real ant

navigation experiments, the paper on the floor of the arena

was replaced after each foraging run, in order to avoid the

use of chemical cues by the ants.

3) Modeling and Simulation Environment: The modeling

environment allows the input of the real ant trajectory for

the simulated ant called the SyntheticAnt, allowing it to have

the same perceptual input during foraging. Also free foraging

behavior is available. The simulation replicates the real arena

and the robot. It allows testing navigational paradigms before
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they are tested on the real robot. In this work we only

consider the simulated robot.
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Fig. 3. (A) DAC Contextual Layer A segment contains the extracted
landmark features, an HDA-set and the segment weight. These segments are
sequenced temporarily in the short-term memory (STM) of the contextual
layer whenever a landmark is encountered. Upon feeder detection, the
contents of the STM are transferred into the long-term-memory (LTM).
During recall phase (homing, landmark navigation), the LTM is matched
against the current sensory events and an optimal trajectory is computed
from recalled LTM segments. (B) Sequencing: During the foraging runs
from the nest to the feeder, encountered landmarks are chained in the DAC
contextual layer short-term memory (STM) together with the HDA set. Upon
feeder detection the contents of the STM are transferred into the LTM and
the HDA-set is reset. After several foraging runs, the LTM contains segment
sequences of different lengths since in each foraging run only a subset of
available landmarks are visited. Each LTM sequence has a retention time t
owing to the transiency of memory and each segment has a weight w. (C)
Recall: During the recall phase, the HDA-sets starting from the recalled
segment to the goal segment are combined to compute the optimal homing
vector. When the recalled segment and the goal segment are on different
LTM sequences, the segments from the recalled segment to the nest on one
sequence, and the nest to the goal segment on the other are combined (such
a combination is called path). Paths are weighted according to the retention
time of the sequence and the mean relevance weights of the segments of
the recalled LTM sequence.

In this work we test the proposed navigational model

on the simulated robot. As the neural implementation of

the model is the very same for the simulated and the real

SyntheticAnts, the transition from simulation to real world is

readily manageable. More details of the experimental setup

and the real robot version of the SyntheticAnt are discussed

in [26].

B. DAC Contextual Layer

The Distributed Adaptive Control (DAC) architecture has

been shown to be capable of optimizing behavior using

behavioral and perceptual learning in robots [32], [35].

DAC consists of three, tightly coupled layers for behavioral

control; the reactive, adaptive and contextual layers. The

reactive control layer provides the behaving system with a

pre-wired repertoire of reflexes such as collision avoidance,

chemosearch, homing etc. The adaptive layer provides the

mechanisms for the processing and classification of sensory

events. The contextual layer acquires, retains, and expresses

sequential representations by means of short-term and long-

term memories, figure 3, A. (In this work, as we are

concerned with information representation and usage, we

only deal with the contextual layer.) These representations

are used to plan ongoing behavior, and have been shown to be

compatible with formal Bayesian models of decision making

[35]. We use the DAC contextual layer to learn sequences of

landmarks together with their Heading Direction Accumula-

tor (HDA) set. Using this the navigator can memorize several

trajectories from the nest to feeder, leading through different

landmarks. The DAC contextual layer recall mechanism is

used when in the test scenario, a particular landmark is

encountered, to recall the vectors to other landmarks. The

details of this mapless navigational strategy is discussed in

our previous work [26]. In this work, we consider the use of

DAC contextual layer and its recall mechanism for learning

to navigate in unknown and dynamic environments.

C. Dynamic Memory Consolidation Using Expectations

Cognitive psychology has recently begun to embrace a

new position recognizing memory as a highly dynamic pro-

cess [28]. In this new view, remembering and forgetting are

not merely transient processes; moreover they are achieved

through a highly dynamic (re)consolidation process. Strong

support for such a dynamic memory comes from animal

neuroscience studies as reviewed in [28].

At the same time, insects have also been shown to expect

events using memories acquired in the past [29], [36].

Building upon these two recent advances in neuroscience and

cognitive psychology, we propose a dynamic memory model

for insect-like mapless navigation in uncertain environments,

which uses expectations to consolidate or forget already

acquired memories, figure 4. We propose a dynamic contex-

tual layer LTM of Distributed Adaptive Control for mapless

navigation using heading direction accumulation cells.

