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Abstract— This paper presents a method for vision based
estimation of the pose of human hands in interaction with
objects. Despite the fact that most robotics applications of
human hand tracking involve grasping and manipulation of
objects, the majority of methods in the literature assume a
free hand, isolated from the surrounding environment. Our
hand tracking method is non-parametric, performing a nearest
neighbor search in a large database (100000 entries) of hand
poses with and without grasped objects. The system operates
in real time, it is robust to self occlusions, object occlusions and
segmentation errors, and provides full hand pose reconstruction
from markerless video. Temporal consistency in hand pose is
taken into account, without explicitly tracking the hand in the
high dimensional pose space.

I. Introduction

Articulated tracking and reconstruction of human hands

has received an increased interest within the fields of com-

puter vision, graphics and robotics [1] and applications in-

clude learning from demonstration, rehabilitation, prosthesis

development, human-computer interaction. Our goal is to

equip robots with the capability of observing human hands in

interaction with objects based solely on vision data, without

markers.

Capturing hand articulation from video without markers

is a challenging problem. A realistic articulated hand model

has at least 28 degrees of freedom, making the state-space

very large. The pose estimation suffers from self-similarity

– fingers are hard to distinguish from each other – and a

high degree of self-occlusion. Furthermore, hands move fast

and non-linearly. Any method is thus computationally costly,

making real-time implementation demanding. Although there

are hand tracking systems developed for specific purposes

such as sign recognition [1], full pose estimation remains an

open problem, specially if real-time performance is required,

as in virtually all robotics applications.

Hand pose estimation methods can largely be divided into

two groups [1]: A) model based tracking and B) single
frame pose detection. Methods of type A) usually employ

generative articulated models [2], [3], [4]. Due to the high

dimensionality of the human hand, they are facing challenges

such as high computational complexity and singularities

in the state space. They are thus generally unsuitable for

robotics applications. Methods of type B) are usually non-

parametric [5], [6]. They are computationally less demanding
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Fig. 1. Left) Original image and Right) Estimated pose.

and more suited for a real-time system, but also more brittle

and sensitive to image noise, since there is no averaging over

time. In this paper we present a type B) non-parametric pose

estimation method (Fig. 1), which takes temporal consistency

into account. The probabilistic framework of this method is

described in Section II. The method is faster and better at

recovering from temporary errors than type A) model-based

tracking methods. In an earlier paper [7] we also showed

that the time continuity constraint makes the method more

accurate and robust than other type B) single frame detection

methods.

The method maintains a large database of (synthetic) hand

images. Each database instance is labeled with 31 parameters

describing the hand articulation and orientation of the hand

with respect to the camera. The 31D hand configuration of

a new (real) image can then be found using an approximate

nearest neighbor approach, taking previous configurations

into account. Section II describes the composition of the

database. The hand image representation is described in Sec-

tion IV and the nearest neighbor-based mapping is described

in Section V.

In the majority of applications, the human hands are

frequently in contact with objects. Despite this, researchers

have up to now almost exclusively focused on estimating

the pose of hands in isolation from the surrounding scene.

A recent notable exception is [8], who describe a type A)

model-based tracker that allows for objects in the hand.

Our method is also able to reconstruct hands both with and

without grasped objects. Reconstruction of a hand grasping

an object is in many ways a much more challenging task

than reconstruction of a free hand, since the grasped object

generally occludes large parts of the hand. The method of

[8] allows for hand pose reconstruction despite the object

occlusion.

On the other hand, knowledge about object shape gives

important cues about the configuration of palm and fingers
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Fig. 2. The non-parametric temporal regression framework.

in contact with the object. Moreover, object shape and

functionality give cues as to how this object is generally

grasped. The relation between object shape and hand shape

is however complex, and this information is hard to exploit

in a type A) generative tracking model. In contrast to [8], our

method is non-parametric, which means that complex object-

hand shape dependencies can be implicitly represented by

examples. Hand views in the database depicting grasping

hands include occlusion from objects with a shape typical

for this kind of grasp (Fig. 1). The occlusion affects the

appearance of a hand view, so that hands with similar

objects in them will appear similarly. Since the underlying

assumption is that appearance similarity implies similarity

in hand pose, the object shape contributes to the hand pose

estimation in our method.

