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Abstract— Safe navigation through corridors plays a major
role in the autonomous use of Micro Aerial Vehicles (MAVs)
in indoor environments. In this paper, we present an approach
for wall collision avoidance using a depth map based on optical
flow from on board camera images. An omnidirectional fisheye
camera is used as a primary sensor, while IMU data is needed
for compensating rotational effects of the optical flow. The
here presented approach is designed for safely maneuvering
a helicopter through an indoor corridor. Results based on real
images taken in a corridor with textured walls are shown at
the end of this paper.

I. INTRODUCTION

The past years showed an increasing interest in MAV

applications in different environments. Surveillance and re-

connaissance for military as well as for civil purposes are

main tasks of Unmanned Aerial Vehicles (UAV). Currently,

UAVs are used mainly in open sky, away from ground

obstacles penetrating their flight-paths. Based on GPS data,

geological obstacles such as hills or mountains can be

bypassed. However, growing interests in smaller airborne

vehicles flying autonomously in near-earth or even indoor

environments call for other methods for obstacle avoidance.

In urban applications or indoor use, collision avoidance

cannot be achieved based on GPS-data alone. Too many

unforeseen obstacles may cross the way path of the MAV.

Especially in autonomous use, reliable obstacle avoidance is

indispensable for ensuring the MAV’s survivability.

In order to ensure collision avoidance, new approaches are

used, mainly relying on onboard sensors that are able to scan

the instant environment and to provide the controller with

reliable data to safely maneuver the MAV in an unknown

environment.

Different sensors have been used for detecting obstacles.

Kumar and Ghose[1] and Kwag and Kang [2] implemented

radar based navigation and obstacle avoidance. Saunders

et al. [3] used a forward looking laser range finder for

path planning. However, this two approaches lack in heavy

weight or high power consumption. For a flying platform

it is important to keep weight light and to save energy

wherever possible. Therefore, having a lightweight sensor
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with a small power-consumption is of great interest. Both

targets are reached using a camera. Since it is a passive

sensor, power requirements are low while having a light

weight. These arguments declare the camera to one of the

most suitable sensors for obstacle avoidance. Based on the

optical flow achieved by camera images, it is possible to

estimate the distance to surrounding objects. Computing this

distance is highly expensive in computation, though, which is

the major disadvantage of using camera images for obstacle

avoidance.

The here presented approach uses camera images as pri-

mary sensor data for estimating the distance of surrounding

obstacles. The camera is a 190° Field-Of-View (FOV) fisheye

camera pointing downwards. This allows us to get distance

information from all around the MAV. The flying platform is

a quadrotor helicopter having a diameter of 53cm, equipped

with an Inertial Measurement Unit (IMU). Computations are

done on an external computer. This algorithm is optimized

for navigating a MAV through an indoor corridor.

Using image feature tracking, the optical flow of two

images, taken with a short time interval, is calculated. This

optical flow is caused by translation and rotation of the

helicopter. Depth estimation can be achieved only from

optical flow caused by translation. Using data provided by

the onboard IMU, optical flow effects caused by rotation can

be compensated.

Based on this optical flow a depth map is created, contain-

ing depth information from the current environment of the

helicopter. Since the MAV is placed in a corridor, it detects a

wall on either side of the helicopter, while the median lateral

distances to the walls on both sides are measured. Using this

information, the error towards the center of the corridor can

be calculated. Normalized with the overall measured width

of the corridor, this error can then be used as input of a PD

controller steering the helicopter through the corridor.

The normalized error allows us the use of this algorithm

without having information about the amount of speed or

the corridor width, which is very useful since no speed

information of the helicopter are available and applications

in different environments are possible. However translational

movement of the MAV is needed to detect surrounding

obstacles.

The paper is organized as follows: in Section II, we

review the work in this area; in Section III, we present

our equipment and in Section IV we describe our approach.

Finally, in Sections V and VI we present the experimental

results and draw the conclusions.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3361



II. RELATED WORK

The use of optical flow for obstacle avoidance is a

widespread approach. Many different obstacle avoidance

strategies rely on this phenomenon, which is often presented

as biologically inspired. Tammero et al. [4] showed that fruit

flies avoid obstacles when turning away from regions with

high optical flow, while Srinivasan et al. [5] found out that

honeybees flying through a tunnel try to balance the amount

of optical flow on both sides in order to maintain equidistance

to the flanking walls. Adapting these behaviors, Serres et al.

