
Abstract––Digitally controlled systems are getting more and 
more popular mainly because of their flexibility and 
convenience but their stability is strongly affected by the time 
delay introduced by different factors. For common PID type 
digital controllers, zero-order holds (ZOHs) are commonly 
employed and the stability characteristics are investigated 
based on that concept. Mathematical investigations show that 
higher-order holds may improve the stability and performance 
of the system and can reduce the steady state errors 
significantly. This is because the controller tries to learn from 
the history of the behavior of the system and then predict the 
behavior for the time period between sampling instances and 
generate the best possible control force. Furthermore, a new 
concept of Modified Holds is introduced, which clearly 
improves the performance of a digital controller. For most 
control algorithms this does not prolong the processing time 
significantly (e.g. less than 1%) which can be neglected in the 
calculations. The varying control force would need an analogue 
circuitry to follow the proper curve, which might make the 
controller’s electronic circuits more complex. This can be 
avoided considering that in almost all digital controllers the 
main core operates at several orders of magnitude higher 
frequency than that of the control loop itself. Hence, the control 
force can also be generated digitally at much higher 
frequencies. In this paper, after investigating the stability of a 
1-DoF system equipped with discrete-time PD controller with 
first and second order holds, the concept of modified holds is 
introduced and then the results are validated by simulations. 
Furthermore, the concept is practically implemented on a self-
balancing motor bike robot and the experimental results 
further support the claims of the paper. 

I. INTRODUCTION 

tability is one of the most important aspects of a 
controlled system. Digitally controlled systems are 

increasingly used, but their stability is strongly affected by 
the time delay mainly introduced by data processing. In 
discrete-time controllers the time delay dictates limits for the 
value of proportional gain as apposed to continuous time 
controllers, where, ideally, the only limit for the proportional 
gain is the power capability of the actuators [1]-[3]. This in 
turn affects the performance of the system. Common PID-
type digital controllers employ zero-order holds (ZOHs). In 
these systems, a proper control force is calculated for each 
time step  , and its value is kept constant until the next 
sampling time . Higher order holds consider a longer 
history of the system outputs to generate a time varying 
control force  during  each  sampling  period. This is done by  
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Fig. 1.   FOH uses the slope of the line connecting the previous two steps of 
state variables as a reference to generate a proper force during the next 
sampling time (blue lines). In case of a ZOH the control force is kept 
constant proportionally with the last measured state (red lines). 

predicting the future behavior based on the previous rate of 
change  of  the  system  outputs.  Fig. 1, illustrates how the 
control force is generated by using the slope of the line 
connecting the two previous states in a first-order-hold 
(FOH). Consequently, a second-order-hold (SOH) generates 
a nonlinear force profile using the curvature and the slope 
obtained from the three previous states of the system. There 
have been several different approaches to improve the 
stability and performance of digital controllers e.g. [9]-[12]. 
In this paper, we investigate how higher-order holds affect 
the stability of digitally controlled systems, and if any 
modification can be applied to this concept to improve the 
stability and performance. This concept can be used to 
improve  the  control  of  various  types of  systems (e.g. 
position/force controlled) especially if the system does not 
suffer from large random disturbances. The mathematical 
approach in this paper is introduced based on using a 1-DoF 
position controlled system, but it can be easily expanded to 
multi degree of freedom force feedback devices as well.  

II. STABILITY ANALYSIS USING FOH 

Position controlled robots have a broad range of 
applications. There have been a lot of efforts to increase the 
stability, precision and robustness of these systems, which 
would require high performance processors and more 
advanced sensors and electronic circuits. 
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Let us consider a 1-DoF system (Fig. 2), and we would 
like to control its position to move it from point A to point B 
in the presence of Coulomb friction. A common solution 
would be to use PD controller strategy to generate a proper 
force to simulate a virtual spring/damper setup connected to 
the system in study. This system can be modeled as it is 
shown in Fig. 2. The equation of motion of the system is 
derived as: 

                                                    (1) 

where  represents the control force and  is the 
Coulomb friction force. Let us define a second coordinate  
associated with the position error originated at point B. As  
and  coordinates are aligned it’s clear that: 

             (2) 