Thus, the main contribution of the paper is a robust non-

parametric method for 3D hand reconstruction, operating

in real-time, that also takes time continuity constraints into

account. The method handles severe occlusions of the hand

and also takes the object shape into account in 3D hand

reconstruction. Experiments in Section VII also show that

the method is robust to segmentation errors, a necessary

requirement for the method to be applicable in a realistic

setting.

II. Probabilistic Framework

The following notation is used throughout the paper. In

a specific time instant t, let xt be the articulated hand pose

and yt the observation. Here, xt is a 28 dimensional vector

of joint angles, and yt is a 512D histogram of oriented

gradients (HOG) [9], see Section IV. The space spanned by

x is hereafter called JOINT space, while the space spanned

by y is called HOG space. We assume that p(xt) is uniform

over the JOINT space, and that the process is Markovian,

i.e., xt depends on the previous pose xt−1 only.

As shown in [7], the view yt alone is not enough to non-

ambiguously estimate the articulated hand pose xt. Therefore,

the pose xt−1 at the previous timestep is taken into account

in the estimation. This corresponds to sequential estimation

of p(xt |yt, xt−1), the hand pose given the observation and the

previous state. The temporal regression problem is decom-

posed as p(xt |yt, xt−1) ∝ p(xt |yt)p(xt |xt−1). As shown in Fig. 2,

(a) Original image (b) Segmented hand, (c) NN in database,

HOG HOG

Fig. 3. Data representation.

the method takes as input a monocular image and segments

the hand based on skin color segmentation (a). A HOG yt is

then computed as described in Section IV (b).

The HOG yt is compared to a large database of hand views

(c), returning a weighted set of nearest neighbors {(yi
t, x

i
t,w

i
t)},

as described in Section V (d). Each neighbor view yi
t from

the database has an associated joint angle configuration xi
t,

which, weighted by wi
t, constitute a sampled approximation

of p(xt |yt) (e).

The temporal consistency constraint p(xt |xt−1) is a para-

metric function of xt and xt−1, as explained in Section VI

(f). This term gives a higher probability to estimates where

the hand has moved little over the last time step, thus giving

priority to smooth motion estimates. The multiplication with

p(xt |xt−1) is approximated by updating the database nearest

neighbor weights to w∗i
t ∝ wi

t p(xi
t |xt−1) (g).

The expected hand pose value at time t is then estimated

as x̂t = E(xt |xt−1, yt) ≈ arg maxxi
t
w∗i

t , i.e., the database pose

with the highest weight (h).

III. Database Composition

The hand pose xt could potentially be found by expressing

p(xt |y1, xt−1) parametrically, and finding the maxima of this

function using an optimization algorithm. However, this

optimization problem is high dimensional and non-convex.

To alleviate the dimensionality problem, and constrain the

search to commonly observed hand poses, we use a non-

parametric approach: we discretize the state space by creating

a large database of hand poses with synthetic images.
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The composition of the database is motivated by our

research aim: understanding human interaction with objects.

Our database has more than 105 images, consisting of 5

different timesteps of 33 object grasping actions observed

from 648 different viewpoints. The grasp types are selected

according to the taxonomy presented in [10]. The graphics

software Poser 7 is used to generate the synthetic hand views.

The synthetic views in the database include basic object

shapes that are usually involved in each kind of grasp (see

Fig. 3c). The objects are considered background (although

colored black for visibility in the figures) and the hand parts

occluded by the object do not provide any features to the

image observation yt. This can be seen in Fig. 3c, bottom,

where there is a “hole” in the middle of the HOG. As

mentioned in the Introduction, the object shape contributes

to the hand pose estimation in our method, since the hand

pose depends on the shape of the object, which in turn affects

the HOG yt.

It can be argued that this method can only work if the

object shape in the real action is the same as in the database.