1) Transiency and Confidence in Memory Sequences:
We elaborate how transiency and confidence in memory

traces are formulated for mapless navigation in uncertain

environments. First we consider the situation, where the

SyntheticAnt is kidnapped after many foraging runs and

placed at an arbitrary visual landmark. The details of the

memory recall using the DAC contextual layer for mapless

navigation can be consulted in our previous work [26].

Memory recall of DAC contextual layer is used to compute

an optimal path to another given landmark; we further refer

to this as the memory answer. We define a vector �V as a two

dimensional vector indicating the angle γ and distance ψ of

a given memory answer: �V = [γ, ψ]T . Assuming that n LTM
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Fig. 4. Dynamic Memory Reconsolidation Schema: As a memory is
acquired it enters the instable state and then is consolidated into the stable
state. Nevertheless, memories in the stable state can reenter the instable
state upon recall. Reconsolidation again stabilizes this memory or otherwise
get forgotten [28]. We propose such a dynamic memory consolidation
process using the Distributed Adaptive Control contextual layer for insect-
like mapless navigation in uncertain environments.

sequences were recalled, we are interested in computing the

probability distribution:

P (�V |t, �V t
1 , t

ret
1 , rseg

1 · · · �V t
n, t

ret
n , rseg

n ) (1)

where �V is the vector indicating the goal, t is time, �V t
i

is the vector suggested by LTM sequence i, tret
i is retention

time of LTM sequence i and rseg
i is the segment relevance

of the recalled segment of LTM sequence i.
We look at the contribution of one LTM sequence i to the

overall memory answer:

P (γψ|t, �V t
i , t

ret
i , rseg

i ) (2)

First, we consider equation 2 without the retention times:

P (γψ|t, �V t
i , r

seg
i ) (3)

Using conditional independence of angle and distance we

get

P (γψ|t, �V t
i , r

seg
i ) = P (γ|t, �V t

i , r
seg
i )

· P (ψ|t, �V t
i , r

seg
i )

· P (t, �V t
i , r

seg
i ) (4)

where �V t
i = [γt

i , ψ
t
i ]

T . We formulate P (γ|t, �V t
i , r

seg
i ) and

P (ψ|t, �V t
i , r

seg
i ) as Gaussian distributions centered around

the means γi and ψi respectively with time dependent

variances, signifying that higher weight segments have a

higher influence on the total memory answer as they have a

smaller variance. This dynamically adapting variance is used

to weight successful segments more and unsuccessful ones

less.

P (γ|t, �V t
i , r

seg
i ) = N (γi, f1(r

seg
i )) (5)

P (ψ|t, �V t
i , r

seg
i ) = N (ψi, f2(r

seg
i )) (6)

where f1 and f2 are exponential growth functions of

variance:

f1(x) = a1e
k1(x) (7)

f2(x) = a2e
k2(x) (8)

As all memory answers should be seen as equally probable

and no correlations of distance, angle and retention-times

of LTM sequences are known, we assume the uniform

distribution:

P (t, �V t
i , r

seg
i ) = U (9)

Now we consider the contributions of all selected LTM

sequences weighted by segment retention times tret
i :

P (�V |t, �V t
1 , t

ret
1 , rseg

1 · · · �V t
n, t

ret
n , rseg

n ) =
∑

i

tret
i

ttot
P (γ|t, �V t

i , r
seg
i )P (ψ|t, �V t

i , r
seg
i )P (t, �V t

i , r
seg
i ) (10)

where ttot =
∑

i t
ret
i . Equation 10 signifies that the

sequence retention times are used to weight the shares of

LTM sequences to the final memory answer. In other words,

sequences are weighted so that memory acquired further back

in the past is weighted less than more recent memory.

2) Building up Confidence in Uncertain Environments:
When a landmark (or feeder) at a known location ceases to

be available or its position is manipulated, insects have been

shown to exhibit search patterns that optimize rediscovery of

the landmark (or feeder) [30]. We further refer to landmark

manipulations of all kinds as manipulation. It has also been

proposed that such search patterns in insects could be mod-

eled using Lévy walks [31]. Lévy walks are characterized by

a distribution function

P (lj) ∼ l−μ
j (11)

with 1 ≤ μ ≤ 3, where lj is the walk length. The direction

of the walk is drawn from a uniform distribution. The natural

parameter μ has been shown to be optimal at the value 2 for

modeling insect manipulation behavior, yielding an inverse

square power-law distribution [30].