[6] developed an autopilot for lateral obstacle avoidance of

a hovercraft. Two linear cameras pointing ± 90° to the side

provided optical flow. By balancing the optical flow on both

sides, they made the hovercraft navigate in the middle of a

corridor.

Hrabar [7] used a similar method for lateral obstacle

avoidance of a rotorcraft flying in an urban environment.

For depth estimation, stereo cameras were used. However,

stereo cameras require heavier payload to the MAV, which

actually should be prevented. Nevertheless, single camera

collision avoidance for frontal obstacle is possible. Zufferey

et al. [8], [9] implemented such a system on a 10g microflyer.

Using two linear cameras for measuring optical flow, he

computed the divergence of the optical flow on the left and

right side of the direction of travel. Increasing divergence

indicates a frontal obstacle which can be safely avoided with

proportional rudder deflection. This system was successfully

tested in an indoor environment that was properly modified

by adding bare-code-like texture on the walls.

Similarly, Muratet et al. [10] used the optical flow field of

a perspective camera facing the direction of travel. In case

of a divergence of the field from one point, a frontal obstacle

could be detected. The point of divergence is called focus of

expansion. This situation allows us to compute the time to

impact onto the obstacle. If the time to impact falls below

a threshold, the controlled helicopter stops and executes a

180° turn.

Besides lateral and frontal obstacle avoidance, altitude

control is another application of optical flow for controlling

MAVs. Ruffier and Franceschini [11] regulated the altitude

of a helicopter using two downward optical flow sensors.

Similar implementations have been done by Zufferey [9]

and Green et al. [12] who additionally implemented an

autonomous landing strategy. While keeping optical flow

constant, speed is reduced successively, causing the MAV

to approach the ground and finally touch down.

All the above mentioned approaches use optical flow as a

primary input. However, it is possible to use optical flow for

computing a depth map containing obstacles surrounding the

MAV. Based on this map, the desired waypath of the MAV

can be planned taking the detected obstacles into account.

Call et al. [13], [14] presented a method to detect obstacles

using a forward looking onboard camera. Distances were

measured based on optical flow amplitude and GPS data.

A three dimensional map provided a rough estimation of the

obstacle locations. The fixed wing MAV then used a sliding

Fig. 1. The Hummingbird quadrotor helicopter provided by Ascending
Technologies.

Fig. 2. The µEye camera with a 190° lens recording monochrome pictures
from the surrounding of the helicopter. It is pointing downwards onto the
ground.

mode control law to avoid obstacles.

From this brief literature review we can see that many

different techniques for obstacle avoidance based on opti-

cal flow have been realized so far. The focus is laid on

approaches using optical flow as control input. Such systems

can be applied in special environments only. Whereas, depth

map based navigation would allow to navigate flying robots

in a more complex indoor environment.

III. EQUIPMENT

A. Flying Platform

Our MAV is the Ascending Technologies Humming-

bird1(see Fig. 1), a quadrotor helicopter having an overall

diameter of 53 cm and a payload of 200 grams. The opera-

tional flying time varies between 23 minutes without payload

and 12 minutes with full payload. Additionally, the MAV is

equipped with a fully working Inertial and Measurement Unit

(IMU) providing information about the pitch, roll, and yaw

angle of the helicopter. Furthermore, its built-in controller

allows us to regulate the overall thrust, angular positions of

pitch and roll angles, and the angular speed of the yaw angle.

For communication purposes, a ZigB communication board

allows us to send control inputs to the helicopter and to grab

IMU data.

B. Camera

As for the camera, we used the µEye camera (see Fig. 2)

from IDS2. The resolution of this monochrome camera is

1http://www.asctec.de
2http://www.ids-imaging.com/

3362



752 × 480 pixels, while the maximal possible frame rate

lays at 87 frames per second. The mounted fisheye lens

provides a field of view of up to 190°. The camera is attached

to the center of the helicopter pointing downwards. In this

orientation, the recorded images contain information from

the surrounding of the MAV.