   For PD controllers  is calculated based on the linear 
combination of the error and its derivative for each DoF. In 
discrete time controllers, we are dealing with time delays 
arose from measuring the states of the system, computational 
processing and some other factors. The effect of such time 
delays in the behavior of the system has been investigated in 
the recent literature [1],[2],[8]. In these controllers, until a 
new control force profile is defined and is ready to be 
applied to the system, at least one sampling period is 
elapsed. In other words, at every sampling instance a new 
control force function is defined based on the data acquired 
in the past and will be kept valid until the next sampling 
period, as there is no real-time information from the output 
of the system during a sampling interval. In case of a ZOH, 
the value of  is kept constant for the entire sampling 
period (see Fig. 1). Therefore, the effective  at any time 

 can be considered as: 

              (3) 

where  and  are proportional and differential gains, 
respectively. A FOH can interpret a linearly varying force 
profile in each sampling period, where the slope is obtained 
from the slope of the error line in the last two steps using 
Euler’s backward method (i.e. ). This 
results in a control force 

     

             (4) 

   Now combining (1), (2) and (4) we get the equation of 
motion of the controlled system in the time domain. 

  (5) 

   The steady state error is a result of Coulomb friction where 
  which  clearly  shows  that  larger  proportional 

 

Fig. 2.  Model of a computer controlled 1-DoF system in presence of 
Coulomb friction. PD controller can be modeled as a virtual spring/dashpot. 

gains in the stability domain reduce the steady state error. 
On the other hand, friction dissipates energy which has a 
stabilizing effect on the system.  Hence, for the stability 
analysis, we consider the conservative case of a frictionless 
system.  

Let us now introduce the dimensionless time:  . 
Thus, at time  we have . Also, upon the 
chain rule we have   . Therefore, (5) can 
be mapped into the dimensionless time domain as: 

            (6) 

For the sake of simplicity let’s define new dimensionless 
gains:  ,  and substitute them into (6). 
The first differentiation of (6) gives us the slope of the 
control force which is the rate of change of the acceleration 
of the system and is constant during each sampling period. 
For time period  we can write: 

        (7) 

The solution of (6) can be obtained by integration as: 

           (8) 

   

(9) 
where  and  are integration constants, which are 
determined considering the initial conditions at the 
beginning of the sampling period  and turn (8) and (9) 
into the following form: 

          (10) 
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                    (11)    

Moving to the next sampling time at  the new state 
of the system can be expressed as a linear combination of the 

th and th states resulting in the following set of 
difference equations: 

         (12.a) 

                                         (12.b) 

              (12.c) 

           (12.d) 

which can be expressed in to the state space format, as 

       (13) 

    Equation (13) represents a set of geometric series in terms 
of state variables. These series will converge if and only if 
the eigenvalues of the state matrix  lie strictly inside the 
unit circle centered at the origin in the Z-domain. Fig. 3 
illustrates the mapping of the continuous dimensionless time 
system into the unit circle in the Z-domain. The stability 
margin can be determined either numerically by measuring 
the absolute value of the maximum eigenvalue of matrix  
for sweeping values of the  and  gains, or by applying the 
Routh-Hurwitz criterion using bilinear mapping. As there is no 
analytical solution for the eigenvalues of large matrices the 
second solution can only be applicable to low order systems. 
If ZOH is used in our analysis, then the last row of matrix  
would turn to zero as  all the time. The stability 
domains for both the ZOH and the FOH cases are presented 
in Figs. 4 and 5. 
    At the first look, one would notice that the maximum 
allowable  gain is increased when FOH is used which can 
improve   the   best   achievable   accuracy. There  are   other 

     Fig. 3.   Mapping between dimensionless time domain and Z-domain 
via Z and  transformation.  represents the angular natural frequency of 
the undamped system. 

 
Fig. 4.  Stability chart for PD controllers using ZOH. The darker colors 
represent the more stable zones. The most robust setting is at  and 

. 

 
Fig. 5.  Stability chart for PD controllers using FOH. The darker colors 
represent the more stable zones. The most robust setting is at  and 

. 

interesting areas inside the chart where the least absolute 
value of the maximum eigenvalue (i.e. spectral radius) of 
matrix  can be found. This is the zone where we experience 
the shortest settling time, while the controller is tuned to 
have the best performance. Interestingly, it can be seen that 
not only the most robust zone grows in the case of a FOH 
but also it is shifted to the right, where the  gain is much 
larger, which results in a smaller steady state error even in 
the most robust zone (see Fig. 4 and 5). Increasing the 
maximum allowable  gain could be even more interesting 
in impedance control applications, where the  gain 
corresponds to the maximum achievable virtual stiffness. 
Moreover, improving the performance of the controller 
increases the transparency between the virtual environment 
and the haptic device. 