Here we propose a modified version of Lévy walk,

to model the confidence building behavior exhibited by

ants upon manipulation. The key idea is to propagate the

initialization point of the Lévy walk towards the nest, so

that the probability of encountering known landmarks is

increased. Thus, the forager can slowly build up confidence
about the distance and direction to the navigational goal.

The proposed version of Lévy walk is summarized in the

pseudo-algorithm below:

while |con| ≤ ε do
t← 0
while t ≤ θ do
perform Lévy walk from i
upon landmark detection : update con

end while
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if i = nest then
reset i to manipulation point

else
propagate i towards nest

end if
end while
where con is the mean confidence about the goal direction

and distance, i the current position at which the Lévy walk

is initialized, and θ and ε two appropriate thresholds. The

artificial forager is made to switch to the above described

search mode, when either an expected landmark is not

encountered or when a landmark with a very low confidence

is found. The duration of the Lévy walk is much higher in the

first case and linearly decreases with the confidence in the

landmark, conrolled by setting the above parameters ε and θ.

Our new proposal of the Lévy walk helps the reinforcement

of expectations as it lets the autonomous navigator validate

its expectations by going back to known terrain, instead

of searching randomly in the whole arena. This is strongly

suggested by observed ant behavior in similar situations and

is evaluated in our experiments.
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Fig. 5. Expectation reinforcement for memory consolidation: Discrep-
ancy between expected paths and computed paths are used to consolidate
memory by means of setting LTM segment weights and writing new LTM
sequences.

3) Adapting Landmark Reliability Measure Using Expec-
tations: The forager’s belief about the reliability of individ-

ual landmarks should be updated each time a landmark is

encountered. For this we use an expectation reinforcement

mechanism, which gives rise to a dynamic memory reconsol-

idation process [28]. Expectations for positions of individual

landmarks can be read out from the DAC contextual layer

memory. The discrepancy between perceived position of

a landmark and the expected position is used to update

the reliability of the landmark, i.e. the weight of a DAC

contextual layer segment, as shown in figure 5.

To update the DAC LTM segment weight using the dis-

crepancy, we use the exponential decay function

rseg
t+1 = rseg

t e−λd (12)

where d is the discrepancy and t is time step. This

causes the segment weight to fall exponentially from its

current value if the discrepancy is high. Discrepancies are

normalized (0 ≤ d ≤ 1) so that d = 1 for the highest

possible discrepancy (the length of the diagonal of the arena).

The natural parameter λ was shown to optimally fit observed

insect behavior at the value 2 [30]. The above decay is

applied only if the discrepancy is above a fixed threshold.

Otherwise, the segment weight is allowed to grow according

to a linear function.

III. RESULTS

First we test the ability of the proposed model to learn

the reliability of landmarks. For this purpose we test the

simulated SyntheticAnt in an arena with 10 visual landmarks.

During the foraging no landmark manipulation were carried

out. After that, during the test 9 of the 10 visual landmarks

were displaced randomly in each run, i.e. there was only

a single stable landmark. After the foraging runs, we test

the feeder direction and angle from the nest, computed as

discussed earlier, using each of the 10 landmarks. Note

that for this the distance and angle to the feeder from an

arbitrary landmark is computed first using DAC contextual

recall (as in [26]), which is then added to the vector leading

from the nest to this landmark. This allows to visualize

the belief of the forager in the reliability of each landmark

as a probability distribution, as plotted in figure 6. The

SyntheticAnt learns through expectation reinforcement that

only landmark number 10 is stable. The evolution of the

confidence in the landmarks are shown in figure 6 A (before

the test runs), B (after 5 test runs) and C (after 10 test runs).

Note that a single simulation trial approximately runs

for the same time as an ant foraging run and we perform

qualitatively the same kind of landmark manipulations in the

real ant experiment and in the simulation. We also use similar

landmarks in the simulation as used in the ant experiments.

Nevertheless, for simplicity we do not consider complex

landmarks such as shadows, light direction etc. known to

be used by real ants in the simulation. Our simulations run

at about 30Hz on an Intel(R) Core(TM)2 Duo CPU 2.66GHz

machine under openSUSE 10.3.

Table I shows the learned parameters of confidence in

the individual landmarks, which corresponds to figure 6, C.

The growing skewness of the distributions from left to right

shows growing asymmetry in the distribution, indicating that

the navigator increases confidence in some landmarks and

decreases in some others.

The segment retention time tret is the number of the

latest foraging run in which the corresponding landmark

was encountered, i.e. giving a high value to recent runs.

