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Abstract— This paper presents the relatively rich and inter-
esting bifurcation structure that is present in the nature of
optimal solutions to a multi-robot formation control problem.
The problem considered is a two point nonlinear boundary-
value problem that can only be solved numerically. Since
common numerical solution techniques such as the shooting
method are local in nature and hence are difficult to use to find
multiple solutions, an alternative formulation of the problem is
presented that can be solved through homotopy methods for
polynomial systems. These methods are guaranteed to find all
solutions within the resolution of the system description’s dis-
cretization. Specifically, this paper studies a group of unicycle-
like autonomous mobile robots operating in a 2-dimensional
obstacle-free environment. Each robot has a predefined initial
state and final state and the problem is to find the optimal
path between two states for every robot. The path is optimized
with respect to the control effort and the deviation from a
desired formation. The bifurcation parameter is the relative
weight given to penalizing the deviation from the desired
formation versus control effort. It is shown that as this number
varies, bifurcations of solutions are obtained. Considering the
common use of optimization methods in robotic navigation
and coordination problems, understanding the existence and
structure of bifurcating and multiple solutions is of great
importance in robotics.

I. INTRODUCTION AND BACKGROUND

Distributed systems with multiple agents have been the fo-

cus of many research efforts in recent years. The applications

of distributed systems are ubiquitous, including robotic un-

derwater vehicles [1], satellite clustering [2], electric power

system [3], search and rescue operations [4] etc. The ap-

proaches to the multi-robotic formation control problem are

similarly many and varied. Roughly, they can be categorized

into three groups: leader-follower methods [5–7], behavior-

based methods [8–10] and virtual structure methods [11–13].

In this paper, the problem addressed is to control a

formation of robots moving along an optimal path between

an initial configuration and a final configuration. The path

is optimized with respect to a combination of the control

effort and the deviation from a desired formation. Since each

robot has its own predefined initial state and final state, the

procedure that standard optimization methods suggest for

finding the optimal path is to solve a boundary value for
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Fig. 1. Optimal paths for the five robot system

with k = 24.5.

a set of second order ordinary differential equations (derived

subsequently in Section II).

The existence of multiple nontrivial solutions of BVPs for

nonlinear second order ODEs has been investigated by some

authors. Not surprisingly, however, the results are not as fully

developed as the case for the bifurcation of fixed points for

ordinary differential equations. For example, for

x′′ +a(t) f (x) = 0

x(0) = 0

x(1) = 0,

the properties of the solutions depend on the limiting behav-

ior of the function f (u). Erbe and Wang [14] studied the

existence of positive solutions of the equation with linear

boundary conditions. Also, for

f0 = lim
s→+0

f (s)

s

f∞ = lim
s→+∞

f (s)

s
,

they showed the existence of at least one positive solution

in two cases, superlinearity ( f0 = 0, f∞ = ∞) or sublinearity

( f0 = ∞, f∞ = 0). In [15], Erbe, Hu and Wang showed that

there were at least two positive solutions in the case of super-

linearity at one end (zero or infinity) and sublinearity at the

other end. Naito and Tanaka [16] and Ma and Thompson [17]

established a precise condition concerning the behavior of the

ratio f (s)/s for the existence and nonexistence of solutions.

Their main result was that the problem had at least k

solutions if the ratio f (s)/s crossed the k eigenvalues of

the associated eigenvalue problem. For a class of systems

of second order ODEs, Marcos do Ó, Lorca and Ubilla [18]
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used the fixed-point theorem of cone expansion/compression

type, the upper-lower solutions method and degree arguments

to study the existence, nonexistence, and multiplicity of

positive solutions of the boundary value problem. While the

problems they address are similar in nature to ours, none of

these results are, unfortunately, directly applicable to it.

This paper presents bifurcation results for a specific for-

mation control problem. These solutions were found by

using the shooting method to solve the nonlinear two-point

boundary value problem. The existence of multiple solutions

and their bifurcation structure is important for roboticists

who deal in motion planning methods that are based on

optimization techniques. Knowledge of the existence and

nature of bifurcations of solutions of this type are important

for practicing engineers because if a solution is found that is

optimal, but not necessarily desirable, it may be the case that

a different solution for the same cost function exists and is

superior. Searching for multiple solutions of an optimization

problem is likely to be less costly than reformulating the

optimization problem.