C. Computer

The overall computation was done off-board on a 2GHz

Dual Core laptop. Connection to the helicopter IMU and

controller was ensured via the ZigB wireless communication

board while images of the on-board camera were streamed

via WiFi. The overall algorithm ran at 20 Hz.

IV. APPROACH

A. Optical Flow

Optical flow is an often used method for non stereo-

vision based collision avoidance. It is a visual phenomenon

experienced daily when observing an object moving at a

different speed than the observer. The motion of the observed

obstacle depends on the distance between observer and

obstacle and their relative speed. Optical flow can therefore

be used for estimating relative distances. It is measured

in units of angular velocity such as radians per second or

degrees per second. If optical flow is extracted from images

of a video camera, as it is done in our approach, optical flow

is the motion of a particular pixel from one video frame to

another.

In the here presented method for obstacle avoidance, the

camera is fixed on the helicopter. Since the surroundings of

the robot is assumed to be stationary, optical flow is only

caused by the motion of the MAV. Optical flow caused by

near obstacles is bigger than optical flow caused by obstacles

farther away. This phenomenon can be used for estimating

the relative distance from the camera to the obstacles.

The calculation of optical flow is one of the most de-

manding aspects concerning computational power in this

application. Several different methods have been developed

[15]. Differential methods call upon spatio-temporal intensity

derivatives, correlation approaches rely on feature matching,

while frequency-based methods use velocity-tuned filters in

the Fourier-domain. Lucas and Kanade[16] introduced an

algorithm that allows us calculation of sparse optical flow,

i.e. optical flow is not computed for every pixel but only for

certain previously determined pixels that are selected in the

first frame. For pixel motion larger than the search-window,

a pyramidal approach for the Lucas-Kanade method is used

[17], where the standard algorithm is applied recursively to

resized versions of the image. This allows us to scan a bigger

area and to find optical flow with magnitudes larger than the

ones detected by the standard approach.

The Pyramidal Lucas-Kanade optical flow detector has

been applied in our algorithm. The pixels in the first frame

are selected using the Shi and Tomasi’s corner finder[18].

Fig. 3. Optical flow during the translational flight of the MAV.

B. Depth Estimation in Straight Flight

Based on the optical flow magnitude, it is possible to

estimate the distance of the detected object. Assuming linear

motion of the MAV, optical flow is a function of the robot’s

forward velocity v, the distance to the obstacle D and the

angle between the direction of travel and the obstacle α (see

Figure 3).

OF =
v

D
· sinα (1)

Solving this equation for D gives:

D =
v

OF
· sinα (2)

Therefore, when speed and optical flow data are available,

it is relatively easy to compute the distance towards a

detected object, as long as pure translational movement of

the robot can be taken for granted.

The quadrotor helicopter, however, is a system navigating

in six degrees of freedom. Besides translation in x, y, and

z direction, it is able to rotate around pitch Θ, roll Φ and

yaw Ψ angles as shown in Fig. 4. In a general case, pure

translation cannot be assumed. Rotations of the MAV cause

additional optical flow which is not usable for distance-

estimation. Compensating this rotational effects is therefore

indispensable.

C. Compensation of Rotation-based Effects

Using a pinhole camera model, the compensation for the

rotation is explained. Assuming two frames f1 and f2 are

acquired at times t1 and t2. From t1 to t2 the robot performs

a motion consisting of translation and rotation. The angular

changes from t1 to t2 are ∆Θ, ∆Φ, and ∆Ψ for pitch,

roll, and yaw angles. The corresponding angular changes

can be extracted from IMU data grabbed at times t1 and t2.

Optical flow is now calculated using the above mentioned

Shi-Tomasi corner finder for selecting pixel p1 in frame

f1 and the Pyramidal Lucas-Kanade approach for finding

the matching pixel p2 in frame f2. Relying on the pinhole

camera model, it is possible to find for each pixel p1 and p2
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Fig. 4. The quadrotor helicopter navigates in six degrees of freedom and
can therefore perform motion in x,y and z direction as well as rotation
around Θ, Φ and Ψ

Fig. 5. Pinhole camera model with tracked point p1 and matching point
p2 found by the Lucas-Kanade algorithm.

the corresponding ray ~r1 and ~r2 in real world coordinates.