The segment weight rseg is initialized to 1. Note that

landmark 1 was seen more recently than landmark 10, but

as the segment weight of landmark 1 is very low it has

low influence on the overall answer. As shown in figure

3809



di
st
an

ce
 (ψ

)

manipulated
landmarks

stable
landmark

angle (γ) 
dis

ta
nc

e 
(ψ

)

angle (γ) angle (γ) 
dis

ta
nc

e 
(ψ

)

p
ro

b
a

b
ili

ty

A B C

skewness = 0.0415 skewness = 1.1828 skewness = 2.4662

Fig. 6. Expectation reinforcement for learning stable landmarks: A) Before the test runs (but after several foraging runs) SyntheticAnt has encountered
all 10 landmarks, but has the same confidence in all of them. Some variance is seen as the LTM sequence acquisition time is different. B) After 5 test runs,
during which 9 out of 10 landmarks were displaced, the probability distribution for the confidence changes. This shows that the SyntheticAnt is slowly
adapting the confidence in the landmarks. C) The confidence probability distribution after 10 test runs. The plot shows the computed home distances and
angles (as a probability distribution) using individual landmarks using memory recall for each landmark. The stable landmark has a greater influence than
instable ones on the overall memory readout (higher probability). The forager thus learns the stability of the individual landmarks. The indicated skewness
values are the third central moments of sample values, divided by the cube of their standard deviations. The growing skewness from left to right indicates
growing asymmetry in the distribution.

6, the confidence for stable landmarks is reinforced and

is higher than instable landmarks; i.e. the forager learns

the stability of the landmarks. In short, higher frequency

of landmark position manipulations lead to lower segment

weights, meaning lower confidence represented by higher

covariances of gaussians. Therefore higher frequency ma-

nipulations of landmarks are reflected directly in the joint

probability distribution with lower probabilities. And further

the higher the search intensity the lower the confidence.

Given the above result, we now investigate how the

SyntheticAnt can regain its confidence, once its expectation is

violated. Expectation is violated when an expected landmark

is missing or if a low confidence landmark is encountered. As

described before, the SyntheticAnt falls into the Lévy search

mode and the intensity of the search is higher if the landmark

is missing. We evaluate how confidence is regained with time

and how the search intensity influences (figure 7). The θ
value indicates the search intensity (θ3 > θ2 > θ1). The

results show that the confidence is regained with time, where

high intensity searches allow to reach a higher confidence

threshold in a shorter amount of time.

Given the above results, we predict that our model should

behaviorally be similar to a real ant. This prediction is

TABLE I

LANDMARK STABILITY LEARNING EXPERIMENT

Landmark Distance Angle rseg tret

1 5.1 181.5 0.019569 10
2 2.5 220.3 0.09090 5
3 3.3 94.6 0.03333 3
4 1.1 144.4 0.04 4
5 2.4 124.6 0.06666 5
6 3.5 91.0 0.04348 6
7 3.5 55.9 0.05263 7
8 4.2 64.1 0.04762 1
9 5.7 44.1 0.05263 3
10 9.1 35.2 0.9 9

time [s]

co
n
fid

e
n
ce

 a
s 

p
ro

b
a
b
ili

ty

Fig. 7. Confidence recovery and search intensities: The recovery of
confidence with time (after initialization of the Lévy search) is indicated.
High intensity searches (indicated by the θ values) reach a certain confidence
threshold quicker. A high intensity Lévy search is initialized when a
landmark is missing and a low intensity one is launched when a low
confidence landmark is encountered (θ3 > θ2 > θ1).

tested using real ants in the same landmark manipulation and

restoration task. To perform the same landmark manipulation

task, we first test the real ant and feed the recorded trajectory

to the SyntheticAnt, so that both navigators have the same

perceptual input. Further we consider the confidence of the

real ant or the SyntheticAnt in a landmark as inversely

correlated with the computed trajectory density. The ant is

let to forage from feeder to nest for 21 runs, during which

no landmark manipulations are made. In the 22nd run, two

landmarks are removed at the indicated position, figure 8 B.