Additionally, this paper presents an alternative finite-

difference formulation of the problem. When expressed as a

finite difference system, an additional transformation allows

the boundary value problem to be expressed as a system

of algebraic polynomial equations. This is important be-

cause methods exists for finding all solutions of polynomial

equations, and hence can potentially serve as a means to

validate that the solutions found by the search using the

shooting method represent all possible solutions. Homotopy

continuation methods are based on the simple concept of

constructing a system with the same number of roots as

the original system where the roots of the new system are

known, and then tracing the roots of the known system as

its solution is deformed into that of the original system. As

general references, see, for example [19–21]. Initial results of

the application of this method are presented as first validation

that the method is applicable and works. A full exposition

will be the subject of a full future publication. Due to the

computational cost of the approach, a parallel computing

environment and other specialized techniques such as a

judicious selection of the homotopy will be necessary.

II. PROBLEM STATEMENT

We adopt a simplified version of the kinematic robotic

unicycle as a prototypical model. The simple kinematics of

this kind of robot are described by

ẋ = u1

ẏ = u2.
(1)

The problem is to find the controls ui1(t),ui2(t) for each robot

i that steer a formation of robots of this type from its start

configuration to its goal configuration, while maintaining

a rigid body formation at the beginning and end of the

trajectory and minimizing the global performance index

J =
∫ t f

0

n

∑
i=1

(

(ui1)
2 +(ui2)

2
)

+
n−1

∑
i=1

k
(

di −d
)2

dt

subject to the robotic kinematic constraints in Equation 1,

where n > 2 is the number of robots, di = ((xi − xi+1)
2 +

(yi − yi+1)
2)1/2 is the Euclidean distance between the ith

and (i + 1)th robots, d is the desired distance between two

adjacent robots, and k is a non-negative weighting constant.

The cost function minimizes a combination of the control

effort (first summation) and the deviation from a desired for-

mation (second summation). The weighting constant, which

will serve as our bifurcation parameter, balances maintaining

the desired distance between the robots against finding the

minimum-cost path based on control effort.

Applying Pontryagin’s maximum principle to solve the

optimal control problem, we obtain the optimal inputs

ui1 =
1

2
pi1

ui2 =
1

2
pi2 ,

and equations of motion

ẋi =
1

2
pi1 (2)

ẏi =
1

2
pi2

ṗi1 =
2k (xi − xi−1)

(

di−1 −d
)

di−1
+

2k (xi − xi+1)
(

di −d
)

di

ṗi2 =
2k (yi − yi−1)

(

di−1 −d
)

di−1
+

2k (yi − yi+1)
(

di −d
)

di

.

Because they correspond to the robots at the ends of the

formation, the last two equations in Equation 2 have only

the second term when i = 1 and only the first term when

i = n.

The cases considered in this paper are limited to the

boundary conditions

xi(0) = c+(i−1)d,

xi(1) = 0,

yi(0) = 0,

yi(1) = c+(i−1)d,

(3)

where c is a constant. These boundary conditions correspond

to an initial formation in which the robots are arranged along

the x-axis with the first robot at at x = c and a distance d

between each robot and a final formation in which the robots

are arranged along the y-axis with the first robot at y = c

and a distance d between each robot, as is shown in the left

illustration in Figure 1. It is important to note that if the

initial and final formations are not parallel, then straight-line

trajectories satisfying the boundary conditions will not, in

general, maintain the desired distance between the robots.

III. BIFURCATION RESULTS

For a distributed system containing n robots, when the

weighting constant k is given, an optimal trajectory can be

obtained numerically by solving the equations of motion

given by Equation 2 using the shooting method (see [22]).
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A. Solutions for a five robot system

The figure on the left in Figure 1 illustrates three different

solutions that satisfy the equations of motion in Equation 2

and boundary conditions in Equation 3 for k = 24.5, c = 6

and d = 2 for a formation of five robots. Since the differences

among these trajectories are difficult to distinguish on such

a small graph, the figure on the right illustrates them for the

third (middle) robot with the difference magnified by a factor

of 10.

Since k is a parameter in differential equations, it will

clearly affect the solutions. In fact, as k is varied, the nature

and number of solutions changes. In our prior work [23]

we showed that there is a unique solution to the system in

Equation 2 when k is small and in the limit as k approaches

infinity, the number of solutions also approaches infinity.