Assuming the pixels p1 and p2 have image coordinates x1,

y1 and x2, y2 respectively, the corresponding rays in camera

coordinate system are

~r1 =





0
0
0



 + λ1 ·





x1

y1

f



 (3)

and

~r2 =





0
0
0



 + λ2 ·





x2

y2

f



 (4)

while f is the focal length and the origin of the image

coordinate system is placed in the center of the image as

shown in Fig. 5.

Since the camera is mounted close to the helicopter’s cen-

ter of gravity, it can be assumed that the coordinate systems

of the camera and the helicopter match under the condition

that the axis of both coordinate systems are collinear. This

implies that rotations around the x, y, and z axis of the

helicopter can be adopted as rotations around the x, y, and

z axis of the camera coordinate system.

Because for depth estimation only translational movement

of the helicopter can be taken into account, pixel p2 has to

be placed at the position it would be if there was no rotation.

To achieve this, the ray ~r2 is transformed into the ray ~r′
2

that

is placed in the coordinate system x′, y′, and z′ having no

Fig. 6. Motion consisting of translation and rotation

rotation, see Figure 6. Using the well-known Euler angles

the following transformation is achieved:

~r′
2

=





1 0 0
0 cos ∆Φ − sin ∆Φ
0 sin(∆Φ) cos(∆Φ)



 ·





cos(∆Θ) 0 sin(∆Θ)
0 1 0

− sin(∆Θ) 0 cos(∆Θ)





·





cos(∆Ψ) − sin(∆Ψ) 0
sin ∆Ψ cos(∆Ψ) 0

0 0 1



 · ~r2

(5)
~r′
2

now points into the direction the feature would have at

time t2 if the helicopter would not have performed rotation.

Using ~r′
2

allows us to calculate reliable optical flow for depth

estimation either by calculating the corresponding pixel p′
2

or by applying the scalar product:

~r1 · ~r′
2

= |r1| · |r′
2
| · cos γ (6)

where γ is the angle between r1 and r′
2
. Since optical flow is

measured in rad/s, optical flow can be described as follows:

OF =
γ

∆t
=

arccos(
~r1 · ~r′

2

|r1| · |r′

2
| )

∆t
(7)

with ∆t = t2 − t1.

Applying a pinhole model, however is not appropriate

when using a 190° fisheye camera. Therefore, calculating

the rays r1 and r2 from image coordinates of the pixels p1

and p2 is not as intuitive as described above. Nevertheless,

it is not impossible. A toolbox calibrating omnidirectional

cameras has been developed by Scaramuzza [19] and can be

downloaded from [20]. It allows us an easy calculation of

rays corresponding to image pixel coordinates. The resulting

ray ~rfinal is assumed to have the following structure:

~rfinal =





0
0
0



 + λ ·





xfinal

yfinal

g(ρ)



 (8)

where xfinal and yfinal are the x and y coordinates of the

pixel in the image frame and ρ =
√

x2

final + y2

final. g(ρ)

has the form of a polynomial and is computed during a

calibration procedure based on images taken by the used

camera. ρ is the distance between the observed image point

and the image center.

After computing ~r1 and ~r2 using the calibration toolbox,

the application of the Euler-angles and optical flow calcula-

tion is the same as described above.
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Fig. 7. The regions of interest in which optical flow is calculated. The
central arrow indicates the direction of travel.

D. Depth Map from Optical Flow

The ability of calculating accurate optical flow depending

only on the linear motion of the robot allows us to calculate

a map containing the depth of the MAV’s surroundings.

For each optical flow element in the image, the distance

to the real-world feature causing the optical flow can be

estimated as mentioned above. Using this depth information,

a temporary map can be built containing the distances

towards obstacles in all directions from which optical flow

is measured. This depth map is the heart-piece for the

helicopter navigation with obstacle avoidance.