However, firstly, a particular kind of grasp is executed

usually to similarly shaped objects and, secondly, the features

used in our system (see Section IV) generalizes well over

small variations in object shape. As described in Section II,

p(xt |yt, xt−1) is modeled non-parametrically using {(yi
t, x

i
t)},

a set of database nearest neighbors to yt in HOG space,

weighted by their distance to yt in HOG space and xt−1 in

JOINT space. The weighting is formalized in Sections V

and VI.

IV. Image Representation

The input to the method are monocular images of the

type and quality shown in Figure 3a. In these images, the

hand is segmented using skin color thresholding in HSV

space [11] (Figure 3b, top). From the segmented hand image

a histogram of oriented gradients (HOG) [9] is extracted

(Figure 3b, bottom). This is a rich representation of shape,

with certain robustness towards segmentation errors and

small differences in spatial location and proportions of the

segmented hand. The image is partitioned into cells and a

histogram of gradient orientation is computed for each cell.

The size of the cells and the granularity of the histograms

affect the generalization capabilities of the feature. With

smaller cells and detailed histograms, the feature is richer

but less capable of generalize over small differences. For

our purposes, 8× 8 cells and histograms with 8 bins provide

good generalization with a sufficient level of details. The ob-

servation yt equals the concatenation of the 8× 8 histograms

corresponding to each cell of the image. The dimensionality

of yt is thus 8 × 8 × 8 = 512. A more detailed discussion on

how different parameters of the HOG affect human detection

can be found in [9].

V. Non-ParametricMapping

The probability density function p(xt |yt) is approximated

by indexing into the database of hand poses using the image

p(xt|xt−1)
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Fig. 4. Two different methods for modeling temporal consistency.

representation yt, and retrieving the k nearest neighbors

(kNN) in the space spanned by y.

As an exact kNN search would put serious limitations on

the size of the database, an approximate kNN search method,

Locality Sensitive Hashing (LSH) [12] is employed. LSH is

a method for efficient ε nearest neighbor (εNN) search. It is

particularly suited for high dimensional data, since its online

complexity does not depend explicitly on the set size or the

dimensionality [12].

Each retrieved εNN yi
t is given a weight wi

t = N(yi
t |yt, σy),

drawn from a 512D Gaussian density centered in yt with

standard deviation σy. This gives higher weight to database

εNN that look similar to the observed hand.

In the database, each HOG y j is associated with a pose

x j. The poses corresponding to the εNN {yi
t} can thus be

retrieved. Together with the weights, they form the set

{(xi
t,w

i
t)} which is a sampled non-parametric approximation

of the density p(xt |yt).

The pose vector x is composed of the rotation matrix of

the wrist wrt the camera and the sines of the joint angles

of the hand (which takes values between [− π
2
, π

2
]). Each

component of x therefore lie in the domain [−1, 1], which

makes scaling unnecessary. The advantage of using a rotation

matrix to represent the wrist rotation is that rotation matrices

can be compared in a Euclidean fashion, as opposed to Euler

angles and quaternions. Euclidean comparison of poses is

used in the temporal consistency modeling (Section VI) and

the experimental evaluation (Section VII-A).

VI. Temporal ConsistencyModeling

As described in Section II, the temporal consistency con-

straint p(xt |xt−1) is modeled as a parametric function. It is

used to reweight the sampled distribution {(xi
t,w

i
t)}, approxi-

mating p(xt |yt). We propose two ways to model the temporal

consistency constraint, outlined in the two subsections below.

A. Single Hypothesis Gaussian Weighting

The simplest way of modeling temporal consistency is to

assume that poses similar to the previous estimated pose

x̂t−1 are more likely than poses that are very different from

the previous one. Hence, p(xt |xt−1) = N(xt |x̂t−1, σx), a 28D

Gaussian density centered in x̂t−1 with standard deviation σx.

This approach was used in [7] and is depicted in Figure 4a.
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(a) α = 0.5% (b) α = 3.3% (c) α = 5%

Fig. 5. Artificial segmentation corruption α added to synthetic sequences.