In order to present the relationship between the number

of solutions and k, we construct a bifurcation diagram as

follows: since a straight line connecting end points is the

optimal solution when k = 0, we will designate that as a

nominal trajectory. One measure of the difference between

solutions would be their deviation from the straight line

nominal solution at some specified time. As long as the

different solution are not intersecting at that time, this would

provide a measure of difference between different solutions.

In all the bifurcation diagram illustrated subsequently, t =
0.25 is used. For different formations and different types of

robots, a different value of t may be a better choice; however,

for all the systems studied in this paper, t = 0.25 appeared

to adequately represent the relationship among the solutions.

Also, while alternative measures of differences between the

solutions may, in general, be superior, this simple choice

appears to suffice for all the cases considered in this paper.

The plots in Figure 2 illustrate this measure of the differ-

ence between solutions for each robot in the five robot system

as k varies from 0 to 25. In these bifurcation diagrams, the

first robot is the one with the shortest trajectory, the fifth

robot is the one with the longest trajectory and they are

ordered sequentially. A single branch corresponds to a family

of solutions as the bifurcation parameter is varied. If there

is more than one branch for a specified k value, then more

than one solution was found. Observe that the bifurcation

diagrams for robots 1 and 5 are symmetric to each other

about d = 0 axis and the bifurcation diagrams for robots 2

and 4 are similarly symmetric (even though each follows

a trajectory with a different length). Finally, the bifurcation

diagram for robot 3 is symmetric to itself about d = 0.

A close analysis of the actual trajectories that the robots

follow, illustrated in the figure on the right in Figure 1,

reveals that the trajectories themselves are not symmetric

(the two trajectories with pronounced curves intersect, but

not at a point on the straight line solution). A measure that is

based upon the deviation from the nominal solution appears

to be necessary to determine the real symmetric nature of the

solutions. Reference [23] contains the analysis of the system

equations that, when applied to these bifurcation diagrams,

proves that these symmetries must, in fact, exist.
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Fig. 2. Bifurcation diagrams for a five robot

system.

B. Solutions for a seven robot system

Figures 3 and 4 illustrate similar results for a seven robot

system. Figure 3 illustrates the trajectories when k = 24.5,

c = 4 and d = 2. Again, because the difference between

any two trajectories is hard to distinguish in the small left

figure, the right figure in Figure 3 illustrates the trajectory

with the deviation from the nominal trajectory for the fifth

robot magnified by a factor of ten. Figure 4 illustrates the

bifurcation diagrams for the solutions versus k constructed in

a manner identical to those of the system of five robots. Ob-

serve that, similar to their counterparts in the five robot case,

the bifurcation diagrams for robots 1 and 7 are symmetric

to each other about d = 0 as was the bifurcation diagrams

for robots 2 and 6 and robots 3 and 5, and the bifurcation

diagram for robot 4 is symmetric to itself about d = 0.
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Fig. 3. Optimal paths for a seven robot system

with k = 23

IV. THE FINITE DIFFERENCE FORMULATION AND

HOMOTOPY CONTINUATION

The equations of motion given in Equation 2 are obviously

equivalent to the coupled second order system

ẍ =
k (xi − xi−1)

(

di−1 −d
)

di−1
+

k (xi − xi+1)
(

di −d
)

di

ÿ =
k (yi − yi−1)

(

di−1 −d
)

di−1
+

k (yi − yi+1)
(

di −d
)

di

where di is the Euclidean distance between robots i and i+1

and d is the desired formation distance between them. In

the finite difference formulation, the time interval is divided

into equal intervals of length h, and the values of the state

variables at time t = jh are denoted by x
j
i , ẋ

j
i ,y

j
i and ẏ

j
i .

Using the usual finite difference approximation for the

second derivative

ẍ
j
i =

x
j+1
i −2x

j
i + x

j−1
i

h2
,

the system at time t = jh may be expressed as

x
j+1
i −2x

j
i + x

j−1
i

h2
=

k
(

x
j
i − x

j
i−1

)(

d
j
j i−1−d

)

d
j
i−1

+
k
(

x
j
i − x

j
i+1

)(

d
j
i −d

)

d
j
i

y
j+1
i −2y

j
i + y

j−1
i

h2
=

k
(

y
j
i − y

j
i−1

)(

d
j
i−1 −d

)

d
j
i−1

+
k
(

y
j
i − y

j
i+1

)(

d
j
i −d

)

d
j
i

.