In the here presented case, the test environment is an

indoor corridor. Using the depth map, both walls of the cor-

ridor on either side of the helicopter are detected. Ensuring

that the main portion of optical flow is caused by the wall,

optical flow is calculated in certain regions of interest within

the image only. This region is shaped similar to the wall

appearance in the image. This sections contain two segments

of 80°, one on each side of the MAV as shown in Figure 7.

A frontal section of 50° is not taken into account, since depth

estimations close to the direction of travel causes numerical

problems.

In average, approximately 500 optical flow elements are

detected, about 250 on each side. Since wrong matches in the

Lucas-Kanade algorithm giving wrong distance estimations

cannot be avoided, the calculated optical flow is inspected

with a filter for removing outliers.

A simple threshold filter removes too large optical flow

amplitudes. In a further step, an angular criterion is checked.

Optical flow has to be tangential to a circle with its center at

the center of the image with a deviation of up to 50°. This

threshold seems to be large, it has been chosen experimen-

tally and proved to work though. It is necessary, since the

optical flow has not an exact circular shape. If the threshold

is chosen smaller, optical flow close to the direction of travel

might be filtered out, even if it was not wrongly matched.

A remarkable amount of wrong matches could be extracted

using these two criteria.

E. Error Estimation

For safe navigation through the corridor, the position

error of the MAV towards the center of the corridor is

of significant importance. Error calculation can be done

based on the previously computed depth map. Each depth

estimation based on an optical flow element can be written

in the form of a vector pointing from the camera towards the

detected feature on the wall as seen in Fig. 8:

~D =





x

y

z



 (9)

Where the magnitude of ~D is the absolute distance to

this particular feature. Since we focus on the error towards

the center of the corridor, it is useful to project the map

onto a two dimensional plane which is defined by the x

and y axis of the helicopter coordinate system. Therefore,

the z component of the distance vector ~D is neglected. On

this two-dimensional map, the walls can be detected easily.

The median sideways distance of the MAV towards the right

wall is corresponding to the median of all yR values of the

distance vectors ~DR pointing to the right, whereas the left-

hand distance is the median of the absolute value of all yL

values of the distance vectors ~DL pointing left. The error e

towards the corridor’s center can now be calculated as the

difference between the distance to the right and the distance

to the left divided by two:

e =
|ỹR| − |ỹL|

2
(10)

where ỹR and ỹL indicates the median values of all yR

and yL components, respectively. Using the median distance

on both sides is useful to detect upcoming obstacles that

may narrow or widen the corridor. However, because we

only consider the absolute angles yielded by the on-board

IMU (neither velocity nor its direction), the distance toward

the detected walls can only be estimated relatively to the

MAV’s speed. Facing this fact, a way had to be found to

eliminate the unknown speed from the error to convert it into

an appropriate value for the later use as control input. The

wished effect can be achieved when normalizing the above

found error e with half of the overall width of the corridor,

which is the sum of |ỹL| and |ỹR|. The normalized error en

then has the following form:

en =
|ỹR| − |ỹL|

|ỹR| + |ỹL|
(11)

The normalized error varies from −1, if the MAV is

located at the right wall, to +1, if the MAV is located at

the left wall. This error en can be used as input signal for a

controller navigating the helicopter through the corridor.

F. Implementation

The flow chard of the control system is shown in Fig. 10.

In a first step, two camera images are acquired with cor-

responding IMU data. The time between two consecutive

image acquisitions is 100 ms. The most time-consuming
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Fig. 8. The MAV within the corridor. Depth estimation is done on both sides. Based on this, the error towards the corridor’s center is calculated. On each

side approximately 250 distances are estimated. ~DR indicates all distance vectors pointing right, while ~DL indicates all distance vectors pointing left.

Fig. 9. Comparing the error of the MAV towards the center of the corridor (marked with a thin black line), computed by the depth map based algorithm
and using ground truth measurements.The walls of the corridor are marked with thick black lines.
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Fig. 10. Flow chard of the algorithm.

elements are the image and IMU data acquisition as well as

optical flow calculation. The built-in IMU of the helicopter

has to be polled each time for data acquisition. Furthermore,

it sends by default a larger data set than needed for angular

informations only. Those properties induce a high time

consumption of up to 0.1s for a single data transmission

from the IMU.