B. Multiple Hypothesis Kernel Density Estimation Weighting

A drawback of the single hypothesis approach is that all

the “second best" nearest neighbor hypotheses at t − 1 are

thrown away before temporal propagation. A logical im-

provement is to consider the full weighted set of hypotheses

{(xi
t−1
,w∗i

t−1
)} instead of the most likely hypothesis x̂t−1 in the

estimation of p(xt |xt−1). This is illustrated in Figure 4b.

Following this idea, we use kernel density estimation

(KDE) [13] over the weighted set of poses of the previous

frame {(xi
t−1
,w∗i

t−1
)} to estimate p(xt |xt−1). The system can

then recover from an erroneous estimation of xt−1.

As shown in the experiments in Section VII, KDE leads to

a more robust sequential estimation than Gaussian weighting

in many cases. Furthermore, even though KDE increases

the computational load with a factor corresponding to the

number of nearest neighbors |{xt−1}|, the computational load

of computing the temporal consistency weights is negligible

compared to, e.g., the database εNN lookup. A drawback

of KDE compared to Gaussian weighting is however the

necessity of tuning more parameters, most importantly, the

bandwidth of the kernels.

VII. Experiments

We first experimentally compare the two temporal con-

sistency models detailed in Section VI, using synthetic

sequences with hand pose ground truth. Then, the method is

evaluated on real sequences featuring three different subjects

and three object shapes. The sequences were captured at

10 frames/sec with a Point Grey Dragonfly camera with a

resolution of 640×480 pixels. The method was implemented

in C++ and runs at 10 frames/sec on one of the cores of a

four core 2.66GHz Intel processor.

A. Comparison of Temporal Consistency Models

The single hypothesis and multiple hypothesis temporal

consistency models are first compared in terms of pose

reconstruction accuracy. This quantitative analysis of our

method is done with synthetic sequences, where the hand

pose ground truth is available. To make experimental con-

ditions as realistic as possible, none of the hand poses or

the objects in the synthetic sequences are present in the

database. Moreover, the poses are corrupted with a variable

amounts of segmentation noise (see Fig. 5), to simulate
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Fig. 8. Pose error with increasing segmentation corruption in sequence 1.
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Fig. 9. Pose error with increasing segmentation corruption in sequence 2.

segmentation errors that occur with real sequences. The

segmentation corruption is performed in the following way:

The segmentation mask is first assigned as the full hand view

(without noise). A fraction α of the pixels in the segmentation

mask are set to zero. The error is then propagated through an

erosion followed by dilation. In each frame t, the error of the

estimated hand pose x̂t relative to the ground truth pose xgt
t

is estimated as ‖x̂t − xgt
t ‖, the Euclidean distance in the pose

space explained in Section V. Figures 6 and 7 show the hand

pose estimation of synthetic sequences 1 and 2 respectively,

with segmentation corruption α = 0.5%.

As shown in Fig. 8-9, the multiple hypothesis temporal

consistency model almost consistently gives a better accu-

racy. The effect is more visible with higher segmentation

corruption levels α. The reason for this is that the single-

frame pose estimate p(xt |yt) is more ambiguous for higher

α, which means that there is a higher uncertainty about which

sample xi
t is the best pose estimate at time t. With higher α

it is thus increasingly better to let all samples {(xi
t−1
,wi

t−1
)}

influence the temporal model. It can als be seen that the pose

estimation performance is largely unaffected by segmentation

corruption levels up to α = 2%.

B. Real Sequences with Subjects Not in Database

To show the performance of the method on real data, it

was evaluated with sequences of the first author and two

uninstructed persons (one man and one woman) grasping
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Fig. 6. Synthetic sequence 1. Top: original synthetic image. Middle: segmentation image with α = 0.5%. Bottom: estimated pose. (The objects in the
database are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/synthetic1.mp4

Fig. 7. Synthetic sequence 2. Top: original synthetic image. Middle: segmentation image with α = 0.5%. Bottom: estimated pose. (The objects in the
database are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/synthetic2.mp4

three different objects: A cup (with no equivalence in the

database), a tennis ball (similar to a ball in the database),

and a pair of pliers (with no equivalence in the database).

The actions are not required to start from any specific pose.