Even if the denominators are cleared, this is not in polyno-

mial form because di =

√

(xi − xi+1)
2 +(yi − yi+1)

2
. How-

ever, if we treat each d
j
i as a variable and add the equation

(

d
j
i

)2

= (xi − xi+1)
2 + (yi − yi+1)

2 , the system is polyno-
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Fig. 4. Bifurcation diagrams for a 7-robotic

system
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mial. In particular,

d
j
i d

j
i−1

(

x
j+1
i −2x

j
i + x

j−1
i

)

=

h2d
j
i

(

k
(

x
j
i − x

j
i−1

)(

d
j
j i−1−d

))

+h2d
j
i−1

(

k
(

x
j
i − x

j
i+1

)(

d
j
i −d

))

,

d
j
i d

j
i−1

(

y
j+1
i −2y

j
i + y

j−1
i

)

=

h2d
j
i

(

k
(

y
j
i − y

j
i−1

)(

d
j
j i−1−d

))

+h2d
j
i−1

(

k
(

y
j
i − y

j
i+1

)(

d
j
i −d

))

,

(

d
j
i

)2

=
(

x
j
i − x

j
i−1

)2

+
(

y
j
i − y

j
i−1

)2

.

Since x
j
i ,y

j
i and d

j
i are the variables, the first two equations

are third order and the last equation is second order.

In general, the number of roots of polynomial systems

scales very poorly. For example, for five robots and two

time steps, i = 1, . . . ,5 and j = 0,1,2, there are 15 sets of

these equations, and, in general, for 30 third order equations

and 15 second order equations there are 330215 (which is

on the order of 1018) roots. However, due to the repeated

structure of the equations, the number of actual solutions is

greatly reduced. We utilize a solver called Bertini [24], which

uses homotopy continuation methods to find the roots of the

polynomial system and also is capable of preprocessing the

system to reduce the possible number of solutions based on

system symmetries, etc.

Using this approach and the Bertini software on the five

robot system with two time steps, j = 0,1,2 for several small

values of k validates the unique solutions in the bifurcation

diagrams (the initial isolated branch in Figures 2 and 4).

As a representative case, for k = 2.0, Bertini found 68

total solutions, 16 of which were real. Because the distance

between robots is a state, only solutions for which every

distance is positive is a feasible solution, and of the 16

real solutions, only one had positive values for all of the

distance variables. For various values of k between zero and

2.5, the polynomial solutions tracked those illustrated in the

bifurcation diagrams. Running on a 2.4 GHz Intel Core 2

Duo Macbook running Mac OS 10.5.8, it took approximately

one hour to determine all of the solutions.

Extending these results to validate and reconstruct the

entire bifurcation diagrams is the focus of our current efforts.

Bertini scales well in a parallel computing environment be-

cause of the nature of homotopy tracking solutions from one

polynomial to another. Furthermore, it allows a “user defined

homotopy” from which we can use the known solution for

one k value as the starting solution for nearby k values. This

will allow us to reconstruct the bifurcation diagrams using a

method that is guaranteed to find all solutions. Hence, this

approach will find branches that were perhaps simply not

found in our search using the shooting method or solutions

that are not numerically stable using the shooting method.

V. CONCLUSIONS AND FUTURE WORK

This paper considers the optimal control problem for a

formation of multiple robots. The trajectory of each robot

is optimized with respect to a combination of the control

effort and the deviation from a desired formation, which in

this paper is simply a formation that maintains a specified

distance between adjacent robots. The paper first presents

numerical results illustrating the structure of bifurcations and

multiple solutions of the second order nonlinear boundary

value problem associated with the optimal control problem.

Initial results which validate the approach using the finite

difference formulation which may be transformed into a

polynomial system were also presented. They are consistent

with the results using the shooting method for several small

values of the bifurcation parameter. Due to the complexity of

applying this approach to reconstruct the entire bifurcation

diagram, that work will be the subject of a future presentation

An additional focus of future efforts relates to generalizing

the results. The results presented in this paper that are

specific to the system studied are likely to be much more

general than the particular case presented in this paper. Deter-

mining the most general classes of robots and formations that

maintain the symmetry properties of the results and similar

bifurcation structure is of interest.
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