III. STABILITY ANALYSIS USING SOH 

     In case of using a SOH the control force in (1) is 
represented with a second degree polynomial where the 
slope and the curvature are determined based on the last 
three steps. The curvature can be approximated using Euler’s 
backward formula i.e.  
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(14) 
   Using (14), considering a frictionless system, we can 
reconstruct (1) in the dimensionless time domain as  

  
(15) 

   Following steps similar to the case of a FOH, for the time 
period , results in: 

  
                            (16.a)  

         (16.b) 

                       
                                               

             (16.c) 

    

   

               (16.d) 

   For the next sampling time at  the new state of 
the system can be expressed as the linear combination of the 

th, th and th states resulting in the difference 
equations: 

   (17.a) 

          (17.b) 

                      (17.c) 

            (17.d) 

         (17.e) 

Considering  
as the state vector, the state matrix 

=   

(18) 
transfers Eqs. (17) into the state space form. 

    Investigating the spectral radius of  numerically for 
different  and  gains, the stability chart can be obtained. 
Again, if we put zeros in the last and the last two rows of 
matrix , we will get the same result as having FOHs 
and ZOHs, respectively. Fig. 6, presents the stability domain 
of our digitally controlled system using SOH. The maximum 

 gain is increased significantly (i.e. 0.45) which reduces the 
minimum steady state error to 55% of the case of ZOH. But 
the performance of the system is slightly decreased where 
the least value of the spectral radius of  grows to 0.6929 
as opposed to 0.6749 observed in case of ZOH. This shows 
that the performance and stability cannot be increased 
unboundedly by using Higher-Order-Holds (HOH). This is 
discussed in more detail in the next section. 

 
Fig. 6.  Stability chart for PD controllers using SOH. The darker colors 
represent the more stable zones. The maximum allowable dimensionless 
proportional gain is increased to 0.45, as opposed to 0.25 for the case of 
using ZOH. 

IV. HOH AND THE CONCEPT OF MODIFIED HOLDS 

   For higher-order holds we can carry out the analysis in a 
way similar to the cases of FOH and SOH. Table 1 shows 
the main results of using holds up to the sixth order. It shows 
that for most applications, the FOH can offer a good 
performance for the system. 
   At this stage, let us investigate if any modification can be 
done to the structure of the controller to improve the 
performance further. It can be observed that the state space 
matrix   of the discrete time system in 
case of using -order hold will have the last rows in the 
form  presented   in  Table 2,  plus     zeros   on    the   right   
 
TABLE 1. 

  Min Spectral 
Radius 

 at min spectral 
radius 

ZOH 0.2500 0.6749 0.0420 
FOH 0.3325 0.6657 0.1625 
SOH 0.4500 0.6929 0.0525 

3rd OH 0.6020 0.7623 0.0490 
4th OH 0.5565 0.8365 0.0280 
5th OH 0.3675 0.8940 0.0105 
6th OH 0.2415 0.9356 0.0070 

Main results of using different order holds for PD controllers. 
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TABLE 2. 
Row3(n+1)  
entries 

Even  Odd  

   

   

   

   

   

   

   

   

   

   

The entries of the last rows of  in case of even and odd . 

side and complementary zeros on the left (for upper rows 
corresponding to the lower orders). The cofactor used in 
Table 2 is defined as: .  In either 
case there is an  coefficient in the rows, which as  grows, 
makes the matrix more skewed that increases the spectral 
radius. Actually, this  comes from the power of time 
dependent terms in the control force expression. In fact, 
when a higher order hold is used, the PD structure should be 
implemented to every corresponding derivative level with 
the same value of the  and  gains to keep the concept 
consistent. This would cause to have a coefficient of  
beside each level of derivatives as we reach to the 
acceleration level i.e. the level of control force. In the case of 
ZOH, there is no level higher than the acceleration level, as 
the slope and higher derivatives of the state feedbacks are 
considered zero. We propose to modify the HOH discrete 
control force to remove the  coefficient from the rows (see 
Table 2). This results in: 

 

 

(19)  
where  and  are defined as the slope of the previous states 
of the position and velocity respectively. This will not affect 
the upper rest of the rows of the state space matrix .  
   After obtaining the spectral radius of the modified matrix  

, for a range of  and  gains, the interesting results of 
Table 3 is obtained for the first 6 orders of . Of course, 
the first two orders of  offer the same results as the 
non-modified  had.  
   We can see that with the 4th order modified hold, the 
system decays at the rate of  as apposed to 

 obtained in case of ZOH. This offers more than 
10% improvement in performance. Besides, the most robust  

 TABLE 3. 