The ant does a high intensity search and tracks back almost

to its nest. In the next run, the landmarks are again restored

in the original constellation. Nevertheless, the ant does not

trust these manipulated landmarks in the following runs, as

indicated by the high densities around these landmarks. Such

behavior was prototypical in most experimented ants. We
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Fig. 8. Real ant benchmark in landmark manipulation task: The upper panel and lower panels show real and Synthetic ant data in the same landmark
manipulation task. The ant performs 25 foraging runs from nest (located at the right end the arena) to the feeder (at the left end of the arena). The arena
contains displaceable visual landmarks and also non-displaceable obstacles, both of which the ant cannot walk over. Ant trajectories are indicated by white
lines. The density maps are computed from the trajectories; we define here density as inversely proportional to the confidence in the landmarks. A) Ant
trajectory in the 21st foraging run. This trajectory shows low densities all over the arena, indicating high confidence of the animal in the visual landmarks.
B) Ant trajectory in the 22nd run, where some landmarks were manipulated at the indicated positions. The animal finds high discrepancy between its
expectation and perception. This results in very low confidence and it performs correction manoeuveres by going back towards the nest. C) In the next run
(23) all the visual landmarks are again placed in the positions as in runs 1 to 21. The density plots indicate that the ant does not trust the landmarks in
the area that violated its expectations in the the past. D) The confidence of the animal in the landmarks increases again through expectation reinforcement,
as indicated by the low densities throughout the arena. The lower panel shows the performance of the SyntheticAnt in the same experiment. E) Before
the manipulation, the SyntheticAnt has the same high confidence value in all landmarks and therefore does the traversal on almost a straight line. F)
Upon manipulation, a high intensity Lévy search is initiated and propagated back home. G) Upon restoration, a low intensity search at the low confidence
landmark is performed, as captured by the density plot. H) The confidence in the manipulated landmark recovers slowly as indicated by the density plot.
The task resolution times for the same experiment is shown in figure 9.

compare the behavior of the real ant, with the behavior of

the SyntheticAnt in the same task as above. The artificial

forager switches to the above described random search using

Lévy walk, when an expected landmark is not encountered

(figure 8, F) or when a landmark with a very low confidence

is encountered (figure 8, G). Our results show striking

similarity in the behavior of the real and the SyntheticAnt
in similar situations of landmark manipulation tasks. The

task resolution time before and after manipulation shows the

time taken by the forager to reach the feeder. This is plotted

in figure 9. Both the real ant and the SyntheticAnt follow

the same trend in the task resolution times. The observed

tracking back to known terrain upon expectation violation in

the real ant, is captured in our model using the prosposed

new variant of the Lévy walk. This new mechanism fits

the context of expectation reinforcement, as it allows the

navigator to track back to known terrain to test the validity

of its expectations, while at the same time exploring new

terrain.

IV. CONCLUSIONS

We presented an expectation reinforcement mechanism

based on recent advances in cognitive psychology and insect

studies to allow an artificial forager to navigate in unknown

dynamic environments. Our model is based on the Dis-

tributed Adaptive Control and implemented using the neural

network simulator IQR. The proposed navigational strategy

enables the navigator to learn the reliability in the landmarks

by using expectation reinforcement. The proposed version
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Fig. 9. Task resolution time: Here we look at the normalized task
resolution times before, at and after manipulation of the landmarks. The
real ant and the SyntheticAnt exhibit similar behavior in the time domain.
The task resolution time rises in both cases when a landmark is manipulated,
and falls again upon restoration of the landmark constellation. But it takes
some more runs before the task resolution time gets back at the baseline
before the manipulation. This data corresponds to the experiment in figure
8.

of Lévy walk supports the idea of expectation reinforcement

by enabling the navigator to trace back to known terrain

whenever expectations are violated. We tested our naviga-

tional model on the simulated robot called SyntheticAnt,
and compared its behavior to the real ant. The striking
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behavioral similarity of our model to the real ant suggests

the strength of the proposed model, as real ants are still

far better navigators in unknown dynamic environments than

most artificial autonomous navigators. We demonstrated how

the robot could learn the stability of the given landmarks

without any available prior information. Moreover, our model

formulates navigation as a dynamic memory reconsolidation

process, which makes use of the expectation reinforcement

mechanism. The primary aim hereby is not just to compete

with existing artificial robotic navigation models, but even

more to understand the principles underlying the robust

navigation of insects. Our belief is that by modeling ant

navigation and then directly comparing the results of our nav-

igational model to real ant navigational behavior, we could

better understand the capabilities and limits of the model.

This again should lead to the new generation of insect-

like navigation paradigms deployed on real-world robots.

In future work we plan first to test the model on the real

SyntheticAnt robot in the test arena (as in [26]) and then on

other outdoor wheeled robots.
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