Naturally, the grasps in the sequences do not have exact

correspondences in the database. Furthermore, the subjects’

hands are of different sizes and shapes.

The multiple hypothesis temporal consistency modeling,

shown above to be consistently better than the single hy-

pothesis alternative, was used throughout the real image

experiments. Fig. 10, 11, and 12, show the result of pose

estimation for the three subjects respectively.

One conclusion that can be drawn is that the method is

robust to individual variations in hand shape and proportions.

The hand model used to generate the database view is

designed to be male. However, the method is successful

in recovering the poses of the considerably more slender

female hand (Fig.”12), as well as of the hand with a larger

proportion of the lower arm uncovered (Fig. 11); this affects

skin segmentation, which in turn affects the HOG yt used for

database lookup.

The results also show that the method generalizes over

grasps and objects that are not exactly represented in the

database. It should be taken into account that two of the

subjects have no previous experience with the method or the

database, and thus can be expected to grasp the objects in

a natural way. The cup and the ball are well represented

by other objects present in the database. However, the pliers

pose a slightly larger challenge for the method. There are two

possible reasons for this. Firstly, the layout of the pliers, with

two separated legs, makes the occlusion of the hand appear

differently than any example in the database. Secondly,

the functionality of the pliers makes the subjects grasp it

differently than other rod-like structures in the database.

Fig. 13 shows the pose estimation of a sequence where large

parts of the hand is occluded by the grasped object showing

the method is robust to large object occlusion.

The pose estimation in Fig. 14 points to an avenue for im-

provement of the method. In our current temporal continuity

approaches we assume that the most probable current pose is

similar to the most probable previous pose. With this we are

making an implicit assumption of static hand pose. However,

this assumption is frequently violated; fast hand motions like

the one shown at the end of the sequence in Figure 14 are

not uncommon. With the assumption of being static in the

temporal consistency model, all poses xi
t selected by the εNN

sampling will be equally unlikely according to the temporal

consistency model. Ambiguities in the HOG signature, e.g.,

between the front and back part of the hand, will then cause

estimation errors as the one in the leftmost frame of Fig. 14.

This issue can be addressed by including a dynamic model

of pose over time.

VIII. Conclusions

A non-parametric method for 3D sequential pose esti-

mation of hands in interaction with objects was presented.

The contributions of this paper are the development of a

method that not only handles severe occlusion from objects

in the hand, but also takes the object shape into account

in 3D hand reconstruction. In addition, the method is non-

parametric and provides 3D hand reconstruction, operating

in real-time, taking time continuity constraints into account.

Experiments showed that the method estimates hand pose

in real time robustly against segmentation errors and large

occlusion of the hand from objects. It was also shown that

462



Fig. 10. Real sequence 1 (male subject 1). Top: image with skin segmentation window highlighted. Bottom: estimated pose. (The objects in the database
are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real1.mp4

Fig. 11. Real sequence 2 (male subject 2). Top: image with skin segmentation window highlighted. Bottom: estimated pose. (The objects in the database
are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real2.mp4

Fig. 12. Real sequence 3 (female subject 3). Top: image with skin segmentation window highlighted. Bottom: estimated pose. (The objects in the database
are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real3.mp4

Fig. 13. Real sequence 4 (male subject 1) with large hand occlusion. Top:
image with skin segmentation window highlighted. Bottom: estimated pose.
Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real4.mp4

Fig. 14. Real sequence 5 (male subject 1) with fast non-linear motion. Top:
image with skin segmentation window highlighted. Bottom: estimated pose.
Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real5.mp4

the robustness to temporary estimation errors is improved

by taking multiple hypotheses of previous hand pose into

account.

Future work includes improving the motion model; cur-

rently, a static temporal model is implicitly assumed. This

can be done in several ways, e.g., by learning low-

dimensional models of hand motion from motion capture

training data. Furthermore, we will enlarge the database to

represent poses of differently shaped hands, grasping a wider

range of objects under different illumination conditions. The

approximate database lookup has a highly sub-linear time

complexity, which allows for a significantly larger database

with a moderate increase in computational load.
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