  Min spectral 
radius 

 at min spectral 
radius 

0   order 0.25 0.6749 0.0420 
1st  order 0.3325 0.6657 0.1625 
2nd order 0.3885 0.6420 0.0840 
3rd order 0.3990 0.6096 0.2100 
4th order 0.3990 0.5711 0.2170 
5th order 0.3990 0.5875 0.2100 
6th order 0.3990 0.5884 0.2205 

Main results of using different degrees of modified holds for PD controllers.  

setting is achieved with  which is more than 516% 
of that of a ZOH, which means more than five times 
improvement in the best achievable accuracy. For the highest 
precision, a 4th order modified hold, offers ~60% reduction 
in the final error, compared to the case of ZOH. The stability 
domain of the 4th order modified hold is presented in Fig. 7, 
which itself demonstrates the improvements graphically.  

 
Fig. 7.   Stability chart for PD controllers using 4th order modified hold. The 
darker represent the more stable zones. The most robust zone is situated at 

 and . 

In the following section, the results are illustrated with 
computer simulations and experimental tests (please also see 
the accompanying video). 

V. SIMULATIONS AND EXPERIMENTAL RESULTS 

Simulink is used to construct the model of our system (see 
Fig. 2) and check the response of the controlled system to a 
unit impulse, in case of using ZOH and 4th order modified 
hold. The state feedbacks are sampled with 100Hz frequency 
and the mass is considered 1 Kg. As the system operates in 
the time domain, the defined dimensionless gains, which are 
functions of the sampling time and system mass, should be 
converted to ordinary gains. Referring to Fig. 4, for a ZOH, 
the best achievable robustness  is  obtained  at   
and . The ordinary  and  gains for this system 
are 

         (20) 

              (21)  
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After applying these gains to the controller of the simulated 
system, the behavior shown in Fig. 8 is obtained. As it is 
shown, the steady state error is 2.38 mm and settling time is 
around 0.185 sec. 

Fig. 8.  Behavior of the digitally position controlled system using ZOH, 
tuned to the  most robust setting. 

    Now we turn to the 4th order modified hold and apply the 
necessary changes to the control force in the simulation. 
Employing the same approach, introduced in previous 
sections, the best achievable performance is obtained 
numerically at  and . Keeping the same 
mass and control frequency the ordinary gains are obtained 
as  and . Fig. 9, shows the results after 
fixing the gains for the new setting. In this case, the settling 
time is reduced to ~0.175 sec, which is around 10% less than 
the previous result. Also, as we were expecting, the steady 
state error is reduced to 0.461mm, which shows ~516% 
improvement in the accuracy. Some oscillatory behavior can 
be seen in Fig. 9, which is the result of the considerable 
increase in virtual stiffness i.e. the proportional gain. The 
results from the simulations confirm the claims of the paper 
down to the level of numerical errors. 
  

 Fig. 9.  Behavior of the digitally controlled system using 4th order modified 
hold, tuned to the most robust setting. 

The next stage is to test the concepts on a real physical 
system to verify the improvements experimentally. For this 
reason a self-balancing motor-bike robot [4],[5] is  used as a 

position controlled system (see Fig. 10). Ghaffari developed 
this unique robot in his Master’s project work. This robot is 
equipped with wireless transceivers, which allows us to 
monitor the behavior of the system in real-time. First of all, 
the robot was set to its most robust condition using a ZOH. 

Fig. 11.  Behavior of the digitally controlled system using ZOH, tuned for 
the most robust setting. 