V. EXPERIMENTS

To check the functionality of the introduced error estima-

tion, tests have been performed using real data.

A. Test Setup

Since the algorithm is optimized for use in a corridor, the

chosen test-area is an indoor corridor having a width of 2.5m
and a height of 3m. The walls were already heavily textured.

No additional features or special illumination were used to

improve the performance of feature tracking and optical flow

calculation.

The helicopter was flown manually by remote control,

while the proposed algorithm was used for successive error

estimation. The estimated error, computed by our algorithm,

was then compared with the real ground truth error.

B. Test Results

C. Controller Simulation

The error based on ground truth measurements and cal-

culated by our algorithm can be seen in Fig. 9. At a first
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Fig. 11. Way-path of the simulated helicopter in a 4m wide corridor using a PD controller and exact input signal.

Fig. 12. Way-path of the simulated helicopter in a 4m wide corridor using a PD controller. The input signal has deviations similar to the error computed
by the depth map algorithm.

glance, we can notice a correlation between the ground truth

error and the error based on depth map calculation. However,

the computed error seems to be very noisy and can have a

deviation of up to a quarter of the corridor width.

Having a closer look, the following parameters can be

observed:

• average deviation: 0.146 ≈ 7.3%
• median deviation: 0.188 ≈ 9.4%
• maximum deviation: 0.54 ≈ 27%

This deviations can be explained in this way. If the

IMU data are noisy, and therefore not precise enough, the

compensation for rotational effects cannot work properly and

produces wrong results. Especially, inaccurate information

of the yaw angle Ψ can cause wrong sideways depth es-

timations, since its effect is a decrease of the optical flow

magnitude on one side of the MAV and an increase of the

optical flow on the other side.

Nevertheless, it will be shown that the computed error

is sufficiently accurate to be used as input argument for a

controller.

Since the helicopter is an unstable platform, all three

angles (pitch, roll, and yaw) have to be controlled. The

helicopter’s on-board controller regulate the angular position

of pitch and roll and the angular speed of the yaw angle.

Using the computed error, lateral changes in the position

of the MAV should be achieved. To reach this, the controller-

outputs change the angular position of the roll angle and the

angular speed of the yaw angle. The pitch angle is held at

a constant value of 0.5° to reach a forward speed parallel to

the x-direction.

Since height control cannot be achieved using the error-

input, the thrust is kept constant, what causes an approxi-

mated constant height.

For controlling the roll and yaw angles, a PD controller

is chosen. Using a MATLAB Simulink based point mass

model of the quadrotor helicopter, a discrete time controller

C(z) working with a sampling time of T = 0.5s has been

designed:

C(z) =
(kp + kD) · z − kp

z
(12)

The tuning parameters kp and kD are chosen as follows:

kp = 0.2 (13)

and

kD = 0.009 (14)

The resulting way-path of the helicopter in a corridor with a

width of 4m is shown in Fig. 11 with exact input argument.

As initial conditions, the MAV is positioned 1.5m to the left

of the center of the corridor and the instant yaw angle is

chosen such that the x-axis is parallel to the walls of the

corridor.

In Fig. 12 the input signal is provided with noise, similar

to the noise achieved by the error estimation from the depth
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map algorithm. As can be observed, the MAV stabilizes

around the center of the corridor. Therefore, it can be

assumed that the input computed by the above presented

algorithm is sufficient for ensuring save navigation of the

MAV.

VI. CONCLUSION

In this study, we addressed the problem of obstacle avoid-

ance using vision based methods, where the navigation of

a miniature quadrotor helicopter within an indoor corridor

was the main task. Relying on an optical flow based depth

map, the walls of the corridor could be detected and the error

toward the center of the corridor computed. The depth map

is built on optical flow measurements caused by translational

movement of the helicopter. The rotational effects in the

optical flow were compensated using IMU data. Test results

based on real images showed that very accurate IMU data

are required for reliable depth informations. A simulated PD

controller showed a centering behavior of the helicopter with

input arguments as provided by the algorithm.

We believe that depth-map based collision avoidance may

evolve as a very powerful tool, since it might be applied in

unknown environments with a high density of objects, and

therefore be ideal for use in indoor environments.
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