The response to an impact (see the accompanying video), 
captured and recorded and shown in Fig. 11. 
   A fairly similar behavior (no oscillations) can be observed 
between the experimental results (Fig. 11) and the 
simulations (Fig. 8). The settling time is measured around 1 
second. We can still increase the proportional gain to 
improve the accuracy but as we move to the right side in the 
stability domain (Fig. 4), the robustness is decreased until 
the border of the chart, where the system starts to oscillate 
and shows the critical behavior (as also illustrated in the 
accompanying video). Increasing the proportional gain 
further will make the system unstable and balancing will not 
be possible anymore. 
For the next step, the 4th order modified hold was 
implemented on the robot. As we need to generate a non-
linear force, probably an analogue circuitry would be the 
best to drive the actuators, but as we are dealing with a 
digital controller, it would not be convenient to make the 
electronic circuits any more complicated. One appropriate 
solution would be to use the same digital controller to 
generate piece-wise constant signals (e.g. constant duty ratio 
PWM signals), at much higher frequencies than that of the 
control loop (see Fig. 12). This can be done by having two  

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5 x 10-3

Time (sec)

P
os

iti
on

 e
rr

or
 (

m
)

2.38e-3
Final Error

0 0.05 0.1 0.15 0.2 0.25
0

1

2

3

4

5

6 x 10-4

Time (sec)

P
os

iti
on

 E
rr

or
 (

m
)

4.61e-4
Final Error

23 23.5 24 24.5 25 25.5

-8

-6

-4

-2

0

2

time (sec)

Le
an

 A
ng

le
 (

de
gr

ee
s)

Fig. 10.  Self-balancing motor bike robot used for experimental tests. 

5178



Fig. 12.  Illustration of how a non-linear control signal can be constructed 
with a higher frequency, second digital loop. 

different loops in parallel in the control algorithm, one for 
generating the control signals at the highest possible 
frequency (  in Fig. 12) and the other for the main control 
loop at its corresponding frequency (  in Fig. 12).   
   Parallel loops are supported by many advanced digital 
chipsets (e.g. multi-core micro controllers, FPGAs, etc.). 
Even if the processor only supports sequential algorithms, 
using inner loops would be a next level solution, where the 
inner loop operates with a high frequency to generate the 
control force at the end of the main loop. This is due to the 
fact that in most cases, the physical limitations (e.g. noises, 
bandwidth of the sensors and amplifiers), introduce much 
more delay than the CPUs’ processing time, so in the 
meantime the processor can handle the second loop. In the 
case of our experimental robot, the main controller of the 
motor-bike operates at 40Hz, however the processor operates 
at 16MHz. This allows the second loop to generate 500 
different control signals in every sampling period which can 
approximate the required non-linear control signal. 
   After calibrating the controller for its most robust setting 
(see Fig. 7), the same impact test as in the previous case was 
performed. The result showed that the settling time is 
reduced to 0.91 second (compared to 1 sec for ZOH), which 
is a 9% improvement. The real-time graph of the robot’s 
response is presented in Fig. 13, which also shows a 
behavior similar to the simulated model (see Fig. 9).  

Fig. 13.  Behavior of the digitally controlled system using 4th order modified 
hold, tuned for the most robust setting. 

The magnitude of the proportional gain for the 4th order 
modified hold was more than 5 times of that of the ZOH. 
This means 80% smaller position error.  
   These experimental results further confirmed that modified 
holds improve the performance of digital controllers. This 
concept is relatively easy to implement and practical. It 
requires almost no modifications to the hardware of the 
robot (which could be costly and time consuming). There are 
many possible fields of industrial applications, where 
implementing the modified hold can add value and improve 
the desirable characteristics of the system (e.g. position 
controlled and haptics).  

VI. CONCLUSION  
    In this paper, we dealt with possible strategies to improve 
the stability and performance of computer controlled 
systems by considering the recent history of the behavior of 
the system in generating a better control force. The 
investigation started with implementing first and higher 
order holds, and ended with the concept of modified holds. 
The result was a considerable improvement in the accuracy 
and the performance of the digital control, all at the cost of 
adding a few more steps to the algorithm of the controller. 
This modification can be done to many present robots to 
improve their performance. The improvement also depends 
on the technical specification of the robot and its nature of 
use, e.g. we cannot expect any better accuracy than the 
resolution of the sensors on the robot. Sophisticated control 
algorithms may demand high-performance processors and 
more advanced sensors which are often beyond the budget 
scope of projects.  
   Most of the investigations were based on the assumption 
of the availability of actual state feedback, which of course,    
in practice, needs properly filtered data to obtain 
approximations for the actual system state. 
    The presented concepts were illustrated and validated via 
simulation and experiment. For the experimental testing a 
novel self-balancing motor bike robot was used. 
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